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1. Introduction

IN THE LAST DECADES, with increasing wide use in sensing and actuation, the
materials exhibiting couplings between elastic, electric, magnetic and thermal
fields have attracted much attention.

In order to give certainty to experimental results and applications, the inter-
est of many researchers turned to mathematical fitting of these topics.

Many applications have their mathematical formulation within a linear
framework, and the theoretical study began from this context.

Foundamental is NOWACKI’S paper [1|, where a uniqueness theorem for the
solutions of the initial boundary value problems is proved in linear thermopiezo-
electricity referred to a natural state, i.e., without biasing (or initial) fields. Hence
NowACKI 2] also deduced the generalized Hamilton principle and a theorem of
reciprocity of work.

L1 [3] generalized the uniqueness and reciprocity theorems for linear thermo-
electro-magneto-elasticity referred to a natural state.

AOUADI [4] establishes a reciprocal theorem for a linear theory in which
the heat flux is considered as a constitutive independent variable, a rate-type
evolution equation for it is added to the system of constitutive equations, and
the entropy inequality is stated in the form proposed by MULLER [5].
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IESAN [6] uses the Green—Naghdi theory of thermomechanics of continua
to derive a linear theory of thermoelasticity with internal structure where, in
particular, a uniqueness result holds.

Related works on thermoelasticity and thermoelectromagnetism can be found
in [7] and [8].

The classical linear theory of thermopiezoelectricity assumes infinitesimal de-
viations of the field variables from the reference state, where there are no initial
mechanical and electric fields. In order to describe the response of thermoelec-
troelastic materials in presence of the initial fields, one needs the theory for
infinitesimal fields superposed on initial fields, and this can only be derived from
the fully nonlinear theory of thermoelectroelasticity. The equations of nonlinear
thermoelectroelasticity were given in TIERSTEN [12]. YANG [13] derived then
from [12] the equations for infinitesimal incremental fields superposed on finite
biasing fields in a thermoelectroelastic body, with no assumption on the biasing
fields.

Here we extend the aforementioned three NOWACKI’S theorems [1, 2] to in-
cremental thermoelectroelasticity with initial fields.

We explicitly refer to the incremental theory [13], hence below we rewrite from
this paper, using the same notations, some formulae and results on constitutive
equations of incremental thermoelectroelasticity.

Of course, the theorems proved here just reduce to the ones used in NOWACKI’S
paper [2| by neglecting the initial fields.

In the uniqueness theorem of Sec. 4 we assume that in the initial state, en-
tropy does not depend on time and the temperature is uniform. For the theorem
of reciprocity of work in Sec. 6 we assume that in the initial state, both the
entropy and temperature fields do not depend on time.

2. Equations of nonlinear thermoelectroelasticity

2.1. Balance laws and constitutive equations

Consider a thermoelectroelastic body B that, in the reference configuration,
occupies a region V' with boundary surface S. The motion of the body is de-
scribed by

vi = yi(X1, 1),

where y; denotes the present coordinates and Xj the reference coordinates of
material points with respect to the same Cartesian coordinate system.

Let K1, po, fj, AL, pE, 0, n, Q1 and  respectively denote: the first Piola—
Kirchoff stress tensor, the mass density in the reference configuration, the body
force per unit mass, the reference electric displacement vector, the free charge
density per unit undeformed volume, the absolute temperature, the entropy per
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unit mass, the reference heat flux vector, and the body heat source per unit
mass. Then we have the following equations of motion, electrostatics and heat
conduction written in material form with respect to the reference configura-
tion:

(2.1) KL + pofi = poli,
(2.2) AL = pE,
(2.3) pobn = —Qr.L + po-

Note that, following [2] and [13], here we directly write the heat equation (2.3)
without writing the entropy inequality, the energy equation and a deduction of
(2.3) from them; such a deduction can be found e.g. in [14].

The above equations are adjoined by constitutive relations defined by the
specification of the free energy ¢ and heat flux Qr:

(24) ¢:¢(EMN7WMH9)7 QL:QL(EMNaWMveng)v
where
(2.5) Evn = (Yj,mYjN — 0mN)/2, Wy = —¢ s On =0

are the finite strain tensor, the reference electric potential gradient, and the
reference temperature gradient; of course, dprn is the Kronecker delta, and ¢ is
the electric potential. Hence, by using 1 the constitutive relations (4) of [13| are
deduced for Kp;, Ar, n; here we rewrite them from [13]:

1
Kri = yi apo L4 +JX1 jeo| BBy — S EiEidy |,
OF 4L 2
(2.6) . Y
Ap = X1 E; — pg—r =——
L =¢coJ XL ;F; POaWL7 n 90
with E; = —¢,;. Recall that the heat-flux constitutive relation (2.4)y is re-

stricted by
(2.7) QO <0.

