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1. Introduction

In the last decades, with increasing wide use in sensing and actuation, the
materials exhibiting couplings between elastic, electric, magnetic and thermal
fields have attracted much attention.

In order to give certainty to experimental results and applications, the inter-
est of many researchers turned to mathematical fitting of these topics.

Many applications have their mathematical formulation within a linear
framework, and the theoretical study began from this context.

Foundamental is Nowacki’s paper [1], where a uniqueness theorem for the
solutions of the initial boundary value problems is proved in linear thermopiezo-
electricity referred to a natural state, i.e., without biasing (or initial) fields. Hence
Nowacki [2] also deduced the generalized Hamilton principle and a theorem of
reciprocity of work.

Li [3] generalized the uniqueness and reciprocity theorems for linear thermo-
electro-magneto-elasticity referred to a natural state.

Aouadi [4] establishes a reciprocal theorem for a linear theory in which
the heat flux is considered as a constitutive independent variable, a rate-type
evolution equation for it is added to the system of constitutive equations, and
the entropy inequality is stated in the form proposed by Müller [5].
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Iesan [6] uses the Green–Naghdi theory of thermomechanics of continua
to derive a linear theory of thermoelasticity with internal structure where, in
particular, a uniqueness result holds.

Related works on thermoelasticity and thermoelectromagnetism can be found
in [7] and [8].

The classical linear theory of thermopiezoelectricity assumes infinitesimal de-
viations of the field variables from the reference state, where there are no initial
mechanical and electric fields. In order to describe the response of thermoelec-
troelastic materials in presence of the initial fields, one needs the theory for
infinitesimal fields superposed on initial fields, and this can only be derived from
the fully nonlinear theory of thermoelectroelasticity. The equations of nonlinear
thermoelectroelasticity were given in Tiersten [12]. Yang [13] derived then
from [12] the equations for infinitesimal incremental fields superposed on finite
biasing fields in a thermoelectroelastic body, with no assumption on the biasing
fields.

Here we extend the aforementioned three Nowacki’s theorems [1, 2] to in-
cremental thermoelectroelasticity with initial fields.

We explicitly refer to the incremental theory [13], hence below we rewrite from
this paper, using the same notations, some formulae and results on constitutive
equations of incremental thermoelectroelasticity.

Of course, the theorems proved here just reduce to the ones used inNowacki’s
paper [2] by neglecting the initial fields.

In the uniqueness theorem of Sec. 4 we assume that in the initial state, en-
tropy does not depend on time and the temperature is uniform. For the theorem
of reciprocity of work in Sec. 6 we assume that in the initial state, both the
entropy and temperature fields do not depend on time.

2. Equations of nonlinear thermoelectroelasticity

2.1. Balance laws and constitutive equations

Consider a thermoelectroelastic body B that, in the reference configuration,
occupies a region V with boundary surface S. The motion of the body is de-
scribed by

yi = yi(XL, t),

where yi denotes the present coordinates and XL the reference coordinates of
material points with respect to the same Cartesian coordinate system.

Let KLj , ρ0, fj , ∆L, ρE , θ, η, QL and γ respectively denote: the first Piola–
Kirchoff stress tensor, the mass density in the reference configuration, the body
force per unit mass, the reference electric displacement vector, the free charge
density per unit undeformed volume, the absolute temperature, the entropy per
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unit mass, the reference heat flux vector, and the body heat source per unit
mass. Then we have the following equations of motion, electrostatics and heat
conduction written in material form with respect to the reference configura-
tion:

KLi,L + ρ0fi = ρ0ÿi,(2.1)

∆L,L = ρE ,(2.2)

ρ0θη̇ = −QL,L + ρ0γ.(2.3)

Note that, following [2] and [13], here we directly write the heat equation (2.3)
without writing the entropy inequality, the energy equation and a deduction of
(2.3) from them; such a deduction can be found e.g. in [14].

The above equations are adjoined by constitutive relations defined by the
specification of the free energy ψ and heat flux QL:

(2.4) ψ = ψ(EMN ,WM , θ), QL = QL(EMN ,WM , θ, ΘM ),

where

(2.5) EMN = (yj,Myj,N − δMN )/2, WM = −φ,M , ΘM = θ,M

are the finite strain tensor, the reference electric potential gradient, and the
reference temperature gradient; of course, δMN is the Kronecker delta, and φ is
the electric potential. Hence, by using ψ the constitutive relations (4) of [13] are
deduced for KLi, ∆L, η; here we rewrite them from [13]:

(2.6)
KLi = yi,Aρ0

∂ψ

∂EAL
+ JXL,jε0

(
EjEi − 1

2
EiEiδji

)
,

∆L = ε0JXL,jEj − ρ0
∂ψ

∂WL
, η = −∂ψ

∂θ
,

with Ei = −φ,i. Recall that the heat-flux constitutive relation (2.4)2 is re-
stricted by

(2.7) QLΘL ≤ 0.

For a deduction of the Fourier inequality (2.7) see e.g. [14]. Note that, in
particular, (2.4)2 includes the case in which QM is linear in ΘL, that is,

(2.8) QM = −κML(θ, WA)ΘL.
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2.2. The initial boundary value problem for a thermoelectroelastic body

To describe the corresponding boundary conditions added to the field equa-
tions (2.1)–(2.3), three partitions (Si1, Si2), i = 1, 2, 3, of the boundary surface
S = ∂B can be assigned. For mechanical boundary conditions, deformation ỹi

and traction t̃i per unit undeformed area are prescribed, respectively, on S11

and S12; for electric boundary conditions, electric potential φ̃ and surface-free
charge ∆̃ per unit undeformed area are prescribed, respectively, on S21 and S22;
while for thermal boundary conditions, temperature θ̃ and normal heat flux Q̃
per unit undeformed area are prescribed, respectively, on S31 and S32. Hence,
we can write

yi = ỹi on S11, KLiNL = K̃i on S12 (‘mechanical’),(2.9)

φ = φ̃ on S21, ∆LNL = −∆̃ on S22 (‘electric’),(2.10)

θ = θ̃ on S31, QLNL = Q̃ on S32 (‘thermal’),(2.11)

where N = (NL) is the unit exterior normal to S and

(2.12) Si1 ∪ Si2 = S, Si1 ∩ Si2 = ∅ (i = 1, 2, 3).

