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The aim of the paper is to propose a model for estimation of the shrinkage stress
in photo-cured dental restorations. Up to now, the elastic and viscoelastic models of
photo-curing process use an incremental approach with a large number of time steps,
with a fixed Young’s modulus and viscosity within each of the time increments. The
elastic approach with a stepped increasing Young’s modulus gives the stress values too
high. On the other hand, the incremental viscoelastic approach requires long-lasting
computations. In the present paper, a consistent model of the photo-curing process
for the case of small temperature changes is proposed. The proposition bases on
the Maxwell model, in which the Young’s modulus and the viscosity are continuous
functions of time. The assumptions of the model follow from the dental practice,
as well as from a physical nature of the process and from the rules of continuum
mechanics. A performed incremental analysis of the process enables to formulate an
integral model of the process, with an explicit rule for the shrinkage stress for 1D
and 3D cases. The model has been tested for the material data of dental composite
Clearfil F2. Results of the calculations coincide with the values of stresses measured
in thin layers of Clearfil F2.
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1. Introduction

The most popular technique of tooth restoration is filling the tooth cavity
with a photo-cured dental resin composite. However, after the curing process,
a shrinkage stress appears in the dental filling. Shrinkage stresses generated in
the composite during the process may result in a microleakage, which leads to
a tooth decay. There are two ways of dealing with the problem of a shrinkage
stress reduction. The first way is to select proper dental composites by testing
of the chemical structure of cured materials [1–3]. The second way is to work
out dental techniques reducing the shrinkage stresses [4–7]. In the last case,
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the crucial point is the knowledge on the viscoelastic properties of the cured
composites [8]. For each stage of the curing process, material parameters should
be taken from adequate tests [1]. Then, on the basis of experimental data, one
can model the cured material behavior in order to control the cure process and
to reduce the shrinkage stresses. It is necessary to point out that during the
considered process, one can observe small changes of temperature only. Then,
one can assume that the thermal strains do not appear in the cured material.
Because our goal is to propose a possibly simple model of the process with a clear
physical interpretation of its behaviour, we neglect also the plastic effects. Taking
the above into account, one can find in the literature two ways of the process
modelling. According to the first way, we may neglect the viscous effects and
use the elastic model with time-dependent elastic modules [4, 9]. In this case,
to get the shrinkage stresses, one can use the standard numerical procedures for
the hypoelastic materials [10–12]. If we want to involve the viscous effects, we
may use an incremental procedure proposed in [13]. In this approach, the curing
time is subdivided into a large number of small intervals, and Young’s modulus
as well as viscosity and current polymerization shrinkage are determined for
each interval [14]. However, to determine the initial stresses at each time-step,
it is necessary to perform extensive computations or to get the stress values
from additional experiments [8]. Despite its drawbacks, the incremental approach
is very popular. It enables to superpose, in incremental way, the elastic, the
viscous, the thermal, and the plastic effects in one process1). Because the material
behaviour is “frozen” during each of the small time-steps, one can introduce
the models with a higher number of parameters. Nevertheless, a description of
the global interactions between courses of various mechanical effects, during the
whole process, is still an open question.

Below, an integral model of the photo-curing process with an explicit form of
the shrinkage stress tensor is proposed. In the model, an influence of temperature
changes on the shrinkage stress is neglected. It is due to the fact that during
the dental restoration forming, we have to do with a relatively long time of
irradiation with a low intensity [15]. It is not the case of the rapid-prototyping
process, when we use a fast irradiation with high intensity [16]. The rate and the
intensity of the irradiation determine a shrinkage rate during the whole process.
In the proposed model, a current value of the shrinkage is taken as a measure
of a polymerization degree [17]. Then, the value of the shrinkage stress depends
directly on the shrinkage rate. Let us assume that the shrinkage rate is the sum of
temporary elastic and viscous strain rates. The simplest rule which describes the
elastic effects in the cured material is the hypoelastic one with a time-dependent

1)Such an approach, known as the Dynamic Finite Element Method, is used in the numerical
analysis of the stereolithography process [19–21].
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Young’s modulus. The viscous effects may be described by the linear viscous law
with a time-dependent viscosity. Because the stress relaxation determines the
final stress level, a choice of the Maxwell model with time-dependent parameters
seems to be the most appropriate. Values of the Young modulus and the viscosity
may be taken from the necessary material tests.