For a deduction of the Fourier inequality (2.7) see e.g. [14]. Note that, in
particular, (2.4)y includes the case in which Qs is linear in Oy, that is,

(2.8) Qv = —kmr(0,Wa)Or.
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2.2. The initial boundary value problem for a thermoelectroelastic body

To describe the corresponding boundary conditions added to the field equa-
tions (2.1)—(2.3), three partitions (.5S;1,S;2), i = 1,2, 3, of the boundary surface
S = OB can be assigned. For mechanical boundary conditions, deformation y;
and traction ¢; per unit undeformed area are prescribed, respectively, on S1y
and Sig; for electric boundary conditions, electric potential ¢ and surface-free
charge A per unit undeformed area are prescribed, respectively, on Sa; and Sag;
while for thermal boundary conditions, temperature # and normal heat flux QV
per unit undeformed area are prescribed, respectively, on S3; and S3o. Hence,
we can write

(2.9) Yi = Ui on Si1, Ki;N;, = K; on Sta (‘mechanical’),
(2.10) o= qz on So1, AN, = —A on S (‘electric’),
(2.11) =60  on Sy, QLNL =Q on Sz (‘thermal’),
where N = (V) is the unit exterior normal to S and
(2.12) SqiUSin=5S, SaunSm=0 (i=1,23).

We put
(213)  Avody = (fiopmn),  Asat = 0 K0,6,4,0,Q),
(2.14) A= (Avodys Asut) = (fir p.7, i Ki, 6, 4,6, Q).

Abody, Asurf and A are called the (external) body-action, surface-action, and
action, respectively. The initial conditions have the form

vi(X,0) = fi(X), #:(X,0) = g:(X),

(2.15)
0(X,0) = h(X), ¢(X,0)=IX) (XeB, t=0),

where

Z=(fi, 9ih,1)
are prescribed smooth functions of domain V. The initial boundary value prob-
lem is then stated as: assigned Apody, to find the solution (¢,0,y;) in V to
the constitutive relations (2.6) and field equations (2.1)~(2.3), which satisfies the

boundary conditions (2.9)~(2.11) and initial conditions (2.15) for given Agus
and T.

3. Biasing and incremental fields

In incremental theories, three configurations are distinguished: the reference,
initial and present configuration.
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3.1. The reference configuration

In the reference state the body is undeformed and free of all fields. A generic
point at this state is denoted by X with rectangular coordinates X . The mass
density in the reference configuration is denoted by pg.

3.2. The initial configuration

In the initial state, the body is deformed finitely under the action of a pre-
scribed initial action

(3'1) A= (A?)odyv'A(s]urf) = ( zg]vaE?fYO?g?’k?vgov 50,50, @0),

(32)  Aday = (10577, A = @, KD, 6%, A%,6°,Q°).
The position of the material point associated with X is given by
Yo = Ya(X, 1),
with the Jacobian of the initial configuration denoted by
Jo = det(ya,L)-
The initial fields
(3.3) W=0X 1), ¢°=¢"(X1), 0 =60"X1)

satisfy the equations of nonlinear thermoelectroelasticity (2.1)—(2.12) under the
prescribed action AY. The electric potential, electric field and temperature field
are denoted by ¢°(X,t), W2 = —¢%, and 6°(X,t), respectively.

In studying the incremental fields, the solution to the initial state problem is
assumed to be known.

3.3. The present configuration

To the deformed body at the initial configuration, infinitesimal deformations,
electric and thermal fields are applied. The present position of the material
point associated with X is given by y;(X,t), with electric potential ¢(X,t) and
temperature (X, t).

The fields y;(X,t), ¢(X,t), 0(X,t) satisfy Egs. (2.1)—(2.3) under the action
of the external action (2.14).
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3.4. Equations for the incremental fields

Let € be a small and dimensionless number. The incremental process
e(yt, ¢t 0Y) for (y, ¢,0) superposed on the initial process (y°, ¢, 6°) is assumed
to be infinitesimal and, therefore, we write:

(3.4) Yi = Gia (Y0 + eyl), ¢=¢"+eg', 0=0"+e0".

Corresponding to Eq. (3.4), other quantities of the present state can be written
as:

(3.5) A A 4+ eAL

where, due to nonlinearity, higher powers of € may appear. For the incremental
action we have

(3.6) Abody = (Floppn"), Al = @ K61, AL 61,Q1Y),
(3.7) A= (Agays Abue) = (0B 01 KT 61 AL, 61, QY.
We want to derive equations governing the incremental process
(w:=y', ¢!, 0").