We put

Abody := (fi, ρE , γ), Asurf := (ỹi, K̃i, φ̃, ∆̃, θ̃, Q̃),(2.13)

A := (Abody,Asurf) = (fi, ρE , γ, ỹi, K̃i, φ̃, ∆̃, θ̃, Q̃).(2.14)

Abody, Asurf and A are called the (external) body-action, surface-action, and
action, respectively. The initial conditions have the form

(2.15)
yi(X, 0) = fi(X), ẏi(X, 0) = gi(X),

θ(X, 0) = h(X), φ(X, 0) = l(X) (X ∈ B, t = 0),

where
I = (fi, gi, h, l)

are prescribed smooth functions of domain V . The initial boundary value prob-
lem is then stated as: assigned Abody, to find the solution (φ, θ, yi) in V to
the constitutive relations (2.6) and field equations (2.1)–(2.3), which satisfies the
boundary conditions (2.9)–(2.11) and initial conditions (2.15) for given Asurf

and I.

3. Biasing and incremental fields

In incremental theories, three configurations are distinguished: the reference,
initial and present configuration.
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3.1. The reference configuration

In the reference state the body is undeformed and free of all fields. A generic
point at this state is denoted by X with rectangular coordinates XN . The mass
density in the reference configuration is denoted by ρ0.

3.2. The initial configuration

In the initial state, the body is deformed finitely under the action of a pre-
scribed initial action

A0 := (A0
body,A0

surf) = (f0
i , ρ0

E , γ0, ỹ0
i , K̃

0
i , φ̃0, ∆̃0, θ̃0, Q̃0),(3.1)

A0
body := (f0

i , ρo
E , γ0), A0

surf := (ỹ0
i , K̃

0
i , φ̃0, ∆̃0, θ̃0, Q̃0).(3.2)

The position of the material point associated with X is given by

y0
α = y0

α(X, t),

with the Jacobian of the initial configuration denoted by

J0 = det(y0
α,L).

The initial fields

(3.3) y0
α = y0

α(X, t), φ0 = φ0(X, t), θ0 = θ0(X, t)

satisfy the equations of nonlinear thermoelectroelasticity (2.1)–(2.12) under the
prescribed action A0. The electric potential, electric field and temperature field
are denoted by φ0(X, t), W 0

α = −φ0
,α and θ0(X, t), respectively.

In studying the incremental fields, the solution to the initial state problem is
assumed to be known.

3.3. The present configuration

To the deformed body at the initial configuration, infinitesimal deformations,
electric and thermal fields are applied. The present position of the material
point associated with X is given by yi(X, t), with electric potential φ(X, t) and
temperature θ(X, t).

The fields yi(X, t), φ(X, t), θ(X, t) satisfy Eqs. (2.1)–(2.3) under the action
of the external action (2.14).
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3.4. Equations for the incremental fields

Let ε be a small and dimensionless number. The incremental process
ε(y1, φ1, θ1) for (y, φ, θ) superposed on the initial process (y0, φ0, θ0) is assumed
to be infinitesimal and, therefore, we write:

(3.4) yi = δiα(y0
α + εy1

α), φ = φ0 + εφ1, θ = θ0 + εθ1.

Corresponding to Eq. (3.4), other quantities of the present state can be written
as:

(3.5) A ∼= A0 + εA1,

where, due to nonlinearity, higher powers of ε may appear. For the incremental
action we have

A1
body := (f1

i , ρ1
E , γ1), A1

surf := (ỹ1
i , K̃

1
i , φ̃1, ∆̃1, θ̃1, Q̃1),(3.6)

A1 := (A1
body,A1

surf) = (f1
i , ρ1

E , γ1, ỹ1
i , K̃

1
i , φ̃1, ∆̃1, θ̃1, Q̃1).(3.7)

We want to derive equations governing the incremental process

(u := y1, φ1, θ1).

From Eqs. (3.4) and (3.5), we can further write:

(3.8) EKL
∼= E0

KL + εE1
KL, WL

∼= W 0
L + εW 1

L, ΘL
∼= Θ0

L + εΘ1
L,

where

(3.9)
E0

KL = (y0
α,Ky0

α,L − δKL)/2, E1
KL = (y0

α,Ky1
α,L + y0

α,Ly1
α,K)/2,

W 0
L = −φ0

,L, W 1
L = −φ1

,L, Θ0
L = θ0

,L, Θ1
L = θ1

,L.

Substituting Eqs. (3.4)–(3.9) into the constitutive relations (2.1)–(2.3), with
some very lengthy algebra, the following expressions are obtained [13]:

(3.10)
KMi

∼= δiα(K0
Mα + εK1

Mα), ∆M
∼= ∆0

M + ε∆1
M ,

η ∼= η0 + εη1, QM
∼= Q0

M + εQ1
M ,

where

K1
Mα = GMαLγuγ,L + RLMαφ1

,L − ρ0ΛMαθ1,(3.11)

∆1
M = RMNγuγ,N − LMNφ1

,N + ρ0PMθ1,(3.12)

η1 = ΛMγuγ,M − PMφ1
,M + αθ1,(3.13)
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Q1
M = AMNαuα,N −BMNφ1

,N + CMθ1 + FMNθ1
,N .(3.14)

By putting

κMNα = −AMNα, κE
MN = BMN , κM = −CM , κMN = −FMN ,

the latter result takes the form:

(3.15) Q1
M = −κMNαuα,N − κE

MNφ1
,N − κMθ1 − κMNθ1

,N .

