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Formulation of stiffness constant and effective mass
for a folded beam
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Stiffness constant and effective mass are two important parameters in the per-
formance analysis of an accelerometer. Their values depend mostly on the structural
design of the comb finger-type accelerometer, especially its suspension beam design.
In this study, the formulation of the stiffness constant and effective mass is derived
successfully from theoretical analysis. The performance of the accelerometer can be
analyzed using common designs of its suspension beam. The results obtained are
comparable with other published results and those obtained from the finite element
(FE) analysis.
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1. Introduction

Micro-accelerometers or accelerometers are one the most important
types of microelectromechanical systems (MEMS) devices, and have generated
the second largest sales volume after pressure sensors (Yazdi et al. [19]). The
large volume demand for MEMS accelerometers is due to multiple applications,
such as in measuring tilt, motion, position, vibration and shock). A comb finger-
type accelerometer is one of the most important devices used in MEMS due to
its high sensitivity and high performance. Comb finger devices can be applied
as either MEMS sensors or MEMS actuators. MEMS sensors normally sense the
physical environment mechanically or deliver outputs electrically. Comb finger-
type sensors have been used in air-bag systems, chassis control, side-impact de-
tection, antilock braking systems, machinery vibration monitoring, inertial navi-
gation, seismology, micro-gravity measurements and mouse applications (Yazdi
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et al. [19], Chae et al. [4], Amini and Ayazi [1], Xue et al. [18]). MEMS actua-
tors respond to electronic commands and actuate dynamic systems. Comb-driven
actuators include RF resonators, electromechanical filters, optical MEMS, micro-
grippers, gyroscopes and voltmeters (Legtenberg et al. [8], Yazdi et al. [19],
Xie et al. [17], and Tilleman [13]). They can also drive vibromotors and mi-
cromechanical gears (Legtenberg et al. [8]).

Stiffness constant and effective mass are two important intermediate parame-
ters in identifying natural frequency and sensitivity. These parameters are deter-
mined from a combination of physical and geometrical parameters and material
properties, mainly those of the suspension beam. Some common types of sus-
pension beams used in comb finger-type devices include serpentine spring (Luo

et al. [11], Zhou et al. [21]), folded beam (Borovic et al. [3], Chae et al.
[4], Chae et al. [5], Legtenberg et al. [8], Liu et al. [9], Lüdtke et al. [10],
Tay et al. [12], Zhou et al. [20]), crab leg beam (Legtenberg et al. [8]), and
microbridge (Legtenberg et al. [8], Urey et al. [15]).

The commonly used methods in determining stiffness constant and effec-
tive mass include finite element (FE) simulation and theoretical derivation.
Legtenberg et al. [8] and Zhou et al. [20] determined the material prop-
erties of the suspension beam by using Hooke’s law, while stiffness constant
is explored by using the total potential energy for several different geomet-
ric shapes. Tay et al. [12] used Rayleigh’s energy principle to detect resonant
frequency as a function of effective mass. Wittwer et al. [16] used the Cas-
tigliano’s displacement theorem to analyze vertical deflection due to applied
moment or shear force and the geometric shape. In extant literature, only the
simplest designs of the suspension beam, such as the cantilever and micro-
bridge, have been derived. Some researchers have identified the stiffness con-
stant of the folded beam, but many assumptions are made merely to simplify
the design. Thus, the aim of this study is to formulate equations to deter-
mine the stiffness constant and effective mass of the folded beam, taking into
account the bending moment and shear effect of the beam. These formula-
tions will enable the researchers to use analytical derivations in order to pre-
dict accurately the natural frequencies and sensitivity of the MEMS accelero-
meter.

In this paper, the stiffness constant of the folded beam in the MEMS ac-
celerometer is verified by using strain energy and the Castigliano’s displacement
theorem, whereas the effective mass is determined by using the Rayleigh prin-
ciple. The stiffness constant and effective mass for the folded beam are also
identified using a self-developed FE formulation and the ANSYS simulation soft-
ware. Results with analytical formulation are then compared with results on FE
analysis and the previously published results.
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2. Design models of suspension beam

A typical design of comb finger-type accelerometer is illustrated in Fig. 1.
When the accelerometer is subjected to acceleration, an external force is trans-
ferred to the proof mass through the suspension beam. The proof mass, together
with movable fingers, moves along and against the forced direction, while the
fixed combs remain stationary. This movement changes the capacitance between
the fixed fingers and the movable fingers. Capacitance can be measured and
calibrated with applied external force. The operations and response of the ac-
celerometer are controlled by the effective mass of movable part (me), stiffness
constant of suspension beam (k), damping (D) of air surrounding the structure,
finger overlap area (A), finger initial sensing gap (d0), and initial capacitance
and acceleration. Among these parameters, k and me have the most significant
impact on the response of the accelerometer.