An analysis of the cured material behavior indicates that the shrinkage stress
appears when the gel point is reached [14]. It means that two-thirds of the
total shrinkage generates any stress, and the analysis of the process may be
limited to its final phase. The incremental analysis of this stage is presented
in Chapter 3. It shows interactions between the short-term elastic effects with
the long-term viscous ones. The drawn conclusions lead to a formulation of 1D
and 3D integral models of the cure process. Experimental data show that the
Poisson coefficient decreases before the gel point; later one can assume it as
a constant [14]. The assumption of a constant Poisson’s coefficient put some
restrictions on the relaxation of the Kirchhoff and the bulk modules in a 3D case
(see Appendix). Calculations for the composite Clearfil F2 [1] show that the
shrinkage stress in the cured material reaches the value 21 MPa. The obtained
theoretical results coincide with the values of the shrinkage stresses measured in
100 µm, thin composite layers [18]. The computations based on the hypoelastic
model give the highest stresses nearly 70% larger. For a relaxed hypoelastic
model, with an average relaxation time, we get the highest stress almost 30%
lower.

2. Assumptions

The proposed model bases on three types of assumptions: those, which yield
from the dental practice, those suggested by the physical nature of the cure
process, and those coming from the rules of continuum mechanics.

2.1. Assumptions yielding from the dental practice

1. Photo-cured material for a dental restoration is a composite on the basis
of a polymer or copolymer with a glass, ceramic or silanes as fillers.

2. Irradiation H [mW/cm2] takes place in the time t0 ≤ t ≤ tn. Usually,
tn − t0 equals 40∼60 s.

3. An irradiation function H = H(t) takes values from the interval H0 ≤
H ≤ Hmax, where H0 = H(t0) and Hmax = H(tn). In the dental practice,
it is assumed that H = const (300∼600 mW/cm2).

4. An evolution of each of the mechanical properties is a function of light
exposure E [mJ/cm2]. The quantity E = E(t) is connected with the irra-
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diation function H = H(τ) (for t0 ≤ τ ≤ t) by the rule [16]:

(2.1) E(t) =

t
∫

t0

H(τ)dτ.

5. Influence of the temperature change may be neglected because the tem-
perature under a dental lamp fluctuates within the range ±5◦C [15]. It
is due to a relatively long irradiation time (40 s) with low intensity. The
above assumption is not valid in the case of the process of stereolithogra-
phy, where a laser beam is used. There, the characteristic exposure time
varies from 70 µs to 2 ms [16].

2.2. Assumptions yielding from the physical nature of the process

1. The cure process starts when the light exposure E attains a certain critical
value Ec, at the time tc > t0. The ratio Emax/Ec takes values 100∼200 [16].

2. As a measure of the polymerization degree (the degree of the monomer
conversion), the volumetric shrinkage of the cured resin is taken [17]. The
linear shrinkage is denoted by s, where 0 ≤ s ≤ smax. Usually s ≤ 1%. The
linear shrinkage is a function of the light exposure only, s = s(E(t)).

a) b)

Fig. 1. Location of the gel point (according to experimental data given in [1]): a) on the
shrinkage-time plot, b) on the shrinkage rate-time plot.

3. The following mechanical properties of the cured composite have an influ-
ence on development of the shrinkage stress at the time tc ≤ τ ≤ t:
– the Young modulus 0 ≤ Y (t) ≡ Ȳ (E(t)) ≤ Ymax (usually: Ymax ∼

10 GPa, for comparison: Yenamel = 50 GPa, Ydentin = 12 GPa [4]);
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– the Poisson coefficient νs ≤ ν(t) ≡ ν̄(E(t)) ≤ νr, where νs is the co-
efficient of solid cured polymer, and νr is Poisson’s coefficient of the
resin (usually: 0.24 ∼ 0.25 ≤ ν(E) ≤ 0.48 ∼ 0.5, for comparison:
νenamel = 0.3, νdentin = 0.23 [4]);