In Eqs. (3.11)–(3.14), GMαLγ are the effective elastic constants, RLMα are the
effective piezoelectric constants, ΛMα are the effective thermoelatic constants,
LMN are the effective dielectric constants, PM are the effective pyrolectric con-
stants, α is related to the specific heat. Their expressions are [13]:

GKαLγ = y0
α,Mρ0

∂2ψ

∂EKM∂ELN
(θ0, E0

AB,W 0
A)y0

α,L

+ ρ0
∂ψ

∂EKL
(θ0, E0

AB,W 0
A)δαγ + gKαLγ ,

RLMγ = −ρ0
∂2ψ

∂WK∂EML
(θ0, E0

AB,W 0
A)y0

γ,M + rKLγ ,

ΛMγ = − ∂2ψ

∂ELM∂θ
(θ0, E0

AB,W 0
A)y0

γ,L,

LMN = −ρ0
∂2ψ

∂WM∂WN
(θ0, E0

AB,W 0
A) + lMN ,

PM = − ∂2ψ

∂WM∂θ
(θ0, E0

AB,W 0
A),(3.16)

α = −∂2ψ

∂θ2
(θ0, E0

AB,W 0
A),

AMNγ =
∂QM

∂ELN
(θ0, E0

AB,W 0
A)y0

γ,L = −κMNγ ,

BMN =
∂QM

∂WN
(θ0, E0

AB,W 0
A) = κE

MN ,

CM =
∂QM

∂θ
(θ0, E0

AB,W 0
A) = −κM ,

FMN =
∂QM

∂ΘN
(θ0, E0

AB,W 0
A) = −κMN ,
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where

gKαLγ = ε0J0

[
W 0

αW 0
β

(
XK,βXL,γ −XK,γXL,β

)

+ W 0
βW 0

γ

(
XK,αXL,β −XK,βXL,α

)

+ W 0
βW 0

β

(
XK,γXL,α −XK,αXL,γ

)
/2−W 0

αW 0
γ XK,βXL,β

]
,(3.17)

rKLγ = ε0J0

(
W 0

αXK,αXL,γ −W 0
αXK,γXL,α −W 0

γ XK,αXL,α

)
,

lMN = ε0J0XM,αXN,α.

In Eq. (3.14) we have introduced the κ-notation to allow a comparison between
the proofs written here and those used in [2]. The following symmetries hold:

(3.18) GKαLγ = GLγKα, LMN = LNM .

3.5. Restriction on the incremental heat flux

Now we show that the restriction (2.7) on the heat flux (2.4)2, together with
the condition

(3.19) Q0
L = 0 for Θ0

L = 0,

implies an analogous restriction on the incremental heat flux (3.14), that is

(3.20) Q1
LΘ1

L ≤ 0.

Indeed, substituting QL = Q0
L + εQ1

L, ΘL = Θ0
L + εΘ1

L in (2.7), we obtain

(3.21) (Q0
L + εQ1

L)(Θ0
L + εΘ1

L) ≤ 0,

which for Θ0
L = 0, by (3.19), yields (3.20). Note that the choice (2.8) for the heat

flux response function satisfies the condition (3.19).

3.6. Incremental field equations

By substituting (3.4)–(3.10) into (2.1)–(2.3) and (2.9)–(2.11), we find the
governing equations for the incremental fields

K1
Mα,M + ρ0f

1
α = ρ0üα,(3.22)

∆1
M,M = ρ1

E ,(3.23)

ρ0(θ0η̇1 + θ1η̇0) = −Q1
M,M + ρ0γ

1.(3.24)
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Introducing the constitutive relations (3.11)–(3.14) into the incremental equa-
tions of motion (3.22), the equation of the electric field (3.23) and the heat
equation (3.24), for f1

α = 0 we have

GMαLγuγ,LM + RLMαφ1
,LM − ρ0ΛMαθ1

,M = ρ0üα,(3.25)

RMNγuγ,NM − LMNφ1
,NM + ρ0PMθ1

M = ρ1
E ,(3.26)

ρ0θ
0(ΛMγ u̇γ,M − PM φ̇1

,M + αθ̇1) + ρ0θ
1η̇0(3.27)

= κE
MNφ1

,NM + κMθ1
,M + κMNθ1

,NM + κMNαuα,NM + ρ0γ
1.

4. Uniqueness theorem of the solution of the incremental differential
equations

In the present section we assume η̇0 = 0 and Θ0
L = 0, i.e. the initial tem-

perature field θ0 is uniform. This holds true when the initial state is static. We
follow step by step the proof of Nowacki [2] and put in evidence any difference
when it will appear.

A modified version of energy balance is needed. It follows the substitution of
the virtual increments by the real increments

δuα =
∂uα

∂t
dt = vαdt, δuα,M = u̇α,Mdt, . . .

in the principle of virtual work

(4.1)
∫

V 0

(f1
α − ρ0üα)δuαdV +

∫

S0

K̃αδuαdS =
∫

V 0

K1
Mαδuα,MdV.

Thus the fundamental energy equation

(4.2)
∫

V 0

(f1
α − ρ0v̇α)vαdV +

∫

S0

K̃αvαdS =
∫

V 0

K1
Mαu̇α,MdV

is obtained, where we substitute the constitutive relations (3.11).
Incidentally, let us note that, by (3.22), multiplication by vα and an obvious

identity provide

(4.3) ρ0(f1
α − v̇α)vα = −(K1

Mαvα),M + KMαvα,M ,

whence Eq. (4.2) follows.
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Hence

(4.4)
∫

V 0

(f1
α − ρ0v̇α)vαdV +

∫

S0

K̃αvαdS

=
∫

V 0

(GMαLγuγ,L + RLMαφ1
,L − ρ0ΛMαθ1)u̇α,MdV,

thus

(4.5)
d

dt
(W+K) =

∫

V 0

f1
αvαdV +

∫

S0

K̃αvαdS+
∫

V 0

(ρ0ΛMαθ1−RLMαφ1
,L)u̇α,MdV,

where W is the work of deformation and K is the kinetic energy:

(4.6) W =
1
2

∫

V 0

GMαLγuα,Muγ,LdV, K =
1
2

∫

V 0

ρ0vαvαdV.