From Egs. (3.4) and (3.5), we can further write:
(3.8)  Egp=E% +cEt;, Wpr2Wl+eWl, 0,269 40!,
where
20 Epp = (yg,Kyg,L —0KL)/2, Exp = (yg,Kyé,L + yg,Lyi,K)/Z
( . ) WLO = - ?La WLl = _d),lLv @% = 9,0La @i = 9,1L~

Substituting Eqs. (3.4)—(3.9) into the constitutive relations (2.1)-(2.3), with
some very lengthy algebra, the following expressions are obtained [13]:

KMi géia(K?Ma_FgK]l\/[a)v AM gA?\l+€A}\47

(3.10) . . )
n=n’+en', Qum = QY + Qi

where

(3.11) Ko = Graryty,L + Rinvad's — poAnad’,

(3.12) AJIM = RMN’yU'y,N — LMNQZ)}N + ,OQPMel,

(3.13) 171 = AM'yU%M — PM¢,1M + 0491,
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(3.14) Qi = Arnatia,N — Bund'y + Cud' + Fanbly.
By putting
KMNa = —AMNa, Fyn = Bun, #&u=—-Cy, kun =—Fun,
the latter result takes the form:
(3.15) Q}W = —KMNaUa,N — mﬁNqﬁ}N — k0t — &MNG}N

In Egs. (3.11)~(3.14), Gpary are the effective elastic constants, Rraro are the
effective piezoelectric constants, Ay, are the effective thermoelatic constants,
Ljysn are the effective dielectric constants, Pys are the effective pyrolectric con-
stants, « is related to the specific heat. Their expressions are [13]:

GKaly = Yo MPOM;;?EL]VW()’ EQp, Wg)yg,L
+ po 8g¢ (6°, E4p. W4)day + 9KaLy:

Riay = —po awﬁiﬁ; L(901E9;B,W2)y3,M + KLy,

Aaty = g L 00, B, WS,

Lyn = —PO(Wf(;/}vVN(@O7EgBaW2) +lun,

(3.16) Py = _81/?/2];/}89(007&%3’”/‘2)’
o = _g?é)(eovEgB)Wg)a

AMNy = ggg\[ (0%, Edp, WS 1, = —KMN~,

Bun = %(GO,E%B,WX) = KAIN

Cy = ageM (6°, E4p, W9) = —ku,
Fyn = O o (0%, Edp, WR) = —kmn,

06N
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where
9KaLy = 0o [WSWE (XkpXLq — Xy X1,)
+ WIW (XkaXrp — Xk pX1a)
(3.17) + WIW( Xk X Lo — XKaXLy)/2 — WSW;]XK,ﬁXLﬁ} ;

riLy = €0do(WaXkaXry — WoXknXr,a — WSXK,OCXL,@),

lun = €0JoXm,aXN,a-

In Eq. (3.14) we have introduced the k-notation to allow a comparison between
the proofs written here and those used in [2]. The following symmetries hold:

(3.18) Grary = GryKas Lyn =Lnug.

3.5. Restriction on the incremental heat flux

Now we show that the restriction (2.7) on the heat flux (2.4)2, together with
the condition

(3.19) QY =0 for 6% =0,

implies an analogous restriction on the incremental heat flux (3.14), that is
(3.20) QR:oel <o.

Indeed, substituting Qr, = Q% +eQ}, O = 09 4+ 01 in (2.7), we obtain
(3.21) QY +=QL)(OY +£6) <0,

which for ©9 = 0, by (3.19), yields (3.20). Note that the choice (2.8) for the heat
flux response function satisfies the condition (3.19).

3.6. Incremental field equations

By substituting (3.4)—(3.10) into (2.1)—(2.3) and (2.9)—(2.11), we find the
governing equations for the incremental fields

(3.22) Kian + pofh = poiia,
(3.23) Al = P
(3.24) po(0°0" + 017°) = —Qiyar + por.
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Introducing the constitutive relations (3.11)—(3.14) into the incremental equa-
tions of motion (3.22), the equation of the electric field (3.23) and the heat
equation (3.24), for fl =0 we have

(3.25) GMaryty,onr + Roara®'par — podaadlyy = poiia,
(3.26) RyiNyty, N — Liindinag + poPuby = p.

(3.27) po0° (Angsity s — PMQB,IM +af') + pot*i°

E 1 1 1 1
= KyNnP nm MOy + EMNO Ny + EMNaUa,N M+ PO

4. Uniqueness theorem of the solution of the incremental differential
equations

In the present section we assume 7° = 0 and ©9 = 0, i.e. the initial tem-
perature field #° is uniform. This holds true when the initial state is static. We
follow step by step the proof of NOWACKI [2] and put in evidence any difference
when it will appear.