Fig. 1. Typical design of comb finger type accelerometer (Lee et al. [7]).

The folded beam, one of the commonly used suspension beam designs of the
comb finger-type accelerometer (Fig. 2) is analyzed. A closer view of the folded
beam and its corresponding dimension symbols are shown in Fig. 2b. As shown
in Fig. 2b, L is the length of the beam, w is the width of the beam, Lc2 is the
length of the second component of the beam, and wc2 is the width of the second
component of the beam.
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a) b)

Fig. 2. Folded beam in accelerometer for analysis; a) the device, b) the folded beam.

Most accelerometers are built in consideration of mechanical vibration prin-
ciples. The principal component of an accelerometer is the proof mass supported
by suspension beams, which can be modeled as springs. By referring to Fig. 2a,
the proof mass is suspended equally by four beams in four edges. This proof mass
can be approximated by a central proof mass suspended by four springs. The
free body diagram of a typically arranged accelerometer can be approximated
by mass and a spring system, as shown in Fig. 3.

Fig. 3. Free body diagram of typical arrangement of an accelerometer.

In Fig. 3, m is the mass of the proof mass; k1, k2, k3, and k4 are the stiffness
constants of each suspension beam; and x is the displacement. In this spring-
mass system, as mass is supported equally by four springs, the external forces are
then balanced by the four springs evenly and stored as strain potential energy.
The equivalent stiffness constant of the spring mass system, as shown in Fig. 3,
can be determined by the equation of equilibrium:

∑

Fx = mẍ,(2.1)

−(k1 + k2)x− (k3 + k4)x = mẍ,

mẍ+ (k1 + k2)x+ (k3 + k4)x = 0,

mẍ+ (k1 + k2 + k3 + k4)x = 0,

mẍ+ kex = 0,(2.2)
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where ẍ is the acceleration and Fx is the force. Therefore, the equilibrium stiffness
constant is ke = k1 + k2 + k3 + k4. Since the four suspension beams are of the
same dimensions and materials, then

(2.3) k1 = k2 = k3 = k4 = k1/4 and ke = 4k1/4,

where k1/4 is the stiffness constant of a quarter system.

3. Analytical derivations

The governing equations of the suspension beam for stiffness constant are
derived directly from the internal reactions of bending moment and shear force
whenever equilibrium is applied. This derivation is followed by using the super-
position method, while the effective mass is determined by using the Rayleigh
principle. The following sections describe these derivations.

3.1. Stiffness constant

The resolved components of the folded beam are shown in Fig. 4. The model
of the suspension beam together with its boundary condition is shown in Fig. 4a,
while its free body diagram is shown in Fig. 4b. In the analysis, the folded beam
can be resolved into three components, with two models of half fixed-fixed beams
(Figs. 4c and 4d) and a model of bar element (Fig. 4e).

Fig. 4. Resolved components of folded beam.
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The folded beam incorporates three components arranged in a series. The
stiffness constant of the quarter model can be given in complementary form by

(3.1)
1

k1/4
=

1

kc1
+

1

kc2
+

1

kc3
.

a) The stiffness constant for the first and third components

The free body diagram of the first and third components are similar to the
model of half fixed-fixed beam subjected to transverse loading, as shown in Fig. 5.
Figure 5a shows a fixed-fixed beam with a length (2L) under a transverse load
(F ) at the midspan of the beam. This force causes bending, which resulted
in reactions at both fixed ends, consisting of forces and moments. Maximum
displacement (δmax) occurred at the midspan of the beam. If this model is cut
through its midspan, this part can be modeled as a half fixed-fixed beam. Figure 5
shows that the reactions at both fixed ends are with bending moment (M0), shear
reaction force in y-direction (Ry), and axial reaction force in x-direction (Ra). As
the load is transverse to the axis of the beam, the axial reaction force (Ra) was
extremely small compared with the bending moment and shear force. Therefore,
Ra was ignored in the calculation. Shear reaction force (Ry) and bending moment
(M0) for the model of a half fixed-fixed beam were obtained as Ry = F/2 and
M0 = FL/4, respectively.

a) b)

Fig. 5. Fixed-fixed beam; a) fixed-fixed beam under transverse loading F; b) the model of
half-fixed beam.