Now, to eliminate the term
∫
V 0 ρ0ΛMαθ1u̇α,MdV, we multiply by θ1 the heat-

conduction equation (3.27), where η̇0 = 0, and integrate over V 0; after simple
transformations we obtain

(4.7)
∫

V 0

ρ0θ
1ΛMαu̇α,MdV =

κE
ML

θ0

∫

S0

θ1φ1
,LNMdS

+
κL

θ0

∫

S0

θ1NLdS +
κML

θ0

∫

S0

θ1θ1
,LNMdS +

κMLα

θ0

∫

S0

θ1uα,LNMdS

+ PL

∫

V 0

ρ0θ
1φ̇1

,LdV +
1
θ0

∫

V 0

ρ0θ
1γ1dV − d

dt
P − (χ + χθ + χφ + χu),

where

P =
α

2θ0

∫

V 0

ρ0θ
1θ1dV,(4.8)

χφ =
κE

ML

θ0

∫

V 0

θ1
,Mφ1

,LdV, χ =
κM

θ0

∫

V 0

θ1
,Mθ1dV,

χθ =
κML

θ0

∫

V 0

θ1
,Mθ1

,LdV, χu =
κMLα

θ0

∫

V 0

θ1
,Muα,LdV.

(4.9)
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Note that this equation differs from the corresponding Eq. (25) in [2] by the terms
χφ, χ and χu. Now, substituting (4.7) into (4.5), we are lead to the equation

(4.10)
d

dt
(W +K + P) + (χ + χθ + χφ + χu) =

∫

V 0

f1
αvαdV +

∫

S0

K̃αvαdS

+
κE

ML

θ0

∫

S0

θ1φ1
,LNMdS +

κL

θ0

∫

S0

θ1NLdS +
κML

θ0

∫

S0

θ1θ1
,LNMdS

+
1
θ0

∫

V 0

ρ0θ
1γ1dV −

∫

V 0

(RLMαφ1
,Lu̇α,M − ρ0PMθ1φ̇1

,M )dV.

To eliminate the term
∫

V 0

(RLMαφ1
,Lu̇α,M − ρ0PMθ1φ̇1

,M )dV

in Eq. (4.10), we substitute the constitutive relations (3.12) into the time-deri-
vative of the equation of the electric field (3.23) with ρ1

E = 0. Multiplying the
obtained equation by φ1 and integrating over the region of the body, we obtain

(4.11)
∫

S0

∆̇Mφ1NMdV +
∫

V 0

∆̇MW 1
MdV = 0.

Using the relations (3.12) and (4.11), after simple transformations we obtain
∫

V 0

∆̇LW 1
LdV

=
∫

V 0

(
RLMαu̇α,MW 1

L + LLMẆ 1
MW 1

L + ρ0PL
d

dt
(θ1W 1

L)− ρ0PLθ1Ẇ 1
L

)
dV

= −
∫

S0

∆̇1
LNLφ1dS,

from which

(4.12)
∫

V 0

(RKMαu̇α,MW 1
K − ρ0PKθ1Ẇ 1

K)dV

= −
∫

S0

∆̇1
KNKφ1dS − d

dt
E − d

dt

(
ρ0PK

∫

V 0

θ1W 1
KdV

)
,
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where

(4.13) E =
1
2
LKM

∫

V 0

W 1
MW 1

KdV.

In view of Eqs. (4.10) and (4.12), we arrive at the modified energy balance

(4.14)
d

dt

(
W +K + P + E + ρ0PK

∫

V 0

θ1W 1
KdV

)
+ (χ + χθ + χφ + χU )

=
∫

V 0

f1
αvαdV +

∫

S0

K̃αvαdS +
κE

ML

θ0

∫

S0

θ1φ1
,LNMdS +

κL

θ0

∫

S0

θ1NLdS

+
κML

θ0

∫

S0

θ1θ1
,LNMdS +

1
θ0

∫

V 0

ρ0θ
1γ1dV −

∫

S0

∆̇1
KNKφ1dS.

The energy balance (4.14) makes possible the proof of the uniqueness of the
solution.

We assume that two distinct solutions (u′i, φ
1′, θ1′) and (u′′i , φ

1′′, θ1′′) satisfy
Eqs. (3.22)–(3.24) and the appropriate boundary and initial conditions. Their
difference

(ûi = u′i − u′′i , φ̂ = φ1′ − φ1′′, θ̂ = θ1′ = θ1′′)

satisfies therefore the homogeneous equations (3.22)–(3.24) and the homogeneous
boundary and initial conditions. Equation (4.14) holds for (ûi, φ̂, θ̂).

In view of homogeneity of the equations and the boundary conditions, the
right-hand side of Eq. (4.14) vanishes. Hence

(4.15)
d

dt

(
W +K + P + E + ρ0PK

∫

V 0

θ1W 1
KdV

)
= −(χ + χθ + χφ + χu) ≤ 0,

where the last inequality is true since by (3.15), (4.9) and (3.20), we have

(4.16) −(χ + χθ + χφ + χu) =
1
θ0

∫

V 0

Q1
MΘ1

MdV ≤ 0.

The integral on the left-hand side of Eq. (4.15) vanishes at the initial instant,
since the functions ûi, φ̂, θ̂ satisfy the homogeneous initial conditions. On the
other hand, by the inequality in (4.15) the left-hand side is either negative or
zero.