A modified version of energy balance is needed. It follows the substitution of
the virtual increments by the real increments

(Sua = %dt = 'Uadta 5u047M = ’l.La,Mdt,

in the principle of virtual work
(4.1) / (f2 = poiia)duadV + / Ko 0uadS = / K} o0ta adV.
Vo S0 Vo
Thus the fundamental energy equation
(4.2) /(fclY — Po¥a)VadV + /f(avads = /KJI\/[audeV
Vo S0 Vo

is obtained, where we substitute the constitutive relations (3.11).
Incidentally, let us note that, by (3.22), multiplication by v, and an obvious
identity provide

(4'3) pO(fcly - ba)va = _(Kjl\/[ava)7M + KMava,M7

whence Eq. (4.2) follows.
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Hence

(4.4) / (fL = pota)vadV + / KovadS
S0

VO
= /(GMaL'yu'y,L + Rimad's — poAniad")ia,nmdV,
Vo
thus

d

(45) =

(W+’C /favaanL/K UadS+/(p0AMa(9 —RLMagﬁ )ua mdV,
Vo

where W is the work of deformation and K is the kinetic energy:
1 1
(4.6) W = B /GMaLyumMu%LdV, K= 2/povavadV.
Vo Vo

Now, to eliminate the term fVO pO/lMaeluadeV, we multiply by 6! the heat-
conduction equation (3.27), where 7° = 0, and integrate over VY; after simple
transformations we obtain

E
(4.7) / P00 AntatiodV = "ML / 6' ¢ NysdS

90
Vo S0
+ 90/91NLdS+ “g{f /9 6', NasdS + ’“9“‘”‘ /elua,LNMds
S0 S0 S0
. d
+ PL/p091¢ v + 75 /p001 Lav — =P - (X + X0 + Xo + Xu),
Vo Vo
where
(4.8) P= 2%0 /,009191dV,
VO
H KM
X ML /91M¢1Ldv X = 00/9,11\4916”/7
(4.9)

K Y «
Yo = g{f / oL 0%dV, oy = ]gOL / O i, 1.dV.
Vo Vo
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Note that this equation differs from the corresponding Eq. (25) in [2] by the terms
X¢, X and xy. Now, substituting (4.7) into (4.5), we are lead to the equation

d -
(4.10) —WH+K+P)+ (x+ X0+ X6+ Xu) = /f;vadv + /KavadS
Vo SO

dt
"”UJF\J}L 1,1 KL 1 KMmL 11
+W 9¢,LNMdS+070 QNLdS‘i‘W 997LNMdS
S0 S0 50
1 115 1. _ 131
tg0 | oty dV (Rrma®,pla,m — poPat ¢ p)dV.
Vo Vo

To eliminate the term
/(RLMa¢,1L11a,M — poPa0' dlyp)dV
Vo

in Eq. (4.10), we substitute the constitutive relations (3.12) into the time-deri-
vative of the equation of the electric field (3.23) with pl, = 0. Multiplying the
obtained equation by ¢! and integrating over the region of the body, we obtain

(4.11) / Ayt NydV + / Ay Wiidv = 0.
S0 o

Using the relations (3.12) and (4.11), after simple transformations we obtain

/ Agwldv
VO
_ . 1 11l i Trly 17771
= RLMaUa,MWL + LLMWMWL + poPL o (9 WL) poPL9 WL av
VO
=- / A} Npo'ds,
SO
from which

(4.12) / (RiMatta yWi — poPr8' Wi )dV
VO

= —/A}(leds _de_d <p0PK/91W}<dv>,
dt” dt
S0 Vo
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where

1
(4.13) €=5Lkm / Wi WEdv.
In view of Egs. (4.10) and (4.12), we arrive at the modified energy balance

(4.14)

d
dt(W+l€+P+8+poPK/61W}<dV> + (x + x0 + Xx¢ + xU)

:/flvadVJr/f(avader /91¢LNMdS+ g/elNLds
S0

RML / 610, NyrdS + o / pof' vtV — / Al Nk o'ds.
Vo 0

The energy balance (4.14) makes possible the proof of the uniqueness of the
solution.

We assume that two distinct solutions (u, ¢, 0') and (u/, ¢, 0") satisfy
Egs. (3.22)-(3.24) and the appropriate boundary and initial conditions. Their
difference

(ai _ u; _ u;/? (ZASZ ¢1/ _ ¢1//? é — gl = 01//)
satisfies therefore the homogeneous equations (3.22)—(3.24) and the homogeneous
boundary and initial conditions. Equation (4.14) holds for (4, ¢, 6).

