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1. Introduction

Concrete is still the most widely used construction material since it has
the lowest ratio between cost and strength as compared to other available ma-
terials. However, it has two undesirable properties, namely: low tensile strength
and large brittleness, that cause the collapse to occur shortly after the formation
of the first crack (Soulioti et al. [31]). Therefore, the application of concrete
subjected to impact, earth-quaking and fatigue loading is strongly limited. To
improve these two negative properties and to achieve a partial substitute of con-
ventional reinforcement, an addition of short discontinuous, randomly oriented
fibres (steel, glass, synthetic and natural) can be practiced among others. Steel
fibres are the most used in concrete applications due to economy, manufacture
facilities, reinforcing effects and resistance to the environment aggressiveness. By
addition of steel fibres, the following properties of plain concrete: tensile splitting
strength, flexural strength, first cracking strength, toughness, stiffness, durabil-
ity, impact resistance, fatigue and wear strength increase, and deflection, crack
width, shrinkage and creep are reduced (Shah and Rangan [28], Bentur and
Mindess [5], Balaguru and Shah [3], Chenkui and Guofan [7], Zollo [38]).
In turn, compressive strength can slightly increase (Mohammadi et al. [24]) or
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slightly decrease (Altun et al. [2]). The addition of steel fibres aids in convert-
ing the brittle characteristics to the ductile ones. Fibres limit the formation and
growth of cracks by providing pinching forces at crack tips. They bear some stress
that occurs in cement matrix themselves and transfer the other portion of stress
at stable cement matrix portions. Real effects of fibre addition can be observed as
a result of the bridging stress offered by the fibres after the peak load. The fibre-
reinforced concrete specimens develop first a pattern of fine distributed cracks, in-
stead of directly failing in one localized crack. Fibre-reinforced concrete has found
many applications in tunnel linings, wall cladding, bridge desks, pavements, slabs
on grounds, factory (industrial) floors and slabs, dams, pipes, fire protection
coatings, spray concretes (Balaguru and Shah [3], Zollo [38], Krstulovic-

Opara et al. [19], Falkner and Henke [10], Schnütgen and Teutsch [30],
Walraven and Grünewald [36]). It can be also used for repair, rehabilitation,
strengthening and retrofitting of existing concrete structures (Li et al. [20]).

The degree of improvement of fibrous concrete depends upon many different
factors such as: size, shape, aspect ratio (ratio between length and diameter),
volume fraction, orientation and surface characteristics of fibres, ratio between
the fibre length and maximum aggregate size, and volume ratio between long
and short fibres and concrete class (Shah and Rangan [28], Bentur and Min-

dess [5], Balaguru and Shah [3], Zollo [38], Altun et al. [2], Mohammadi

et al. [24]). The fibre orientation depends on the specimen size and flow direction
of the fresh concrete against a casting direction (Redon and Chermant [27]).
Fibres hinder the flowability of fresh concrete that decreases the workability by
increasing the pore volume resulting in strength decrease (what is visible during
compression). The most suitable fractions for concrete mixes are between 0.5%
and 2.0% by volume of concrete. The aspect ratios of steel fibers used in con-
crete mix are varied between 50 and 100. The strength and ductility of fibrous
concrete beams increase both with decreasing specimen size (Ward and Li [37],
Lin [22], Balendran et al. [4]).

In spite of positive properties, fibrous concrete did not find such acknowl-
edgment and application as usual concrete. There do not still exist consistent
dimensioning rules due to the lack sufficient large-scale static and dynamic ex-
periments, taking into account mainly the effect of the fibre orientation. There
is a general lack of confidence in the design, particularly under bending in spite
of existing tools on different scale. An analytical micro-scale approach has been
proposed in by Lim et al.[23]. On the meso scale, a truss model has been used to
study the material behavior (Bolander and Saito [6], van Hauwaert and
van Mier [34], Li et al. [21]. In turn, on the macro scale, constitutive models
have been developed that can be used in finite element computations (Al-Taan

and Ezzadeen [1], Kooiman et al. [14]). Recently, a numerical continuum ap-
proach was proposed by Radtke et al. [25, 26], wherein the existing continuum
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approach to model concrete failure was combined with a discrete representation
of fibres by adding extra nodal forces at fibre ends, measured during the pull-
out of a fibre from a matrix specimen. In turn, a semi-analytical method was
proposed by Jones et al. [11] to predict the flexural behavior of steel fibres,
wherein the flexural capacity of the critical section was related to five principal
parameters: the uniaxial compressive stress-strain relationship, the uniaxial ten-
sile stress-strain relationship, the single fibre pull-out load versus crack-width
relationship, the number, distribution, embedment lengths and orientations of
the fibres bridging the cracked section, the strain and crack-width profiles of the
uncracked and cracked sections respectively in relation to the mid-span beam de-
flection. Kabele [12] has used a multi-scale framework for modeling of fracture
in high performance fiber-reinforced cementitious composites.