Now we assume (i)–(iii) below; note that (iii) is the sufficient condition of
J. Ignaczak, written in [2] on pages 176–177.
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(i) The initial deformation y0
α realizes that the tensor GMαLγ is positive defi-

nite, so that W ≥ 0 by (4.6).
(ii) The tensor LKN is positive definite so that, by (4.13), E ≥ 0.
(iii) LIJ is a known positive definite symmetric tensor, gI = ρ0PI is a vector,

and c = ρ0α/2θ0 > 0; consider the function

A(θ1,WL) = (θ1)2 + 2θ1gIW
1
I + LIJW 1

I W 1
J ;

A is non-negative for every real pair (θ1,W 1
k ), provided

|gI | ≤ cλm

where λm is the smallest positive eigenvalue of the tensor LIJ .
Under these three assumptions, (4.15) yields

ûi,L = 0, θ̂ = 0, ŴL = 0,

which imply the uniqueness of solutions of the incremental thermoelectroelastic
equations, i.e.,

u′i = u′′i , θ1′ = θ1′′, W 1
I
′ = W 1

I
′′.

Moreover, from the constitutive relations we obtain

K1
Iα
′ = K1

Iα
′′, ∆1

L
′ = ∆1

L
′′, η1′ = η1′′.

5. On the generalized Hamilton’s principle

We define the free energy, electric enthalpy, and potential of the heat flow
respectively by

ψ1 =
1
2
GMαLγuα,Muγ,L + RLMαφ1

,Luα,M(5.1)

− ρ0θ
1

[
ΛMαuα,M − PMφ1

,M +
α

2
θ1

]
,

H1 = ψ1 − 1
2
LABW 1

AW 1
B = ψ1 − 1

2
LABΦ1

,AΦ1
,B, Γ = Q1

Mθ1
,M .(5.2)

Note that, by (3.15), the latter becomes

(5.3) Γ = −
(

κMNαuα,Nθ1
,M +

1
2
κMNθ1

,Mθ1
,N + κE

MNθ1
,Mφ1

,N + κMθ1θ1
,M

)
,
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whence
∂H1

∂uα,M
= K1

Mα,
∂H1

∂W 1
L

= −∆1
L,

∂H1

∂θ
= −ρ0η

1,(5.4)

Q1
M =

∂Γ

∂θ1
,M

.(5.5)

Finally, we define two functionals

(5.6) Π =
∫

V 0

(H1 + ρ0η
1θ1 − f1

αuα)dV −
∫

S0

(K̃1
αuα − ∆̃1φ1)dS

and

(5.7) Ψ =
∫

V 0

(
Γ − ρ0(η1θ0θ̇1 + η1θ̇0θ1 + η0θ1θ̇1 + γ1θ1)

)
dV +

∫

S0

θ1Q̃dS;

Eqs. (5.1)–(5.7) generalize Eqs. [2, (36)–(38)].
The generalized Hamilton’s principle has the form

(5.8) δ

t2∫

t1

(K −Π)dt = 0, δ

t2∫

t1

Ψdt = 0.

The virtual processes
(δuα, δθ1, δφ1)

of the body must be compatible with the conditions restricting the process of
the body. Moreover, the virtual processes must satisfy the conditions

δuα(x, t1) = δuα(x, t2) = 0,

δθ1(x, t1) = δθ1(x, t2) = 0,

δφ1(x, t1) = δφ1(x, t2) = 0.

Hence, performing the variations in the first of Eqs. (5.8) and observing that

(5.9) δH1 = K1
Mαδuα,M − ρ0η

1δθ1 + ∆1
LδΦ1

,L,

and

(5.10)
t2∫

t1

(K −Π)dt

=

t2∫

t1

dt

[ ∫

V 0

(
ρ0

2
u̇αu̇α −H1 − ρ0η

1θ1 + f1
αuα

)
dV +

∫

S0

(K̃1
αuα − ∆̃1φ1)dS

]
,
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we have

(5.11) δ

t2∫

t1

(K −Π)dt

=

t2∫

t1

dt

[ ∫

V 0

(−ρ0üαδuα −K1
Mαδuα,M −∆1

LδΦ1
,L + f1

αδuα)dV

+
∫

S0

(K̃1
αδuα − ∆̃1δφ1)dS

]
.

Hence, by the identities

(5.12)
−K1

Lα(δuα),L = −(K1
Lαδuα),L + (K1

Lα,L)δuα,

∆1
L(δφ1),L = (∆1

Lδφ1),L − (∆1
L,L)δφ1,

we have

(5.13) δ

t2∫

t1

(K −Π)dt

=

t2∫

t1

dt

[ ∫

V 0

[
(−ρ0üαδuα + K1

Mα,M + f1
α)δuα + ∆1

M,Mδφ1
]
dV

+
∫

S0

(−K1
MαδuαNMdS −∆1

Mδφ1NM )dS +
∫

S0

(K̃1
αδuα − ∆̃1δφ1)dS

]
.

Thus we have

(5.14)
t2∫

t1

dt

[ ∫

V 0

(−ρ0üα + K1
Mα,M + f1

α)δuαdV +
∫

V 0

∆1
M,Mδφ1dV

+
∫

S0

(K̃1
α −K1

MαNM )δuαdS −
∫

S0

(∆̃1 + ∆1
MNM )δφ1dS

]
= 0.

Since the variations δuα and δφ1 are arbitrary, Eq. (5.14) is equivalent to
the equations governing the incremental motion and electric field, completed by
the appropriate boundary conditions. These equations and boundary conditions
coincide with those written above.

Next we perform the required variation in the second of Eqs. (5.8) by observ-
ing that
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(5.15) δΓ =
∂Γ

∂uα,N
δuα,N +

∂Γ

∂θ1
,L

δθ1
,L +

∂Γ

∂φ1
,L

δφ1
,L +

∂Γ

∂θ1
δθ1

= −κMNαθ1
,Mδuα,N + Q1

Lδθ1
,L − κE

MNθ1
,Mδφ1

,L − κMθ1
,Mδθ1.