In view of homogeneity of the equations and the boundary conditions, the

right-hand side of Eq. (4.14) vanishes. Hence

d
(4.15) dt(w+lc+73+5+p0PK/91W}<dv> = —(X+ X6+ X¢ + xu) <0,
Vo

where the last inequality is true since by (3.15), (4.9) and (3.20), we have

1
(116) (0 ) = g [ Qv <o
Vo

The integral on the left-hand side of Eq. (4.15) vanishes at the initial instant,
since the functions ;, gZ;,é satisfy the homogeneous initial conditions. On the
other hand, by the inequality in (4.15) the left-hand side is either negative or
Z€ro.

Now we assume (i)—(iii) below; note that (iii) is the sufficient condition of
J. IGNACZAK, written in 2] on pages 176-177.
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(i) The initial deformation 30 realizes that the tensor G4 L~ is positive defi-
nite, so that W > 0 by (4.6).
(ii) The tensor Lxy is positive definite so that, by (4.13), £ > 0.
(iii) Lyy is a known positive definite symmetric tensor, g;r = poPr is a vector,
and ¢ = ppa/26° > 0; consider the function

A", W) = (0") + 20" gi W} + LW Wy
A is non-negative for every real pair (01, Wk}), provided
lg1] < cAm

where A, is the smallest positive eigenvalue of the tensor Lj;.
Under these three assumptions, (4.15) yields

a1, = 0, 6=0, W, =0,

which imply the uniqueness of solutions of the incremental thermoelectroelastic
equations, i.e.,
ul — u// 01/ _ 91//7 Wll — W}”-

% ]

Moreover, from the constitutive relations we obtain

17 __ 1 n 17 _ Alnm 17 _ _1n
Ky, =K, A= A7, no=n .

5. On the generalized Hamilton’s principle

We define the free energy, electric enthalpy, and potential of the heat flow
respectively by

1

G1) W=y

GMaL'yuoc,Mu'y,L + RLMa¢,1Lua,M
1 1 a1
—pof" | Anratia,nr — Prdpp + 59 } ;
1 1
(52)  H'=u' = LapWiWh = ¢! = JLap®u®ly, ' = Qi)

Note that, by (3.15), the latter becomes

1
(5.3) I'=— <HMNaua7N9}M + inMNe}Me}N + KNy + HMele}M> ,
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whence
OH! 1 OH! .,  OH! 1
(5.4) Dty 11 = B Mo TVVE = -4, 0 —pom,
or
(5.5) Qb = 27—
iy
Finally, we define two functionals
5.6) I = / (H" + poy0" — Flug)dV — / (Rlug — Alol)ds
Vo 50
and
(5.7) W= / (I = po(n*0°0" + n'6°0" + 1 00" +~'6"))dV + /Gléjds;
Vo 50

Egs. (5.1)—(5.7) generalize Egs. [2, (36)—(38)].
The generalized Hamilton’s principle has the form

to

to
(5.8) 5/(/c M)t =0, 5/% 0.
t1 t1

The virtual processes

(6ua, 86", 5¢")

of the body must be compatible with the conditions restricting the process of
the body. Moreover, the virtual processes must satisfy the conditions

dug (x,t1) = dua(x,t2) =0,
50 (x,t1) = 6601 (x,t3) = 0,
50" (x,t1) = 69" (x, t2) = 0.
Hence, performing the variations in the first of Egs. (5.8) and observing that
(5.9) SH' = Kjo6uan — pon'00" + ALSDY,
and

to

(5.10) / (K — IT)dt

t1

t2
= /dt [/ (p;uaaa —H' — pon'o* + f;ua> dv + /(f(éua — Zl¢1)ds] :

t1 Vo S0
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we have
to
(5.11) (5/(IC — IT)dt
t \

= / dt [ / (—poiiadua — Kjo0uan — ALd®Y + fadus)dV
ty Vo

+ / (K} 0u, — A'5¢1)dS | .

SO

Hence, by the identities
_K%/a((suCY),L = _(K%/Q(SUQ),L + (K%la,L)duom

(5.12) TisoIy o (als 1y Al 1
AL(0¢° )L = (Ardd )L — (ALL)od,

we have

(5.13) 4 / (K — M)t

to
— /dt [/ [(—potiadua + Ko nr + fa)0ua + Al p00" | dV
t1 V0

+ / (=K }jo0tuaNprdS — Al 66  Nay)dS + / (K buq — A'6¢")dS
S0 S0

Thus we have

t
(5.14) / dt [ / (—poiia + Ko + fa)ouadV + / Al arb9'dV
VO

t1 Vo

+ / (K} — K} Nag)ouadS — / (A' + A}WNM)MldS] =0.
SO S0

Since the variations du, and d¢! are arbitrary, Eq. (5.14) is equivalent to
the equations governing the incremental motion and electric field, completed by
the appropriate boundary conditions. These equations and boundary conditions
coincide with those written above.