This paper is focused on mechanical modeling of fibre-reinforced concrete.
The calculations were carried out with a geometrical irregular linear 3D lattice
model (Kozicki [15], Kozicki and Tejchman [16, 17]). In the model, individ-
ual straight steel fibres were explicitly modeled. Such explicit modeling of fibres,
with their realistic stochastic distribution within concrete, allowed one for a bet-
ter understanding of individual and collective effects of fibres on the concrete be-
haviour. Two- and three-dimensional calculations were performed with concrete
considered as heterogeneous material at meso-scale, composed of aggregate in-
clusions, cement matrix, steel fibres, matrix-inclusion interface and matrix-fibre
interface. Circularly in 2D or spherically in 3D-shaped aggregates were randomly
positioned in the domain according to a granulometric distribution. Our model
is composed of rigid body rod elements creating a lattice that breaks accord-
ing to a simple rule. A material meso-structure is mapped onto the lattice so
that each element is associated with a particular material phase or interface. Of
special interest in this work is modeling of the different strength of the cement
matrix-fibre interface and stochastic distribution of aggregate and fibres in 3D
concrete specimens. The effect of the length of steel fibres and their orientation
on the global concrete behavior during uniaxial tension was studied. In addition,
a deterministic size effect was investigated.

Our irregular lattice model has been already successfully used to simulate the
fracture process in two-dimensional and three-dimensional plain concrete speci-
mens subject to uniaxial tension, uniaxial compression, three-point bending and
mixed shear-extension (Kozicki and Tejchman [16, 17]). The effect of aggre-
gate bond, aggregate density, aggregate size and specimen size on the material
strength and failure was realistically captured in discrete simulations.

The numerical results in this paper were qualitatively compared with exper-
iments only. First, it is due to the lack of the exact data on material micro-
structure in experiments (e.g. aggregate density, aggregate size distribution, ag-
gregate shape, interface thickness), which is of major importance in calculations
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carried out with a lattice model. Second, the aim of the paper is to show some as-
pects of mechanical modelling and to check a capability of our model to simulate
fracture in fibrous concrete. A quantitative analysis will be carried out soon.

2. Lattice model

Our lattice model (Kozicki and Tejchman [16, 17], Kozicki and Donze

[18]) differs from classical lattice beam models composed of beams connected
by non-flexible nodes (van Mier et al. [33], Schlangen and Garboczi [29],
van Mier and van Vliet [35]) in that it consists of rods with flexible nodes
and longitudinal deformability, rotating as rigid bodies. Thus, shearing, bend-
ing and torsion are represented by a change of rotational angles between rod
elements connected by 3 different springs (2 bending springs and 1 torsional
spring) (Fig. 1a). This quasi-static model is of a kinematic type. The calcula-
tions of element displacements are carried out on the basis of the consideration of
successive geometrical changes of rods due to translation, rotation, normal bend-
ing and torsional deformation. Thus, the global stiffness matrix is not built and
the calculation method has a purely explicit character. In spite of necessity of the
application of small displacement increments (what is the inherent property of
explicit numerical procedures), the computation time is significantly reduced as
compared to implicit lattice model solutions (Schlangen and Garboczi [29],
van Mier and van Vliet [35]).

In the model, the quasi-brittle material was discretized in the form of a tetra-
hedral (3D simulations) or a triangular (2D simulations) grid of lines. The lattice
topology was defined by the Delaunay tessellation of an irregular set of nodal
points (thus the distribution of rod elements was assumed to be completely
random). First, a tetrahedral (or triangular) grid of nodes was created in the
material with the side dimension equal to g. Then each node was displaced by
a vector of a random direction and a random magnitude smaller than s. The
nodes randomized in this way were connected with each other, and each edge in
the mesh formed a lattice. Thus, the model needs 2 grid parameters (g and s)
only to randomly distribute rods in the lattice. In the calculations, we assumed
g = 1 mm (2D calculations) or g = 2 mm (3D calculations) and s = 0.6g. A uni-
form regular tetrahedral (or triangular) mesh can be obtained with s = 0. The
rods possessed longitudinal stiffness described by the parameter kl (controlling
the rod length change) and the nodal springs possessed the bending stiffness
described by the parameter kb controlling the change of the bending angle α1

(α1 – rotational angle around the axis Z in the plane XY which is formed by
two rods ‘i’ and ‘j’) (Fig. 1b). In 3D calculations, the nodal springs had also
the torsional stiffness described by the parameter kt controlling the change of
the angles α2 and α3; α2 – rotational angle of the rod ‘j’ around the axis of the
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a) b)

c) d)

Fig. 1. Lattice rods connected by two bending and one torsional springs: a) initial position,
b) bending angle α1, c) rotational angle α2, d) rotational angle α3 (Kozicki [15]).