– viscosity 0 ≤ η(t) ≡ η̄(E(t)) ≤ ηmax (usually ηmax ≈ 1000 GPa · s).
4. The shrinkage stresses appear when the process attains the gel point –

the stage at which an almost liquid material has the properties of a solid.
This stage may be observed from the inflection point on a shrinkage-time
plot (Fig. 1a), or from the peak on a shrinkage rate-time plot (Fig. 1b).
Because the gel point appears at the time tg > tc, the shrinkage stresses
appear within the period tg ≤ τ ≤ t. Then, the shrinkage is limited to the
interval sg ≤ s ≤ smax, Yg ≤ Ȳ (E(t)) ≤ Ymax, ηg ≤ η̄(E(t)) ≤ ηmax

2).

In the next considerations, we assume t0
def
= tg.

5. Experimental data show that the Poisson coefficient takes constant value
when it passes the gel point [14]. Here, it is assumed to be constant and
equal to νs.

2.3. Methodological assumptions

1. The proposed model bases on the linear Maxwell model with time-depen-
dent Young’s modulus Y (t) and the viscosity η(t)3). The total strain rate
ε̇tot of the system is a sum of a strain rate ε̇s = −ṡ due to the shrinkage,
an elastic strain rate ε̇eand a viscous strain rate ε̇ν :

(2.2) ε̇tot = −ṡ+ ε̇e + ε̇ν .

The stress rates σ̇ in the elastic and viscous elements are the same, and
the strain rate ε̇ generating the stress σ is a sum of ε̇e and ε̇ν . If there are
no active forces applied to the cured resin, then ε̇tot = 0, and ε̇ = ṡ.

2. The elastic strain rate and the stress rate are connected by the hypoelastic
constitutive equation4), and the viscous strain rate and the stress – by the
linear viscous flow rule, namely:

(2.3) ε̇e =
1

Y (t)
σ̇, and ε̇v =

1

η(t)
σ.

3. The constitutive equation connecting the strain rate, shrinkage rate, stress
rate and the stress follows from the rules (2.2)–(2.3):

2)Usually sg exceeds 50% smax, Yg ∼ 0.1 · Ymax and ηg ∼ 0.03 · ηmax (see [1]).
3)The time-dependence includes the exposure function, namely Y (t) = Ȳ (E(t)) and η(t)

= η̄(E(t)).
4)Notice that the classical Hooke’s law leads to the relation: ε̇e = 1

Y (t)
σ̇ − Ẏ (t)

Y 2(t)
σ.
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(2.4) ε̇ =
σ̇

Y (t)
+

σ

η(t)
or ε̇ =

1

Y (t)

(

σ̇ +
σ

λ(t)

)

.

Here λ(t)
def
= η(t)/Y (t) is the time-dependent relaxation time.

Because Y (t) = Ȳ (E(t)) and η(t) = η̄(E(t)), it follows from the rule (2.4)
that the total strain ε and the total stress σ are functions of two variables: the
light exposure E(t) and time t, namely: and σ = σ̄(E(t), t). The above fact
enables us to separate the curing effects (growth of the Young modulus and the
viscosity) from the rheological effects (stress relaxation). Then, for a description
of the viscous effects in cured materials, one can introduce a “relaxed” and at
the same time – a “growing” Young’s modulus.

Solving the Eq. (2.4) with respect to the stress σ, one can determine the
stress changes σ = σ(t) accompanying the shrinkage s = s(t). To do it, two ways
will be applied: a discrete approach and a continuous one. The first approach
illustrates the solving procedure; the second one gives an integral rule for the
shrinkage stress as a function of time of the light exposure.

3. Discrete analysis of the Maxwell model with stepped

increasing parameters

At first, let us investigate the Maxwell model with parameters prescribed
by the step-wise functions of time. To do it, one can perform the following
procedure.

1. As the start point of the shrinkage stress development, is assumed the gel

point at the time t0
def
= tg and as the end of the process – the complete

setting of the material at the time tn. The period t0 ≤ t ≤ tn includes
so-called “dark polymerization phase” which takes place after cutting off
the light [22].

2. As the initial Young modulus, is assumed the value Y0
def
= Yg, and as the

initial viscosity – the value η0
def
= ηg.