Next we perform the required variation in the second of Egs. (5.8) by observ-
ing that
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or or
1 6 = ———0uq, 50, + 2L spt, 1+ 2 gy
(5.15) Do N T g, T a¢1 o+ g

= —kNaOyOua,n + QL0Y — ki N0 08", — Kar0l,60".
y (5.7) we have
)
(5.16) 6/Wdt
t
to

— [

t1

/ (61 — pon*(8°66" + 6°660") — pono (066" + 6160") — poy' 561 )dV

VO
+ / §0'QdS

S0

to
:/dt[/(—ﬂMLa9M5UQL+QL591 —I"V'MLQ 5¢L—I€M9 661
t1 V0

+ po[716°56" — (7T69500)] + po 7061661 — (11981661)] — pory'66")dV

+/w@w.
SO
)

(5.17) / (PoaaT)dt = [76760") 2 =0, (v,7 =0,1),

t1

Note that

since 60" = 0 at ¢; and ty. Also, by using the identity
(5.18) (aLb),L =arb+arby

we obtain

to
(5.19) 0 / wdt
t1

t2
:/dt

t1

[ / (QL.L + poln'6° + 10" —4']) 56 dV — / (Q}Np, — Q)56tds

Vo S0 -

to -
- /dt [/(,QMLQ(J}MMQ,L + m}%e},w}J + k107601 dV
t1 Vo -
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with

I

(5.20) / KaLabh0ta,LdV = KyLa [— / 0'yr L ouadV + / 0 NLduadsS
VO VO SO

(5.21) / k008" dV = ki [— / 060 dV + / a}MNL5¢1dS].
Vo Vo SO

Hence, by performing the variation (5.19) with the variations du,, ¢ which
vanish, and with @' being arbitrary, we obtain that (5.19) reduces to

t2
/ dt [ / (QLz — w8l + polii'6° + 6" —~1])s6"av

to
(5.22) 6 / Wdt =
t1 t1 /0

— / (QINp, — @')59%15].

SO0

Thus,
(i) the variational equation (5.8)2 performed with

(5.23) Stig = 0 = 6¢"

is equivalent to the entropy balance

(5.24) QLp + po(R'6° + 306" —41) = 0
and the boundary condition for the heat flow

(5.25) QN =0, (xes),

if and only if the expression (3.15) of the heat fluz holds for
(5.26) kr = 0.

Alternatively, by performing the variation (5.8)9 with all the variations du,,
d¢', 60" being arbitrary, we deduce that:

(ii) the variational equation (5.8)2 is equivalent to the entropy balance (5.24)
and the boundary condition for the heat flow (5.25) if and only if the expression
(3.15) of the heat fluz holds for

(5.27) kr =0, HAEJL =0, KMLa =
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6. Theorem of reciprocity of work

Next we extend the theorem of reciprocity of work following some steps in
[2] on pages 179-182, where it is referred to linear thermoelectroelasticity in
a natural configuration. Here there are some essential changes imposed by the
presence of the initial fields. We assume that the body is homogeneous and
moreover, that the initial state is static, so that in particular 60 = 0, 7° = 0.
Here we do not assume that 6° is uniform.

The Laplace transform of functions v = v(x, t),

[e o]

(6.1) v(x,p) = /e_ptl/(x, t)dt,
0

will be used below.
Consider two sets of causes A", AY for incremental processes and the respec-
tive effects (uq, ¢!, 0%), (ul,, ¢",6"). Starting from the equations of motion

(6-2) Kia,L + pofa = potia, K%//a,L + pOf(/x = pO'Il/a:

taking their Laplace transform, multiplying each by 60, then multiplying the
first one by @, and the second one by 7,, and making the difference of their
integrals over the instantaneous region V', assuming that the initial conditions
for the displacements are homogeneous, we obtain the integral equation:

(6.3) / B (Foito — Fia)dV + / P (K}, o~ KIpwa)dV =0,
Vo Vo

where F,, = pofa, F'a = pofl,. Now, by the identity (5.18) and the divergence
theorem, we have

[Pt~ Rl wa)av = [ (KL, ~ KY, ) Nuds

Vo S0
[ (FL @) - KEEw) v,
VO
hence
04) [ (K] p e~ Ky wa)av = [ 00(KE, w0, ~ K ) Nuds
Vo S0

- @) (RE - K m)av — [ (R ()1~ KL (@) )V
Vo v
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Hence by the latter equation and the constitutive relations (3.11), Eq. (6.3)
becomes

(6.5) / 0 (Foid o — Fotio)dV + / 00(K oo — K [0ia) NpdS
Vo S50
_ 1 1 -
b [P0 (050~ 00, 1) + Bos (ww WE = W) | av
Vo
— /(QO)L (K}, o — K} Tia)dV =0,
Vo
which is an analogue of Eq. (54) in [2].