In the model of half fixed-fixed beam, maximum displacement (δmax) was
caused by both the displacements of bending moment (δbm) and shear (δs); for
simplification, δmax = δbm + δs. From Hooke’s law, F = kδ, so the stiffness is
k = F/δmax; thus, k ∝ 1/δmax. The stiffness constant is normally given by the
complementary form, 1/k. The stiffness constant of the beam is taken as

(3.2)
1

k1c
=

1

kc3
=

1

kbm
+

1

ks
.

The free body diagram of the first and third components were similar to the half
model of the fixed-fixed beam.
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i) The stiffness constant due to bending moment

For a fixed-fixed beam (Fig. 5), the maximum deflection due to bending
moment occurs at the middle of the beam, and is given as

(3.3) δbm =
F (2L)3

192EI
=

FL3

24EI
(Benham [2]).

Therefore, the stiffness constant due to bending moment for the full model of
the fixed-fixed beam can be expressed as

(3.4) kfull =
F

δbm
=

24EI

L3
,

where E is the Young’s modulus and I is the second moment of the cross-sectional
area.

For the model of a half fixed-fixed beam, the stiffness constant due to bending
moment was one half of the stiffness constant, a result of the bending moment of
the fixed-fixed beam. Therefore, the stiffness constant due to bending moment
for the half model of a fixed-fixed beam can be derived by

(3.5)1 kbm =
1

2
kfixed =

12EI

L3

or in complementary form, by

(3.5)2
1

kbm
=

L3

12EI
.

ii) The stiffness constant due to shear

The stiffness constant due to shear for the first and third components was
determined by using the strain energy principle and the equation for shear stress
at a point in the transverse section of the beam. For a rectangular cross-section
area with specific width (b) and depth (d), total length of beam (L), and applied
transverse load (F/2), the maximum deflection (at middle point) due to shear
is given by

(3.6) δs =
3

5

FsL

bdG
(Benham [2]),

where G is the shear modulus, G = E/2(1 + µ), and µ is the Poison’s ratio.
Knowing that Fs = F/2 and by replacing G and Fs in δs, the maximum deflection
(at middle point) due to shear can be represented by

(3.7) δs =
6

5

(1 + µ)FL

bdE
.

As ksδs = F , the stiffness constant due to shear (ks) is given by

(3.8)
1

ks
=
δs
F

=
6

5

(1 + µ)L

bdE
.
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b) The stiffness constant for the second component

The second component is approximated as a model of a bar element subjected
to transverse force and bending moment, transferred from the first and the third
components, respectively, as shown in Fig. 4e. This component is subjected to
two forces, transverse force (Ry) and bending moment (M). The stiffness con-
stant of the second component (kc2) is a combination of the stiffness constant due
to transverse force (kt) and the stiffness constant due to bending moment (km).

i) The stiffness constant due to transverse force

Deflection due to transverse force is expressed as

(3.9) δt =
RyLc2

EAc2
=
FLc2

EAc2
.

Therefore, the stiffness constant due to transverse force can be solved by

(3.10)
1

kt
=
F

δt
=

Lc2

EAc2
.

ii) The stiffness constant due to bending moment

Deflection in y direction is given by a previous study (Timoshenko [14])
and expressed as

(3.11) δy = −ML2
c2

2EIc2
= −FLL

2
c2

4EIc2
.

As M = FL/2, the stiffness constant due to bending moment can be given by

(3.12)
1

kbm2
=
F

δ
= − LL2

c2

4EIc2
.

c) The equilibrium stiffness constant of folded beam

The equilibrium stiffness constant of the folded beam can then be determined
from Eq. (3.1):

1

ke
=

1

4k1/4
=

1

4

(

1

k1/4

)

(3.13)

=
1

4

(

1

kc1
+

1

kc2
+

1

kc3

)

=
1

4kc1
+

1

4kc2
+

1

4kc3

=
1

4

(

1

kbm
+

1

ks

)

+
1

4

(

1

kt
+

1

kbm2

)