3. The Poisson coefficient is assumed to be constant and equal to the value
νs at the gel point.

4. The time interval t0 ≤ τ ≤ tn is divided into n subintervals: ti ≤ τ ≤ ti+1,
where i = 0, . . . , n− 1 (Fig. 2a).

5. At the time t0, the model is composed of a spring with the Young modulus
Y0 and a viscous element with the viscosity η0.

6. At each next time step ti (i = 0, . . . , n − 1), we join the original spring
with a spring with a constant Young’s modulus ∆Yi = Yi − Yi−1, and the
original viscous element, with a viscous element, with a constant viscosity
∆ηi = ηi − ηi−1.
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7. In effect, we obtain the model which, within each of the time subintervals
ti ≤ τ ≤ ti+1, coincides with the classical Maxwell model.

Notice that the proposed model is different from that known as the gen-
eralized Maxwell model. The last one is a bundle of parallel, connected pairs
composed of one spring and one viscous element, with fixed properties within
the whole interval t0 ≤ τ ≤ tn (Fig. 2b). Here, at each of the time steps, the
bundle of springs is serially connected with the bundle of viscous elements.

a) b)

Fig. 2. A comparison of two models: a) the proposed Maxwell model with time-dependent
parameters; b) the generalized Maxwell model with fixed parameters.

To find the stress state in the system at each time step ti, we proceed as
follows.

1. Assume that the system is subjected to a stepped strain function ε = ε(t).
Namely, at the time steps t0, t1, . . . , tn−1, we prescribe constant strains:
∆ε0,∆ε1, . . . ,∆εn−1 which create immediate elastic reactions through the
stresses: ∆σe

0 = Y0∆ε0, ∆σe
1 = Y1∆ε1, . . . ∆σe

n−1 = Yn−1∆εn−1, (Fig. 3a).
2. We assume that each of the stresses ∆σe

i is relaxed in the time interval
〈ti, tn〉 (Fig. 3b).

a) b)

Fig. 3. An assumed behaviour of the model: a) piecewise constant strain increments,
b) relaxation of the corresponding elastic stress increments.
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Fig. 4. Decomposition of the subinterval 〈ti, tn〉.

3. We decompose of the time interval 〈ti, tn〉 into the sum of subintervals
〈ti, ti+1〉, 〈ti+1, ti+2〉, . . . , 〈tn−1, tn〉, in which the model is described by the
fixed parameters Yi, Yi+1, . . . , Yn−1 and ηi, ηi+1, . . . , ηn−1 (Fig. 4).

4. The stress ∆σe
i = Yi∆εi, given at the time ti, is relaxed to the value

∆σe
i1 = Yie

(ti+1−ti)/λi , at the time ti+1. The corresponding relaxation time
λi = ηi/Yi is constant.

5. To determine the stress ∆σe
i+1 at the beginning of the next subinterval

〈ti+1, ti+2〉, we put the strain increment −∆εi at the time ti+1. An addi-
tional stress will appear equal to −Yi+1∆εi, which will disappear when we
repeat the strain increment ∆εi (Fig. 5).

Fig. 5. Relaxation of the stress increment ∆σe
j .

6. Then, the stress ∆σe
i+1 at the beginning of the subinterval 〈ti+1, ti+2〉 is

equal to the stress at the end of the previous interval, namely ∆σe
i1 =

Yie
(ti+1−ti)/λi .

7. At the end of the subinterval 〈ti+1, ti+2〉, the stress ∆σe
i1 is relaxed to the

value ∆σe
i2 = ∆σe

i1e
(ti+2−ti+1)/λi .
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8. Then, at the end of the last subinterval 〈tn−1, tn〉, the following stress
appears (Fig. 5):

(3.1) σi
def
= ∆σin = Yie

−
Pi−1

k=1
∆tk
λk · ∆εi,

where i = 0, 1, . . . , n− 1, and ∆tk
def
= tk+1 − tk.

9. Finally, at the time tn, the total stress σn caused by the total strain ε =
∑n−1

i=0 ∆εi is given by the rule:

(3.2) σn =

n−1
∑

i=0

∆σt =

n−1
∑

i=0

Yie
−

Pi−1
k=1

∆tk
λk · ∆εi.