Next we shall make use of the heat-conduction equation (5.24) for both the
systems of loadings, rewritten in the form

L oy 7
(6.6) - @QM,M — pPol = —po 0 )
since we have
(6.7) 70 =0.

Hence by Egs. (3.15) and (3.13) we obtain

(6 8) Uq, N ¢ T .NM 91[/ elNM

1
_ —1 -1 ¥
— ppo(AriyUy, i — Py +a ) = —po (00)
Multiplying the latter by 89 we have

6.9 70 Ua,NL ¢1N 0%, 0'n

20 _ —1 —1 — (!
— ppob® (AnsyTy s — Prrd ypr + a8 ) = —0%pg <90>

Write the latter equality for both the states, multiply the first equation by or
and the second by #!; we obtain

6.10 m’@ Ua,NL E ¢,1 91L QlNM
(6.10) ﬁLNaieo + RN 70 —I-RLHO 70

27736 _ —1 ~1 AN
— ppotd" 0° (AMWUWJ\/[ — Pyo yy +ab ) =06 (90>7
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and

120 Ua, NL' ¢ MN/ 0,11:/ 9,1MNI
(6.11) 010% KN —— 90 + K MN 00 + HLW + RKMN 90
90
By taking the integral over V of the difference between the last two equations,
we obtain the analogue of Eq. (57) in [2], that is,

o Py 1
(6.12) HLNa/Q (91 Ya,NL —61 aNL)dV—mﬁN/@O <91’ MN —91¢’ >dV

—_— _ _ 1
— PP O (Angy T ar — Pridlyy +aB') = 0700, (’Y)

00 g0 60
QT «91’ 9 91/
+I€L/90 <91, 9’0 —0r éo >dV—|—HMN/90 <91’ ’gOM —ot éj(\)/[)dv
Vo Vo

0 30 [ Aot o PR 47 g+ AT v

Vo
1/ ol
/p 60 <91 5 —elfao)dv = 0.

Vo

Finally, we make use of the equation for the electric field
(6.13) Alpp =0,  AVpp=0.

Multiplying both expressions by 69, the first one by ¢, the second one by ¢,
subtracting the results and integrating over the region of the body, we obtain

(6.14) / (AL L(0%9Y) — A [ (69%1))dV = 0.
Vo
By the identity (5.18) we have
(6.15) / 0O(AlL oV — AVPL)NpdS — / [ALL(009Y) [, — AV (00¢1) []dV=0,
S0 Vo
and thus
(6.16) /90 Al ¢1/ Al ’cle)NLdS / 90 Al ¢1/ Al /¢1)

SO

- / PO[AT,(37);, — AVL(31) p]dV =0,

Vo
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1) [P@ET - AFNs - [ @)@ - AL )av
S0 o

+ [ O(AT, WY — AV W dV =o0.
VO
Now we substitute the constitutive relation

Alp = RLNyUS N — LLN<1{TN + po POt

in the third integral of the last equation. We obtain

@19 [P@G-AFNS - [ @)@ - FL)av
50 o

+ /W[(RLNWU%N - LLN¢7TN + poPLﬁ)WE,
Vo
- (RLNVUQ,N - LLNQTJ'V + POPLW)WIIJ av =0.

Thus
619 [ W@ ATF)NdS ~ [ @)0(ATL 67 - AT Fav
S0 Vo
+ / 0B (w5 WF o W) + oo (TWF — 6777 |av = 0.
VO

This equation is the analogue of Eq. 2, (61)].
Taking the expression for

(6.20) / 0ORLN~ (TN W} — Ryl y WAV
Vo
deduced from (6.19) and inserting this into (6.5), we obtain

(6.21) — /H()[POALQ(Hlu;“L —gllﬂavL)}dV
Vo
_ / P (Foit, — Flia)dV + / O(K., 1, - KV, u,)Nyds
Vo SO

+ / (AT, 6V + AV ) NydsS — / (@) L (AT, §V — AV g)av
50 Vo

- /mPOPL(mWLI’—elfWg)dV - /(90)@(1@&%— K} g)dV.