rod ‘i’ (which is the rotational axis of the spring ‘2’) and α3 – rotational angle
of the rod ‘j’ around its own axis (which is the rotational axis of the spring ‘3’)
(Figs. 1c and 1d). Thus, the spring ‘2’ caused torsion of the rod ‘i’ and bending of
the rod ‘j’ and the spring ‘3’ caused torsion of the rod ‘j’ and bending of the rod
‘i’. Thus, each rod pair had separately two bending springs and one torsional
spring. The displacement of the center of each rod element was calculated as
the average displacement of its two end nodes from the previous iteration step
(Kozicki and Tejchman [16])

(2.1) i∆X =
A
i ∆X + B

i ∆X

2
,

where A∆X and B∆X – displacement of the end nodes A and B in the rod
element i, respectively. The displacement vector of each element node was ob-
tained by averaging the displacements of the end of elements attached to this
node caused by translation, rotation, normal, bending and torsional deformation

(2.2) j∆X =
∑

i

i∆W + i∆R

jnsum
+

∑

i

1

idinit
(i∆Dikl + i∆Bikb + i∆Tikt)

∑

i

1

idinit
(ikl + ikb + ikt)

,

wherein: i∆X – resultant node displacement, i∆W – node displacement due to
the rod translation, i∆R – node displacement due to the rod rotation, i∆D –



470 J. Kozicki, J. Tejchman

Fig. 2. General scheme to calculate displacements of rod elements in 2D lattice (Kozicki

and Tejchman [16]).

node displacement due to a change of the rod length (controlled by kl), i∆B –
node displacement due to a change of the bending angle between two neighboring
rods (controlled by kb), i∆T – node displacement due to a change of the torsional
angle between two neighboring rods (controlled by kt), i– successive rod number
connected with the node, j – node number, jnsum – number of rods attached
to the node j and idinit – initial length of the rod i. Fig. 2 shows a simplified
scheme for 2D calculations of rod displacements (without torsion). The node dis-
placements were calculated successively during each calculation step beginning
first from elements along boundaries subjected to prescribed displacements. The
normal strain ε, shear angle γ and bending angle χ in rods were for 2D problems
equal to (Fig. 3b)

(2.3) ε =
id − idinit

idinit
, γ =

iα
A
1 + iα

B
1

2
, χ =

iα
A
1 − iα

B
1

2
,

a) b)

Fig. 3. 2D lattice: a) arbitrary cross-section, b) angles to calculate shear angle and bending
angle in rods (Kozicki and Tejchman [16]).
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where id and idinit are the current and initial length of the rod and iα
A
1 and

iα
B
1 are the bending angles calculated at both ends of the rod (as cumulative

values from all rods connected to both ends). The normal stress and shear stress
were respectively (E – modulus of elasticity, G – shear modulus)

(2.4) σ = εklE and τ = γkbG.

The resultant force F in a selected specimen’s cross-section area A was deter-
mined with the aid of the normal strain ε, shear strain γ, stiffness parameters kl,
kb and kt, modulus of elasticity E, shear modulus G and specimen’s cross-section
area A

(2.5) F = A
∑

(εklE + γkbG),

where the sum is extended over all rods that cross a selected specimen’s plane
A (Fig. 3a). For the bending stiffness parameter kb = 0 (Eq. (2.2)), the lattice
behaved as a truss, otherwise as a frame. The rod element broke and was removed
from the lattice if the corresponding local threshold (permissible) tensile strain
εmin was exceeded. By applying Eqs. (2.2) and (2.5), the force equilibrium was
obtained in each lattice node with the accuracy of 1% (what required always
about 10 iterations) and was verified by comparing the calculated resultant force
along the top and at the bottom of the specimen.

All the presented numerical calculations were strain-controlled. On the basis
of calculations of plain concrete (Kozicki and Tejchman [17]), the critical
global strain increment expressed as

(2.6) ∆εgl
crit = (lrεmin)/∆l

should be larger than ∆εgl
crit > 500 in a single calculation step to obtain a negligi-

ble effect of the strain increment on numerical results of the global force (about 1–
2%), where lr – average rod length, εmin – threshold local tensile strain and ∆l
– vertical displacement increment of the specimen edge. It means that minimum
500 iterations were required to remove a single rod. If this condition in Eq. (2.6)
was not preserved, both the crack shape and crack direction could depend upon
the strain increment. The ratio between the mean lattice rod length lr and the
smallest specimen size h had to be at least 1/100–1/50 (lr/h ≤ 1/100–1/50) in
2D and 1/66–1/33 (lr/h ≤ 1/66–1/33) in 3D specimens, to obtain a negligible
effect (about 2%) of the rod length on stress results. Alternatively, a non-local
approach could be used when applying larger rods (Kozicki and Tejchman

[17]). However, it was connected with a significant increase of the computation
time. Therefore, an application of smaller rods using a local approach was more
efficient with respect to the computation time. The calculation algorithms were
given in detail by Kozicki [12].