By (5.7) we have

(5.16) δ

t2∫

t1

Ψdt

=

t2∫

t1

dt

[ ∫

V 0

(
δΓ − ρ0η

1(θ0δθ̇1 + θ̇0δθ1)− ρ0η0(θ1δθ̇1 + θ̇1δθ1)− ρ0γ
1δθ1

)
dV

+
∫

S0

δθ1Q̃dS

]

=

t2∫

t1

dt

[ ∫

V 0

(− κMLαθ1
,Mδuα,L + Q1

Lδθ1
,L − κE

MLθ1
,Mδφ1

,L − κMθ1
,Mδθ1

+ ρ0

[
η̇1θ0δθ1 − ˙(η1θ0δθ1)

]
+ ρ0

[
η̇0θ1δθ1 − ˙(η0θ1δθ1)

]− ρ0γ
1δθ1

)
dV

+
∫

S0

δθ1Q̃dS

]
.

Note that

(5.17)
t2∫

t1

˙(ηνθτδθ1)dt =
[
ηνθτδθ1

]t2
t1

= 0, (ν, τ = 0, 1),

since δθ1 = 0 at t1 and t2. Also, by using the identity

(5.18) (aLb),L = aL,Lb + aLb,L

we obtain

(5.19) δ

t2∫

t1

Ψdt

=

t2∫

t1

dt

[ ∫

V 0

(
Q1

L,L + ρ0[η̇1θ0 + η̇0θ1 − γ1]
)
δθ1dV −

∫

S0

(Q1
LNL − Q̃)δθ1dS

]

−
t2∫

t1

dt

[ ∫

V 0

(κMLαθ1
,Mδuα,L + κE

IJθ1
,Iδφ

1
,J + κLθ1

,Lδθ1)dV

]
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with
∫

V 0

κMLαθ1
,Mδuα,LdV = κMLα

[
−

∫

V 0

θ1
,MLδuαdV +

∫

S0

θ1
,MNLδuαdS

]
,(5.20)

∫

V 0

κE
MLθ1

,Mδφ1
,LdV = κE

ML

[
−

∫

V 0

θ1
,MLδφ1dV +

∫

S0

θ1
,MNLδφ1dS

]
.(5.21)

Hence, by performing the variation (5.19) with the variations δuα, δφ1 which
vanish, and with δθ1 being arbitrary, we obtain that (5.19) reduces to

(5.22) δ

t2∫

t1

Ψdt =

t2∫

t1

dt

[ ∫

V 0

(
Q1

L,L − κLθ1
,L + ρ0[η̇1θ0 + η̇0θ1 − γ1]

)
δθ1dV

−
∫

S0

(
Q1

LNL − Q̃
)
δθ1dS

]
.

Thus,
(i) the variational equation (5.8)2 performed with

(5.23) δuα = 0 = δφ1

is equivalent to the entropy balance

(5.24) Q1
L,L + ρ0(η̇1θ0 + η̇0θ1 − γ1) = 0

and the boundary condition for the heat flow

(5.25) Q1
LNL = Q̃, (x ∈ S),

if and only if the expression (3.15) of the heat flux holds for

(5.26) κL = 0.

Alternatively, by performing the variation (5.8)2 with all the variations δuα,
δφ1, δθ1 being arbitrary, we deduce that:

(ii) the variational equation (5.8)2 is equivalent to the entropy balance (5.24)
and the boundary condition for the heat flow (5.25) if and only if the expression
(3.15) of the heat flux holds for

(5.27) κL = 0, κE
ML = 0, κMLα = 0.
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6. Theorem of reciprocity of work

Next we extend the theorem of reciprocity of work following some steps in
[2] on pages 179–182, where it is referred to linear thermoelectroelasticity in
a natural configuration. Here there are some essential changes imposed by the
presence of the initial fields. We assume that the body is homogeneous and
moreover, that the initial state is static, so that in particular θ̇0 = 0, η̇0 = 0.
Here we do not assume that θ0 is uniform.

The Laplace transform of functions ν = ν(x, t),

(6.1) ν(x, p) =

∞∫

0

e−ptν(x, t)dt,

will be used below.
Consider two sets of causes A1, A1′ for incremental processes and the respec-

tive effects (uα, φ1, θ1), (u′α, φ1′, θ1′). Starting from the equations of motion

(6.2) K1
Lα,L + ρ0fα = ρ0üα, K1′

Lα,L + ρ0f
′
α = ρ0ü

′
α,

taking their Laplace transform, multiplying each by θ0, then multiplying the
first one by u′α and the second one by uα, and making the difference of their
integrals over the instantaneous region V , assuming that the initial conditions
for the displacements are homogeneous, we obtain the integral equation:

∫

V 0

θ0
(
Fαu′α − F

′
αuα

)
dV +

∫

V 0

θ0
(
K1

Lα,L u′α −K1′
Lα,L uα

)
dV = 0,(6.3)

where Fα = ρ0fα, F ′
α = ρ0f

′
α. Now, by the identity (5.18) and the divergence

theorem, we have
∫

V 0

θ0
(
K1

Lα,L u′α −K1′
Lα,L uα

)
dV =

∫

S0

θ0
(
K1

Lα u′α −K1′
Lα uα

)
NLdS

−
∫

V 0

(
K1

Lα(θ0 u′α),L −K1′
Lα(θ0 uα),L

)
dV,

hence

(6.4)
∫

V 0

θ0
(
K1

Lα,L u′α −K1′
Lα,L uα

)
dV =

∫

S0

θ0
(
K1

Lα u′α −K1′
Lα uα

)
NLdS

−
∫

V 0

(θ0),L

(
K1

Lα u′α −K1′
Lα uα

)
dV −

∫

V 0

θ0
(
K1

Lα(u′α),L −K1′
Lα(uα),L

)
dV.
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Hence by the latter equation and the constitutive relations (3.11), Eq. (6.3)
becomes