Vo Vo
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Now inserting (6.21) in (6.12), we obtain
=5 (A UeanNE 77 YN L g [70(amtMN PN
(6.22) HLNQ/GO <«91 0’0 —6! 9’0 )dV+/<aMN/00 <91’ ’00 —6! ’90 )dV
Vo Vo

0 7@ *GILI 0 701NM *QIJ/VM
+ / «90<91/é0—91 o )dV+/<cMN / 90<01/ — 00 >dV
Vo

1744
+p / 2000 (—0Y Py Wi, +01 Py Wi dV
Vo
+p / PO (Foit' o~ Fotia)dV + / (K, 0K 1) N1 dS
Vo SO
+ / (AT, $7— AV 61 Ny dS— / (@) L (AT, $7— AV gT)av
S0 Vo
— / @OpoPr (0 WY 0V W])dV — / (09, (K}, ub— K}, %)dV
\% Vo
/N AT
+/ o0 (91 '27—91/ g0>dV —0.
1744

Next in the latter equality we transform the sum of the first four integrals.
Firstly note that by (6.1), we have

(6.23) <hj(rx;(§)> _ f(lx) Zoe_pth(x,t)dt — f(lx)h(x’t)’
. [ (wg_mJ;)dv =t [ @E - a v,
Vo Vo

Hence by these equalities and the constitutive relation for the incremental heat
flux (3.15), the aforementioned sum of the four integrals equals

1 -
(6.24) - / 0V QL —01QY )dV.

p
Vo
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Again, by the identity
abVML = (ab’M),L — a7LbyM

and the divergence theorem, the sum (6.24) equals

(6.25) ;[ / (07 Q}, — 0T QVL) NLdS — / (0 QF =01, QY )aV
VO

SO

By substituting the sum of the first four integrals in Eq. (6.22) by (6.25), we
obtain

[ [ e TN - [ e - s ana]

S0 Vo

(6.26)

+ pPu /,0090(—91’ Wi + 6t wi)av
Vo

+p [/G[)(Fau/a — F'ot,)dV + /90 (fiaa’a — FlL/a Uo)NdS
Vo S0

+ /90 (AT ¢V — AV @1)NpdS — /(GO)L(Angbl’ — AV gl)av
SO0 Vo

La "o

- / OpoPr (LWL — 0V WEHdV — / (09) 1 (KL, ul, — K} g)dV

Vo Vo
AL Al
il ki

=+ /p0<91 GT — 91/ 90>dV = 0
Vo

The latter is the final form of the theorem of reciprocity of work, containing

all causes and effects. It generalizes Eq. |2, (62)], and reduces exactly to the latter

in case of vanishing of the initial fields, that is, when the initial configuration is
natural.

References

1. W. Nowackl, A Reciprocity Theorem for Coupled Mechanical and Thermoelectric Fields
in Piezoelectric Crystals, Proc. Vibrations Probl., 6, 1, 3—-11, 1965.

2. W. Nowackl, Some general Theorems of Thermopiezoelectricity, J. of Thermal Stresses,
1, 171-182, 1978.



72

A. MONTANARO

10.

11.

12.

13.

14.

J.Y. L1, Uniqueness and reciprocity theorems for linear thermo-electro-magnetoelasticity,
Q. J. Mech. Appl. Math., 56, 35-43, 2003.

M. Aouapi, The Generalized Theory of Thermo-Magnetoelectroelasticity, Technische
Mechanik, 27, 2, 133-146, 2007.

I.M. MULLER, The coldness a universal function in thermoelastic bodies, Arch. Rational
Mech. Anal., 41, 319-332, 1971.

D. IesaN, Thermopiezoelectricity without energy dissipation, Proc. R. Soc. A, 631, 133—
656, 2007.

V.D. KupraDpzE, T.G. GEGELIA, M.O. BASHELEISHVILI, T.V. BURCHULADZE, Three-
dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity,
North-Holland, Amsterdam 1979.

A. Morro, M. FaABRizio, Electromagnetism of Continuous Media, Oxford University
Press, Oxford 2003.

V.D. CoLEMAN, E.H. DiLL, Thermodynamic restrictions on the constitutive equations
of electromagnetic theory, Z. Angew. Math. Phys., 22, 691-702, 1971.

G. AMENDOLA, On thermodynamic conditions for the stability of a thermoelectromagnetic
system, Math. Meth. Appl., 23, 17-39, 2000.

G. AMENDOLA, Linear stability for a thermoelectromagnetic material with memory, Math.
Mech. Appl., 59, 67-84, 2001.

H.F. TiERSTEN, On the Nonlinear Equations of Thermoelectroelasticity, Int. J. Engng.
Sci., 9, 587-604, Pergamon Press, 1971.

J.S. YANG, Equations for Small Fields Superposed on Finite Biasing Fields in a Ther-
moelectroelastic Body, IEEE Transactions on Ultrasonics, Ferroelectricts, and Frequency
Control, 50, 2, 187-192, 2003.

A. MONTANARO, On the Constitutive Relations in Thermo-Electroelasticity, Technical
Report No. 102 October 2009, DMMMSA (Dep. Math. Meth. Models Appl. Sci.), Univ.
Padua; see the web-pages arXiv:0910.1344 or http://paduaresearch.cab.unipd.it/2184/.

Received 30 May 2009; revised version 9 October 2009.