In the 2D and 3D discrete calculations, different properties were prescribed to
lattice elements to simulate the concrete behaviour at meso-scale. The concrete



472 J. Kozicki, J. Tejchman

Fig. 4. 2D lattice composed of rods to simulate three phases (steel fibres, cement matrix
and aggregate) and two interfaces (matrix-aggregate interface and fibre-matrix interface) in

concrete at meso-scale.

was composed of aggregate, cement matrix, fibres, bond between aggregate and
cement matrix and bond between fibres and cement matrix (Fig. 4, Tab. 1). The
interfacial cement matrix-aggregate zones were distinguished by assigning differ-
ent properties to rods which connected directly the aggregate with the cement
matrix. Their width ranged from 0.3 mm to 2 mm in 2D calculations (g = 1 mm)
and from 0.6 mm to 4 mm in 3D calculations (g = 2 mm). In turn, the interfacial
cement matrix-fibre zones were distinguished by assigning different properties to
rods which connected directly the steel fibres with the cement matrix; their width
also changed between 0.3 mm–2 mm (2D model) and between 0.6 mm–4 mm
(3D model). The mean aggregate diameter was assumed to be d50 = 12 mm
(Fig. 5). The aggregate volume or aggregate area percentage was assumed to
be 60%. The fibre volume was Vf = 1.5% in 3D simulations. In turn, the fibre
area in 2D analyses was Af = 1.5%. The minimum rod length was 0.2 mm and
the maximum one was 2 mm (lr = 1 mm on average) in 2D calculations. In

Table 1. Material parameters used in 2D and 3D calculations of fibrous concrete

at meso-scale (Kozicki and Tejchman [32]).

Concrete phase Modulus

Stiffness
ratio

p = kb/kl

(tension)

Stiffness
ratio

p = kb/kl

(compression)

Stiffness
parameter

kl

Threshold
local

tensile
strain

εmin[%]

Fibrous
interface

type

Cement matrix 20 0.6 0.2 0.01 0.2 A)–D)

Aggregate inclusions 60 0.6 0.2 0.03 0.133 A)–D)

Cement matrix-aggregate
interface 14 0.6 0.2 0.007 0.05 A)–D)

20 0.6 0.2 0.01 0.2 A)
14 0.6 0.2 0.007 0.025 B)

Cement matrix-fibre 14 0.6 0.2 0.007 0.05 C)
interface 14 0.6 0.2 0.007 0.1 D)

14 0.6 0.2 0.007 0.5 D)
14 0.6 0.2 0.007 1.0 D)

Steel fibres 160 0.6 0.2 0.08 90 A)–D)



Effect of steel fibres on concrete behavior. . . 473

a) b)

Fig. 5. Aggregate sieve curve with mean particle diameter of d50 = 12 mm: a) approximation
of grading curve with discrete number of aggregate sizes, b) prescribed and generated grading

curve.

3D calculations, the minimum rod length was 1.2 mm and the maximum one
was 4 mm (lr = 2 mm on average). The size of the 3D concrete specimens was
5×5×5 cm3 or 10×10×10 cm3, respectively. In turn, the size of the 2D concrete
specimens was 5× 5 cm2 and 10× 10 cm2, respectively. The number of rods was
170 000 (3D specimen 5× 5× 5 cm3), 1 400 000 (3D specimen 10× 10× 10 cm3),
8 000 (2D specimen 5 × 5 cm2), 36 000 (2D specimen 10×10 cm2), respectively.
The computation time with 1 400 000 rods in 3D simulations was e.g. 90 hours
on PC 3.5 GHz. A length of straight steel fibres changed between lf = 10 mm
and lf = 60 mm. The fibre width bf (2D simulations) or fibre diameter df (3D
simulations) corresponded to the grid parameter g.

The material parameters of Table 1 were determined in the following way.
The moduli of elasticity for aggregate, cement matrix and steel fibres can be
directly measured in laboratory tests. The stiffness parameter p = kb/kl was
determined during compression to obtain a realistic Poisson’s ratio for concrete
(Kozicki and Tejchman [16]). We assumed the same ratio p = kb/kl for all
phases (p = 0.2 in compression). However, the different value of p was assumed
in tension, i.e. p = 0.6 (Fig. 6a). The assumption of the different value of the
ratio p in tension and compression was necessary to obtain a realistic crack shape
during a mixed shear-extension failure mode (Kozicki and Tejchman [17]). For
pure extension, a different value of the ratio p in tension and compression had
no effect on the results. The chosen ratio p = kb/kl (different in compression
and tension) caused the different Poisson’s ratio: υ = 0.22 (compression) and
υ = 0.07 (tension), respectively (Fig. 6b). The latter numerical outcome has to
be verified by experiments. The ratios between the parameters kl and εmin for
the cement matrix and aggregate were assumed on the basis of ratios between
the moduli of elasticity and tensile strengths, respectively (van Mier et al. [33]).
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a) b)

Fig. 6. Assumed change of ratio p = kb/kl: a) and resulting Poisson’s ratio of the lattice
versus threshold local strain εmin, b) Kozicki and Tejchman [17].