Notice that the stress increment ∆σi, determined by the following relaxed
Young modulus (relaxation function):

(3.3) Y relax
i

def
= Yi · fi, where fi

def
= e

−
Pi−1

k=1

∆tk
λk ,

will be called the “relaxation factor”. One can see that to obtain the stress in-
crement ∆σi, for each of the time steps, it is enough to modify the value Yi

multiplying it by a temporary relaxation factor. However, calculations of stress
relaxation require a large number of time steps. The problem disappears when
we use a continuous model of the process.

4. 1D visco-hypoelastic model with continuously increasing

parameters

The start point is the constitutive Eq. (2.4), given in the form:

(4.1)
σ̇(t)

Y (t)
+
σ(t)

η(t)
= ε̇(t).

It is valid for each time t from the interval t0 ≤ t ≤ tn. To solve the above
equation with respect to σ(t), let us consider the stress change due to a fixed
strain increment (step a). Next, basing on the Boltzmann superposition principle,
one can pass to the case of the time-dependent strains, through the passage to
the limit with the strain increments (step b).

a) The stress state due to a fixed strain increment
At a certain time point τ from the interval t0 ≤ τ ≤ tn, let us prescribe

a fixed strain increment ∆ετ . This strain may be expressed by the Heaviside
step-function for t0 ≤ t ≤ tn:

(4.2) ∆ετ (t)
def
= ∆ε(t; τ) = H(t− τ)∆ετ .
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If ∆στ (t)
def
= ∆σ(t; τ) is the stress increment generated by the strain ∆ετ ,

then ∆ε̇τ (t) = δ(t− τ)∆ετ , where δ(t− τ) is the Dirac function. It means that
∆ε̇τ (t) = 0, for all time points from the interval τ < t ≤ tn. Then, for τ < t ≤ tn,
the Eq. (4.1) takes the form:

(4.3)
∆σ̇τ (t)

Y (t)
+

∆στ (t)

η(t)
= 0 or

∆σ̇τ (t)

∆στ (t)
= − 1

λ(t)
,

where λ(t) = η(t)/Y (t) is the current relaxation time. One can write the Eq. (4.3)
in the form:

(4.4) ˙
ln ∆στ (t) = − 1

λ(t)
.

Integration of (4.4) leads to the relation:

(4.5) ln ∆στ (t) = lim
tn→τ

{

ln ∆στ (t′′) +

t
∫

t′′

[

− 1

λ(t′)

]

dt′
}

.

However, the time point τ is the time of application of the strain increment
∆ετ (t), when the model is purely hypoelastic, and then

(4.6) lim
tn→τ

[ln ∆στ (t′′)] = ln[Y (τ)∆ετ ].

Finally, one can write the solution of the Eq. (4.3) with respect to ∆στ (t), for
τ ≤ t ≤ tn, in the following form:

(4.7) ∆στ (t) = Y (τ) exp

(

−
t
∫

τ

dt′

λ(t′)

)

∆ετ .

b) The stress state due to an arbitrary strain
To describe a stress evolution caused by the photo-curing process, let us look

for a function σ(t), for t from the interval t0 ≤ t ≤ tn. To find it, assume that
a continuous and differentiable strain ε(τ) is applied in the time t0 ≤ τ ≤ t. It
may be set up through passage to the limit in a superposition of fixed strain
increments ∆ετ . In the same way, one can obtain the stress σ(t) generated by
the strain ε(τ), namely

σ(t) =

t
∫

t0

∆σ(t; τ)dτ =

t
∫

t0

Y (τ) exp

(

−
t
∫

τ

dt′

λ(t′)

)

· ∂ε(τ)
∂τ

dτ(4.8)

=

t
∫

t0

Y (τ)fτ (t) ·
∂ε(τ)

∂τ
dτ.



Visco-hypoelastic model of photo-polymerization process. . . 389

Now, if a relaxation time λ = λ(t) is given, one can introduce the relaxed Young’s
modulus (relaxation function).

(4.9) Y relax
τ (t)

def
= Y (τ) exp

(

−
t
∫

τ

dt′

λ(t′)

)

.