+
1

4

(

1

kbm
+

1

ks

)

=
1

2kbm
+

1

2ks
+

1

4kt
+

1

4kbm2
.
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The effective stiffness constant of the folded beam can be obtained by substi-
tuting Eq. ((3.5)2), Eq. (3.8), Eq. (3.10), and Eq. (3.12) into Eq. (3.13). The
resulting equation is

1

ke
=

1

2

(

L3

12EI

)

+
1

2

[

6

5

(1 + µ)L

bdE

]

+
1

4

(

Lc2

EAc2

)

+
1

4

(

− LL2
c2

4EIc2

)

(3.14)

=
L3

24EI
+

3

5

(1 + µ)L

bdE
+

Lc2

4EAc2r
− LL2

c2

16EIc2

=
1

Et

(

L3

2w3
+

3 (1 + µ)L

5w
+

Lc2

4wc2
− 3LL2

c2

4w3
c2

)

.

According to the literature, several researchers have determined the stiffness
constant of the folded beam. Based on Chae et al. [4], and Chae et al. [5], and
Borovic et al. [3], the stiffness constant of a folded beam can be given by

(3.15) k ≈ 24EI

l3beam

=
24E

l3beam

×
(

tbeam · w3
beam

12

)

,

where E is the Young’s modulus, I is the moment of inertia, and lbeam and tbeam

are the length and thickness of suspension beam, respectively.
Meanwhile, Wittwer et al. [16] mentioned that the stiffness constant of the

folded beam can be represented by

(3.16)
1

ke
=

1

Et

(

L3

2w3
+

6(1 + µ)L

5w
+

Lr

2wr
+

3L2Lr

2w3
r

)

.

3.2. Effective mass

In addition to the effective stiffness, allowing for the determination of res-
onant frequency in relation to the bending moment and transverse force, the
effective mass also needs to be established. The effective mass of the folded
beam was determined by using the Rayleigh principle. By taking the fixed-fixed
model with cross-sectional area (A) and length (2L), the displacement at any
point x is equal to δ(x) and velocity at any point x is equal to dδ(x)/dt. The
displacement at any point (δ(x)) and maximum displacement (δmax) are related
to the distribution function (N(x)) as follows:

(3.17) δ(x) = N(x)δmax and
dδ(x)

dt
= N(x)

dδmax

dt
.

Thus, the effective mass can be given by

(3.18) me = ρ

L
∫

0

N2(x)A(x)dx.



414 W. Wai-Chi, A. A. Azid, B. Y. Majlis

a) Effective mass for half-model of fixed-fixed beam

As the distribution function is independent of the applied force, the distri-
bution function could be determined by assuming a half-model of the fixed-
fixed beam, deflected under a concentrated force (F ). Displacement at any point
within the beam is given by

(3.19) δ(x) =
F

12EI
[3Lx2 − 2x3] (James et al., [6]).

Maximum displacement was observed at the middle of the bridge (i.e., x = L).
Thus,

(3.20) δmax =
FL3

12EI
.

The distribution function is

(3.21) N(x) =
δ(x)

δmax
=

3Lx2 − 2x3

L3
.

The effective mass of the half model of fixed-fixed beam under bending moment
was then arrived at by

mb,e = ρ

L
∫

0

N2(x)A(x)dx = ρA

L
∫

0

(

3Lx2 − 2x3

L3

)2

dx(3.22)

=
ρA

L6

[

9L2x5

5
− 12Lx6

6
+

4x7

7

]L

0

=
ρA

L6

[

9

5
− 2 +

4

7

]

× L7

=
13

35
ρAL.

Thus,

(3.23) m1 = m3 = mb,e =
13

35
ρAL.

b) Effective mass for second component

For a bar element under transverse force (Fig. 4e), the displacement at any
point within the beam can be given by

(3.24) δ(x) =
x

Lc2
δmax.

The distribution function is

(3.25) N(x) =
δ(x)

δmax
=

x

Lc2
.
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Thus, the effective mass of bar element under transverse force is

mt,e = ρ

L
∫

0

N2(x)A(x)dx = ρAc2

Lc2
∫

0

(

x

Lc2

)2

dx(3.26)

=
ρAc2

L2
c2

[

x3

3

]Lc2

0

=
ρAc2

L2
c2

[

L3
c2

3

]

=
1

3
ρAc2Lc2.

c) The effective mass of the MEMS accelerometer

The effective mass of the MEMS accelerometer can then be determined by

(3.27) me = 8mb,e + 4mt,e +mpm + nmf ,

where mpm is the mass of proof mass, mf is the mass of finger, and n is the
number of fingers.