The local parameter εmin for cement was chosen to obtain a realistic value of the
global strain corresponding to the strength during uniaxial tension. Although the
width of the interfacial transition zone between aggregate and cement matrix is
only about 0.05 mm, the ITZ is commonly regarded as a weak link in determining
both the mechanical and transport properties of cement-based composites.

The role of the ITZ is especially important when considering concretes where
the volume fractions of inclusions are rather high, in the range 60% to 75% of the
total material volume. Therefore, we also assumed that the weakest phase was
bond between aggregate and cement matrix (van Mier et al. [33], Kozicki and
Tejchman [17]). The material parameters for the interface between aggregate
and cement matrix were assumed following van Mier et al. [33]. In calcula-
tions, the stiffness parameter kt was always assumed as kt = kb. In the case
of the cement matrix-fibre interface, the different interface strength was taken
into account by changing the threshold local bond strain εmin (Table 1) (with
the values of E and p similar as for the aggregate interface). We considered the
following 4 cases:

A) no interface between the fibres and cement matrix,
B) the strength of the cement matrix-fibre interface was smaller than the

strength of the cement matrix-aggregate interface (threshold local tensile
strain in the cement matrix-fibre interface was εmin = 0.025%),

C) the strength of the cement matrix-fibre interface was equal to the strength
of the cement matrix-aggregate interface (εmin = 0.05%),

D) the strength of the cement matrix-fibre interface was greater than the
strength of the cement matrix-aggregate interface (εmin = 0.1%, εmin =
0.5%, εmin = 1.0%).

The case C) is not physically realistic; it was taken into account for purposes
of numerical calculations only. The material parameters for rigid steel fibres were
chosen as (Table 1): E = 160 GPa, p = 0.6 (tension) and p = 0.2 (compression),
kl = 0.08 and εmin = 90%.
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a) b)

Fig. 7. Spatial distribution of aggregate: a) and steel fibres, b) in 3D concrete specimen
5 × 5 × 5 cm3 with 1.5% fibre volume.

An initial process of forming of a fibrous concrete specimen (Fig. 7) was
the following. First, steel fibres were distributed at random positions within the
specimen. Next, to obtain a distribution of fibres in the entire specimen, a so-
called iterative repulsion algorithm was used. Each steel fibre was described by
20 points (it was divided into 19 equal parts). The fibre points were subjected
to repulsion from other fibre points and specimen boundaries were inversely
proportional to the squared distance between two points. As a result, a random
distribution of fibres in the entire specimen was obtained. Next, the number of
spheres with a different diameter was calculated according to Fig. 5a, to fit a
prescribed granulometric curve. The spheres were inserted at random positions
into a concrete specimen by ignoring the fibre and sphere overlaps. Afterwards,
a repulsion procedure was again used (in which each sphere was represented by a
single point), if an overlap was detected (Eq. (2.7)): sphere to sphere or sphere to
fibre. This quasi-static algorithm simulated a process of sphere compaction up to
the aggregate volume of 60%–70%. The size distribution of aggregate inclusions
was determined using a gradation curve (Fig. 5a) (Cusatis et al. [8], Eckardt

and Könke [9]). First, the specified numbers of particles with defined diameters
were generated according to curve in Fig. 5b. Finally, the spheres describing
aggregates were randomly placed in the specimen preserving the particle density
and a certain mutual minimum distance (van Mier et al. [33])

(2.7) Dp > 1.1
D1 + D2

2
,

where Dp is the distance between two neighboring particle centers and D1 and
D2 are the diameters of these two particles (sphere or fibre).
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3. Numerical results

3.1. Effect of cement matrix-fibre bond strength

The results of stress-strain curves during quasi-static uniaxial tension with 2
different notched fibrous concrete specimen sizes with smooth horizontal edges,
are shown in Fig. 8 (specimen 5×5 cm2 in 2D simulations), and Fig. 9 (specimen
5×5×5 cm3 in 3D simulations), by assuming the different threshold local ensile
strain εmin for rods in the cement matrix-fibre interface (εmin = 0.025%–1.0%)
(Table 1). Five stochastic simulations were performed for each strain εmin with

Fig. 8. Calculated stress-strain curve for 2D notched concrete specimen 5×5 cm2, subjected to
uniaxial extension with Af = 1.5% area content of fibres for different threshold local strain εmin,
in cement matrix-fibre interface (fibre length lf = 2 cm) (σ22 – vertical normal stress,

ε22 – vertical normal strain).
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Fig. 9. Calculated stress-strain curve for 3D notched concrete specimen 5×5×5 cm3 subjected
to uniaxial extension with Vf = 1.5% volume content of fibres for different threshold local
strain εmin in cement matrix-fibre interface (fibre length lf = 2 cm) (σ22 – vertical normal

stress, ε22 – vertical normal strain).

the same initial distribution of all concrete components. Figures 8 and 9 demon-
strate the mean curves from 5 simulations. The development of the calculated
fracture is shown in Figs. 10 and 11 (2D simulations) and in Fig. 12 (3D simu-
lations) for 2 different specimen sizes (with εmin = 0.5% and Af = Vf = 1.5%).