(6.5)
∫

V 0

θ0
(
Fαu′α − F ′

αuα

)
dV +

∫

S0

θ0
(
K

1
Lαu′α −K

1′
Lαuα

)
NLdS

+
∫

V 0

θ0
[
ρ0ΛLα

(
θ
1′
uα,L − θ

1
u′α,L

)
+ RLNγ

(
uγ,N W 1′

L − u′γ,N W 1
L

)]
dV

−
∫

V 0

(θ0),L

(
K1

Lα u′α −K1′
Lα uα

)
dV = 0,

which is an analogue of Eq. (54) in [2].
Next we shall make use of the heat-conduction equation (5.24) for both the

systems of loadings, rewritten in the form

(6.6) −
(

1
θ0

Q1
M,M

)
− ρ0η̇1 = −ρ0

(
γ1

θ0

)
,

since we have

(6.7) η̇0 = 0.

Hence by Eqs. (3.15) and (3.13) we obtain

(6.8)
(

κLNα
uα,NL

θ0
+ κE

MN

φ1
,NM

θ0
+ κL

θ1
,L

θ0
+ κMN

θ1
,NM

θ0

)

− pρ0

(
ΛMγuγ,M − PMφ

1
,M + αθ

1) = −ρ0

(
γ1

θ0

)
.

Multiplying the latter by θ0 we have

(6.9) θ0

(
κLNα

uα,NL

θ0
+ κE

MN

φ1
,NM

θ0
+ κL

θ1
,L

θ0
+ κMN

θ1
,NM

θ0

)

− pρ0θ0
(
ΛMγuγ,M − PMφ

1
,NM + αθ

1) = −θ0ρ0

(
γ1

θ0

)
.

Write the latter equality for both the states, multiply the first equation by θ1
′

and the second by θ1; we obtain

(6.10) θ1
′
θ0

(
κLNα

uα,NL

θ0
+ κE

MN

φ1
,NM

θ0
+ κL

θ1
,L

θ0
+ κMN

θ1
,NM

θ0

)

− pρ0θ1
′
θ0

(
ΛMγuγ,M − PMφ

1
,NM + αθ

1) = −θ1′θ0ρ0

(
γ1

θ0

)
,
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and

(6.11) θ1θ0

(
κLNα

uα,NL
′

θ0
+ κE

MN

φ1
,MN

′

θ0
+ κL

θ1
,L
′

θ0
+ κMN

θ1
,MN

′

θ0

)

− pρ0θ1θ0
(
ΛMγu′γ,M − PMφ

1′
,M + αθ

1′) = −θ1θ0ρ0

(
γ1′

θ0

)
.

By taking the integral over V of the difference between the last two equations,
we obtain the analogue of Eq. (57) in [2], that is,

(6.12) κLNα

∫

V 0

θ0

(
θ1
′uα,NL

θ0
−θ1

u′α,NL

θ0

)
dV +κE

MN

∫

V 0

θ0

(
θ1′φ

1
,MN

θ0
−θ1

φ1′
,M

θ0

)
dV

+κL

∫

V 0

θ0

(
θ1′ θ

1
,L

θ0
−θ1

θ1′
,L

θ0

)
dV +κMN

∫

V 0

θ0

(
θ1′ θ

1
,NM

θ0
−θ1

θ1′
,M

θ0

)
dV

+p

∫

V 0

ρ0θ
0
[
θ1′(−ΛMγuγ,M−PMW 1

M

)
+θ1

(
ΛMγu′γ,M+PMW 1′

M

)]
dV

+
∫

V 0

ρ0θ0

(
θ1

γ1′

θ0
−θ1′γ

1

θ0

)
dV = 0.

Finally, we make use of the equation for the electric field

(6.13) ∆1
L,L = 0, ∆1′

L,L = 0.

Multiplying both expressions by θ0, the first one by φ′, the second one by φ,
subtracting the results and integrating over the region of the body, we obtain

(6.14)
∫

V 0

(
∆1

L,L(θ0φ1′)−∆1′
L,L(θ0φ1)

)
dV = 0.

By the identity (5.18) we have

(6.15)
∫

S0

θ0
(
∆1

Lφ1′ −∆1′
Lφ1

)
NLdS −

∫

V 0

[
∆1

L(θ0φ1′),L −∆1′
L(θ0φ1),L

]
dV= 0,

and thus

(6.16)
∫

S0

θ0
(
∆1

Lφ1′ −∆1
L
′φ1

)
NLdS −

∫

V 0

(θ0),L

(
∆1

Lφ1′ −∆1
L
′φ1

)
dV

−
∫

V 0

θ0
[
∆1

L(φ1′)L −∆1′
L(φ1),L

]
dV = 0,
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(6.17)
∫

S0

θ0
(
∆1

L φ1′ −∆1′
L φ1

)
NLdS −

∫

V 0

(θ0),L

(
∆1

L φ1′ −∆1′
L φ1

)
dV

+
∫

V 0

θ0
(
∆1

L W 1′
L −∆1′

L W 1
L

)
dV = 0.

Now we substitute the constitutive relation

∆1
L = RLNγuγ,N − LLNφ1

,N + ρ0PLθ1

in the third integral of the last equation. We obtain

(6.18)
∫

S0

θ0
(
∆1

L φ1′ −∆1′
L φ1

)
NLdS −

∫

V 0

(θ0),L

(
∆1

L φ1′ −∆1′
L φ1

)
dV

+
∫

V 0

θ0
[(

RLNγuγ,N − LLNφ1
,N + ρ0PLθ1

)
W 1

L′

− (
RLNγu′γ,N − LLNφ1′

,N + ρ0PLθ1′)W 1
L

]
dV = 0.