4. Finite element formulations

The FE formulation of the folded beam for stiffness constant and effective
mass were determined by using the MATLAB interface. The frame element for-
mulation was obtained by the combination of beam elements under bending and
bar elements under axial loading. The frame element with two nodes per ele-
ment and three degrees of freedom (DOF) per node was used to formulate the
stiffness matrix. MATLAB was also used to simulate the displacement under
external load.

5. Finite element modeling with ANSYS

The structural analysis of the accelerometer was conducted by using the FE
package, ANSYS (ver. 8.1) simulation software. The simulation result would be
used for comparison with the results of the FE analysis using MATLAB and
the published results. As the natural frequency and stiffness constant of the
accelerometer were the main interest in this analysis, modal analysis and static
analysis were employed. The ANSYS BEAM3 software was chosen to run the
two-dimensional structural analysis of the folded beam.

6. Results and discussion

In order to compare the applicability of the analytically derived governing
equations, the stiffness constant, determined by analytical derivation, was com-
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pared with the stiffness constant obtained analytically by Wittwer et al. [16]
and Chae et al. ([4, 5]). In addition, the elastic modulus (E = 127000 MPa) was
derived for the width and length of the first and third components (W = 11 µm
and L = 803 µm, respectively) and the thickness of device (t = 120 µm). A com-
parative representation of the results obtained by Wittwer et al. [16], Chae

et al. ([4, 5]) with the present study’s self-derived analytical solution, FE for-
mulation and ANSYS simulation of the beam model are listed in Table 1. The
suspension beam of Designs A, B, and C which have similar basic designs, were
analyzed. Design A was with short second component; Design B was wide in the
second component; and Design C was long and slender in the second component.

Table 1. Comparative results on stiffness constants obtained from the current
study, previous studies (Wittwer, [16]; Chae, [4, 5]), FE formulation, and

ANSYS simulation.

Design lc2
(µm)

wc2

(µm)
Wittwer [16]

Eq. (3.16)
Chae [4, 5]
Eq. (3.15)

Current
study

Eq. (3.14)
FE

formulation

ANSYS
(Beam
model)

A 11 11 75.22 78.35 76.75 76.78 78.43

B 11 55 78.32 78.35 78.33 78.34 82.56

C 100 11 57.02 78.35 66.00 66.63 70.56

From Table 1, it is seen that the stiffness constants solved by using Chae’s
formula lead to the same result for the three different designs, since this formula
has ignored the second component (Fig. 4) in the formulation. Thus, this formula
was not applicable for detailed calculation. The stiffness constant solved by using
the Wittwer’s formula agreed well with the results solved through analytical
result formulation and ANSYS for Designs A and B. In the Wittwer’s formula,
the second component was assumed to be a rigid element, not a frame element;
hence, this formula can be only true if the second component is wide or short
(e.g., Designs A and B). Both the formulas were applicable, but only under
specific conditions, and these limitations were due to the assumptions made on
formula derivation.

Both the analytical formula and FE result were in good agreement with the
simulation results obtained from ANSYS simulation. The findings proved that
the analytical formula can be applied in determining the stiffness constant of
the folded beam, as the derivation incorporated all the components of the folded
beam.

Both the stiffness constant of the folded beam and the effective mass, as
shown by Eq. (3.14) and Eq. (3.27), respectively, can be used to determine the
resonant frequency and sensitivity, respectively – these are the two important
characteristics of an accelerometer. The resonant frequency (fr) of the accelerom-
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eter with mass (m) is given by the well-known equation,

(6.1) fr =
1

2π

√

k

m
.

Sensitivity can be given in terms of nm/ms−2, which is determined by

(6.2) Sensitivity =
displacement

acceration
=
δ

a
=
meff

k
.

7. Conclusions

The stiffness constant and effective mass of a folded beam were derived ana-
lytically and numerically. The results obtained by these approaches agreed well
with the published results. The derived equations were formulated by consid-
ering the bending moment and shear effect of the beam. The equations could
then be used to predict the natural frequencies and the stiffness constants of
accelerometers.
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