Both the strength and ductility of fibrous concrete increase with increasing
threshold local strain εmin if the cement matrix-fibre interface is stronger than the
cement matrix-aggregate interface, i.e. at εmin ≥ 0.5% in the fibrous bond. This
increase is very pronounced in 3D simulations. All further discrete simulations
were carried out then with the threshold strain εmin = 0.5% in the cement
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Fig. 10. Evolution of calculated crack pattern in 2D notched concrete specimen subjected to
uniaxial extension: (εmin = 0.5%, lf = 2 cm, Af = 1.5%, lr = 1 mm, specimen 5 × 5 cm2,

εmin – threshold local tensile strain).

Fig. 11. Evolution of calculated crack pattern in 2D notched concrete specimen subjected to
uniaxial extension: (εmin = 0.5%, lf = 2 cm, Af = 1.5%, lr = 1 mm, specimen 10 × 10 cm2,

εmin – threshold local tensile strain).
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a)

b) c)

Fig. 12. Deformed specimen with crack pattern in notched concrete specimen 5×5×5 cm3 sub-
jected to uniaxial extension: a) 2Ddeformation process in the mid-section of 1 cm thick in different
stages (stage number given at the top), b) deformed 3D specimen with distinguished aggregates
at peak (stage ‘1’), c) deformed 3D specimen with distinguished steel fibres at peak (stage ‘1’),
(cement matrix-fibre interface with εmin=0.5%, fibre volume Vf=1.5%, lf=2 cm, lr=2 mm).
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matrix-fibre interface. The calculated mean tensile strength of plain concrete
and fibrous concrete is 1.0 MPa and 1.1 MPa (2D simulations, εmin = 0.5%) and
1.2 MPa and 2.6 MPa (3D simulations, εmin = 0.5%), respectively. The fracture
energy is thus significantly higher in 3D simulations because: a) more fibres can
be placed in the volumetric unit than in the area unit with the same fibre length,
b) more rods break in 3D simulations what requires more fracture energy, c) the
crack propagation way is longer in 3D computations since the cracks are more
curved and propagate in a more tortuous manner, and d) torsion is taken into
account in 3D analyses. The vertical normal strain corresponding to the peak
on the stress-strain curve is also higher in 3D analyses: 0.02 (2D simulations)
and 0.002 (3D simulations) due to the different fracture formation. Figure 13

a)

b)

Fig. 13. Number of broken rods in each iteration during uniaxial extension for: a) 2D concrete
specimen and b) 3D concrete specimen.
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compares the number of removed rods in each iteration during extension for 2D
(with 8000 rods) and 3D simulations (with 170000 rods). It can be seen that
significantly more rods break during 3D simulations of a fracture process (in
particular at the onset of this process).

Due to a high particle density of 60% (Figs. 10–12), percolation of bond zones
occurs early in the loading history. Since the interface between cement matrix and
aggregate is the weakest component of the system, the material becomes initially
weak there and cracks are created along the aggregate. The cracks are initiated
in the region of the notch. Since the number of aggregates is relatively large,
the cracks cannot propagate in long lines. Instead of this, several discontinuous
macro-cracks propagate in a tortuous manner between fibres. The cracks overlap
and form branches. The way propagation of cracks is clearly enhanced by the
presence of steel fibres which delay their development.

Fig. 14. Two 2D notched fibrous concrete specimens with steel fibres subjected to uniaxial
extension: calculated crack pattern with cement matrix-fibre interface weaker than cement

matrix-aggregate interface (case ‘B’ of Tab. 1).

If the cement matrix-fibre interface is weaker than the cement matrix-aggre-
gate interface (εmin < 0.05%), both the material strength and ductility are even
smaller than in plain concrete due to the fact that cracks are created in interfaces
along the fibres which act as strong imperfections to promote them (Fig. 14). In
the case of lack of the cement matrix-fibre interface, both the material strength
and ductility are also higher in fibrous concrete than in plain concrete (due to
the different values of kl and E, as compared to the cement matrix-aggregate in-
terface, Table 1). However, the presence of the cement matrix-fibre interface
with the different εmin allows us to affect the evolution of the stress-strain
curve.
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3.2. Effect of fibre presence

The effect of fibres on the behavior of plain concrete is demonstrated for
2 different concrete specimen sizes (εmin = 0.5%, Vf = 1.5%, Af = 1.5%, lf =
2 cm) in Figs. 15 (2D results) and 16 (3D results). Presented are three stress-
strain curves: minimum, mean and maximum, on the basis of 5 simulations.
Thus, a scatter of results around the mean value can be noticed.