Thus

(6.19)
∫

S0

θ0
(
∆1

L φ1′ −∆1′
L φ1

)
NLdS −

∫

V 0

(θ0),L

(
∆1

L φ1′ −∆1′
L φ1

)
dV

+
∫

V 0

θ0
[
RLNγ

(
uγ,N W 1′

L − u′γ,N W 1
L

)
+ ρ0PL

(
θ1W 1′

L − θ1′W 1
L

)]
dV = 0.

This equation is the analogue of Eq. [2, (61)].
Taking the expression for

(6.20)
∫

V 0

θ0RLNγ

(
uγ,N W 1′

L −RLNγu′γ,N W 1
L

)
dV

deduced from (6.19) and inserting this into (6.5), we obtain

(6.21) −
∫

V 0

θ0
[
ρ0ΛLα

(
θ
1
u′α,L − θ

1′
uα,L

)]
dV

=
∫

V 0

θ0
(
Fαu′α − F

′
αuα

)
dV +

∫

S0

θ0
(
K

1
Lα u′α −K

1′
Lα uα

)
NLdS

+
∫

S0

θ0
(
∆1

L φ1′ + ∆1′
L φ1

)
NLdS −

∫

V 0

(θ0),L

(
∆1

L φ1′ −∆1′
L φ1

)
dV

−
∫

V 0

θ0ρ0PL

(
θ1 W 1′

L − θ1′W 1
L

)
dV −

∫

V 0

(θ0),L

(
K1

Lα u′α −K1′
Lα uα

)
dV.
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Now inserting (6.21) in (6.12), we obtain

(6.22) κLNα

∫

V 0

θ0

(
θ1
′uα,NL

θ0
−θ1

u′α,NL

θ0

)
dV +κE

MN

∫

V 0

θ0

(
θ1′φ

1
,MN

θ0
−θ1

φ1′
,MN

θ0

)
dV

+κL

∫

V 0

θ0

(
θ1′ θ

1
,L

θ0
−θ1

θ1
,L
′

θ0

)
dV +κMN

∫

V 0

θ0

(
θ1′ θ

1
,NM

θ0
−θ1

θ1′
,NM

θ0

)
dV

+p

∫

V 0

ρ0θ
0
(−θ1′PMW 1

M+θ1PMW 1′
M

)
dV

+p

[ ∫

V 0

θ0
(
Fαu′α−F ′

αuα

)
dV +

∫

S0

θ0
(
K

1
Lαu′α−K

1′
Lαuα

)
NLdS

+
∫

S0

θ0
(
∆1

L φ1′−∆1′
L φ1

)
NLdS−

∫

V 0

(θ0),L

(
∆1

L φ1′−∆1′
L φ1

)
dV

−
∫

V 0

θ0ρ0PL

(
θ1 W 1′

L −θ1′W 1
L

)
dV−

∫

V 0

(θ0),L

(
K1

Lα u′α−K1′
Lα uα

)
dV

]

+
∫

V 0

ρ0θ0

(
θ1

γ1′

θ0
−θ1′ γ

1

θ0

)
dV = 0.

Next in the latter equality we transform the sum of the first four integrals.
Firstly note that by (6.1), we have

(6.23)

1 =

∞∫

0

e−ptdt = 1/p,

θ0 = θ0(x) ⇒ θ0 = θ0/p,

(
h(x, t)
f(x)

)
=

1
f(x)

∞∫

0

e−pth(x, t)dt =
1

f(x)
h(x, t),

κ...

∫

V 0

θ0

(
θ1′ f...

θ0
− θ1

f ′...
θ0

)
dV =

κ...

p

∫

V 0

(
θ1′ f... − θ1 f ′...

)
dV.

Hence by these equalities and the constitutive relation for the incremental heat
flux (3.15), the aforementioned sum of the four integrals equals

(6.24)
1
p

∫

V 0

(
θ1′Q1

L,L − θ1 Q1′
L,L

)
dV.
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Again, by the identity

ab,ML = (ab,M ),L − a,Lb,M

and the divergence theorem, the sum (6.24) equals

(6.25)
1
p

[∫

S0

(
θ1′Q1

L − θ1 Q1′
L

)
NLdS −

∫

V 0

(
θ1′
,L Q1

L − θ1
,L Q1′

,L

)
dV

]
.

By substituting the sum of the first four integrals in Eq. (6.22) by (6.25), we
obtain

(6.26)
1
p

[∫

S0

(
θ1′Q1

L − θ1 Q1′
L

)
NLdS −

∫

V 0

(
θ1′
,L Q1

L − θ1
,L Q1′

,L

)
dV

]

+ pPM

∫

V 0

ρ0 θ0
(−θ1′W 1

M + θ1 W 1′
M

)
dV

+ p

[ ∫

V 0

θ0
(
Fαu′α − F ′

α uα

)
dV +

∫

S0

θ0
(
K

1
Lαu′α −K

1′
Lα uα

)
NLdS

+
∫

S0

θ0
(
∆1

L φ1′ −∆1′
L φ1

)
NLdS −

∫

V 0

(θ0),L

(
∆1

L φ1′ −∆1′
L φ1

)
dV

−
∫

V 0

θ0ρ0PL

(
θ1 W 1′

L − θ1′W 1
L

)
dV −

∫

V 0

(θ0),L

(
K1

Lα u′α −K1′
Lα uα

)
dV

]

+
∫

V 0

ρ0

(
θ1

γ1′

θ0
− θ1′ γ

1

θ0

)
dV = 0.

The latter is the final form of the theorem of reciprocity of work, containing
all causes and effects. It generalizes Eq. [2, (62)], and reduces exactly to the latter
in case of vanishing of the initial fields, that is, when the initial configuration is
natural.
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