Fig. 15. Calculated stress-strain curves for 2D notched fibrous concrete specimens subjected
to uniaxial extension (εmin = 0.5%, lr = 1 mm, specimen 5 × 5 cm2

): a) plain concrete,
b) fibrous concrete with Af = 1.5% and lf = 2 cm (σ22 – vertical normal stress, ε22 – vertical

normal strain, εmin – threshold local tensile strain).

Fig. 16. Calculated stress-strain curves for 3D notched fibrous concrete subjected to uniaxial
extension (εmin = 0.5%, lr = 2 mm, specimen 5 × 5 × 5 cm3

): a) plain concrete, b) fi-
brous concrete with Vf = 1.5% and lf = 2 cm (σ22 – vertical normal stress, ε22 – vertical

normal strain, εmin – threshold local tensile strain).
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As in the experiments (Shah and Rangan [28], Bentur and Mindess [5]),
both the concrete strength and ductility increase with fibres, depending strongly
on their stochastic distribution. The tensile strength ft improves from 0.85–
1.0 MPa (plain concrete) up to 0.85–1.2 MPa (fibrous concrete) in 2D simula-
tions, and from 1.1–1.4 MPa (plain concrete) up to 2.6–3.3 MPa (fibrous con-
crete) in 3D simulations. Thus, the scatter of results is higher in 3D analyses.
The scatter is also higher in fibrous concrete than in plain concrete.

3.3. Effect of specimen size

The results of stress-strain curves during quasi-static uniaxial tension with
fibrous concrete specimens with smooth horizontal edges are shown in Fig. 17 for
the 2D specimens 5×5 cm2 and 10×10 cm2 (εmin = 0.5%, lf = 1 cm, Af = 1.5%),

a)

b)

Fig. 17. Calculated stress-strain curves for 2D notched fibrous concrete specimens (5 × 5 cm2

and 10× 10 cm2
) subjected to uniaxial extension (lr = 1 mm, εmin = 0.5%), a) plain concrete,

b) fibrous concrete with Af = 1.5% and lf = 2 cm (σ22 – vertical normal stress, ε22 – vertical
normal strain).
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a)

b)

Fig. 18. Calculated stress-strain curves for 3D notched fibrous concrete specimens (5×5×5 cm3

and 10 × 10 × 10 cm3
) subjected to uniaxial extension (lr = 2 mm, εmin = 0.5%), a) plain

concrete, b) fibrous concrete with Vf = 1.5% and lf = 2 cm (σ22 – vertical normal stress,
ε22 – vertical normal strain).

and in Fig. 18 for the 3D specimens 5 × 5 × 5 cm3 and 10 × 10 × 10 cm3

(εmin = 0.5%, lf = 2 cm, Vf = 1.5%). Presented are the mean stress-strain
curves only.

The results show that both the strength and ductility of plain and fibrous
concrete are improved with decreasing specimen size. Thus, an experimental size
effect is realistically modelled in 2D and 3D computations (Balendran [4],
Ward and Li [37], Lin [22]). The size effect is stronger in a plain concrete
specimen than in a fibrous one.
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3.4. Effect of fibre orientation

Figures 19 and 20 show the effect of the direction and location of fibres in
the smallest concrete specimen, which were distributed in the concrete specimen
at random, vertically and horizontally, respectively. Five simulations were again
performed for each case. Presented are the mean stress-strain curves only.

Fig. 19. Calculated stress-strain curves for 2D notched fibrous concrete specimens subjected
to uniaxial extension (εmin = 0.5%, specimen 5 × 5 cm2, lr = 1 mm) for plain concrete and
fibrous concrete with different fibre orientation (Af = 1.5%, lf = 2 cm) (σ22 – vertical normal

stress, ε22 – vertical normal strain).

Similarly as in the experiments (Lin [22]), the concrete specimen becomes
the strongest as compared to plain concrete when the fibres are oriented verti-
cally, i.e. they are parallel to the loading direction (perpendicular to the direction
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Fig. 20. Calculated stress-strain curves for 3D notched fibrous concrete specimens subjected
to uniaxial extension (εmin = 0.5%, specimen 5× 5× 5 cm3, lr = 2 mm) for plain concrete and
fibrous concrete with different fibre orientation (Vf = 1.5%, lf = 2 cm) (σ22 – vertical normal

stress, ε22 – vertical normal strain).

of dominant horizontal cracks). The material becomes also the most ductile. In
particular, the effect is pronounced in 3D analyses. The 3D fibrous specimen
is stronger by 25% if the fibres are vertically oriented, and weaker by 10% if
the fibres are horizontally oriented, as compared to a mean stochastic tensile
strength fr = 2.6 MPa (at Vf = 1.5%). If the fibres are horizontally oriented,
the strength’s increase, as compared to plain concrete, is by 100%, and if the
fibres are vertically oriented, the strength’s growth as compared to plain con-
crete is 200% (at Vf = 1.5%). The fibre orientation effect in 2D simulations is
significantly weaker.
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3.5. Effect of fibre length

The effect of the fibre length on the stress-strain curve during uniaxial tension
is demonstrated in Figs. 21 and 22, in 2 different fibrous concrete specimens. The
fibre length was 1–6 cm (threshold strain εmin = 0.5% in the cement matrix-fibre
interface).

In 3D simulations, concrete strength and ductility increase with increasing
fibre length independently of the specimen size as in experiments (Ward and
Li [37]). However, this does not occur in 2D calculations where the effect of
a tochastic distribution of fibres can be stronger.

Fig. 21. Calculated stress-strain curves for 2D notched concrete specimens (5 × 5 cm2 and
10 × 10 cm2

) subjected to uniaxial extension (εmin = 0.5%, lr = 1 mm) for plain concrete
and fibrous concrete with different fibre lengths lf (Af = 1.5%) (σ22 – vertical normal stress,

ε22 – vertical normal strain).
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Fig. 22. Calculated stress-strain curves for 3D notched concrete specimens (5× 5× 5 cm3 and
10× 10× 10 cm3

) subjected to uniaxial extension (εmin = 0.5%, lr = 2 mm) for plain concrete
and fibrous concrete with different fibre lengths lf (Vf = 1.5%) (σ22 – vertical normal stress,

ε22 – vertical normal strain).

3.6. Effect of torsion in 3D simulations

The 3D results with a plain concrete and a fibrous concrete specimen
(Vf = 1.5%, lf = 2 cm) are demonstrated in Fig. 23. One assumed the stiff-
ness parameter kt=0 or kt = kb (kt – torsional stiffness parameter, kb – bending
stiffness parameter). The strength is obviously higher when the torsional stiffness
is taken into account.
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Fig. 23. Calculated stress-strain curves for 3D notched fibrous concrete specimens subjected
to uniaxial extension (εmin = 0.5%, lr = 2 mm, specimen 5× 5× 5 cm3

): a) kt = 0, b) kt = kb

(Vf = 1.5%, lf = 2 cm) (σ22 – vertical normal stress, ε22 – vertical normal strain, kt – torsional
stiffness parameter and kb – bending stiffness parameter).

4. Conclusions

In this paper, a novel simulation framework was used to study fracture in
fibrous concrete specimens where individual steel fibres were explicitly modeled
in the irregular lattice. The innovative points were following: a) the fracture
process in 3D fibrous concrete was simulated (which has not been sufficiently
studied in the literature), b) the cement matrix-fibre interface was considered
in simulations, and c) the effect of the fibre orientation on the stress-strain
curve was investigated (which is the most important parameter when designing
the fibrous concrete). The following conclusions can be drawn from numerical
calculations.

The lattice model, in spite of its simplicity, is capable of simulating fracture
in plain and fibrous concrete. The obtained results of crack patterns and stress-
strain curves for fibrous concrete during uniaxial tension, compare qualitatively
well with experimental results. By using an elastic-purely brittle local fracture
law at the particle level of the material, global softening behavior is obtained.

The heterogeneous 3D lattice model for fibrous concrete used in the paper
requires five material parameters for each of 3 phases (cement matrix, aggregate,
fibres) and 2 interfaces (cement matrix-fibre interface, cement matrix-aggregate
interface) and 2 grid parameters related to the distribution of rod elements. The
advantage of our quasi-static lattice model is due to its explicit character. Thus,
a large number of elements could be taken into account when using parallelized
computers.
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The strength and ductility of fibrous concrete specimens are improved with
increasing strength of cement matrix-fibre bond during uniaxial extension, if the
strength of cement matrix-fibre interfaces is higher than the strength of cement
matrix-aggregate interfacial zones. In this case, the crack propagation is delayed
by the presence of steel fibres.

The orientation of fibres strongly influences strength and failure of the ma-
terial. The effectiveness of fibrous concrete significantly improves if fibres are
located perpendicularly to the cracks’ direction.

The strength and ductility of fibrous concrete specimens increase with in-
creasing fibre length.

A deterministic size effect occurs in fibrous concrete specimens, i.e. the
strength and ductility increase with decreasing specimen size. It is weaker than
in plain concrete specimens.

The material behavior in the 3D model is significantly stronger and more
ductile than in the 2D model using the same material parameters. In addition,
the maximum vertical normal strain corresponding to strength is significantly
larger in 3D simulations. A scatter of results is also higher in 3D simulations.
A scatter is also higher in fibrous concrete than in plain concrete.

The calculations with a lattice model will be continued. Further calibration
studies will be performed by taking into account the real heterogeneous micro-
structure of fibrous concrete specimens. The possibility of a crack closure during
compression will be considered. A two-scale approach will be used linking the
lattice model with the continuum elastic-plastic model, wherein the first model
will be only restricted to the damaged and fractured part of the specimen. In
addition, inertial forces will be taken into account during dynamic calculations.
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