The relaxation factor (see Eq. (3.3))

(4.10) fτ (t)
def
= exp

(

−
t
∫

τ

dt′

λ(t′)

)

indicates an influence of the passage of the time from τ to t on the Young’s
modulus Y (τ) reduction. According to the rule (4.8), to obtain the stress σ(t), it
is enough to multiply the Young’s modulus Y (τ) by the relaxation factor fτ (t)
and to integrate the result in the interval 〈t0, t〉.

5. 3D visco-hypoelastic model with time-dependent parameters

The obtained results may be easily adapted to the 3D case. Following
Eq. (2.2), the total strain rate tensor ε̇tot

ij is a sum of an elastic strain rate
tensor ε̇e

ij , a viscous strain rate tensor ε̇νij and the strain rate tensor due to the
shrinkage ε̇s

ij = −ṡδij . Denote by ε̇ij the sum of the elastic and viscous strain
rate tensors. Then

(5.1) ε̇tot
ij (t) = ε̇ij(t) − ṡ(t)δij.

Denote by ε
def
= εii the trace of the strain tensor εij . Then ε∗ij

def
= 1

3δijε and

eij
def
= εij − 1

3δijε will be its volumetric and deviatoric part. Assume that for each
time point τ from the interval t0 ≤ τ ≤ t, the Kirchhoff modulus G(τ) , the bulk
modulus K(τ) and the Poisson coefficient ν(τ) of the cured material, are known.
Then, a general formulation of 3D constitutive equation yielding from the rule
(4.8) takes the form [23]:

(5.2) σij(t) =

t
∫

t0

2G(τ)fG
τ (t)ėij(τ)dτ + δij

t
∫

t0

K(τ)fK
τ (t)ε̇(τ)dτ.

Here fG
τ (t) and fK

τ (t) are relaxation factors for G(τ) and K(τ). In our model,
the Poisson coefficient is assumed to be ν(τ) = νs = const. One can show that
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in this case, the relaxation factors fG
τ (t) and fK

τ (t) must be the same5) (see the
Appendix):

(5.3) fG
τ (t) = fK

τ (t) = fτ (t).

Taking into account that G(τ) = Y (τ)/2(1+νs) andK(τ) = Y (τ)/3(1−2νs),
the integral representation of the stress tensor takes the form:

(5.4) σij(t) =
1

1 + νs

t
∫

t0

Y (τ)

(

ėij(τ) −
1

3
· 1 + νs

1 − 2νs
δij ε̇(τ)

)

fτ (t)dτ

or, coming back to the full strain rate tensor ε̇ij(τ), the form:

(5.5) σij(t) =
1

1 + νs

t
∫

t0

Y (τ)

(

ε̇ij(τ) −
νs

1 − 2νs
δij ε̇(τ)

)

fτ (t)dτ.

Concluding, to obtain the stress σij(t), it is enough to find the relaxed Young’s
modulus Y relax

τ (t) = Y (τ) · fτ (t), and next to use the standard procedure for
the hypoelastic materials [24]. It is necessary to point out that the number
of assumed time steps has no influence on the accuracy of the viscous effects
modelling, because the relaxation factor fτ (t) is given explicitly by Eq. (4.10).
However, higher number of the time steps may improve the input of material
data.

6. Shrinkage stress evolution for the composite Clearfil F2

6.1. Material data

To determine shrinkage stresses in a photo-cured specimen, it is necessary to
know the values of material parameters on each step of the process. Then, it is
necessary to determine the Young’s modulus Y (t), the relaxation time λ(t) and
the strain ε(t) = s(t) for t0 ≤ t ≤ tn. One can use the data for the chemically
activated Clearfil F2 [1] cured after 3580 s. The same Clearfil F2 may be photo-
cured after 40 seconds, if we use a photo-initiator. Adjustment of data given in
the paper [1] leads to the values of shrinkage s, Young’s modulus Y , viscosity
η and relaxation time λ, given in Table 1. The Poisson coefficient is fixed and
taken as νs = 0.24.

The adjustment of the material data is made as follows. The data for s, Y , η,
and λ given in the paper [1] have been referred to the time steps tch1 , t

ch
2 , . . . , t

ch
8 .

5)The rule (5.2) and the assumption (5.3) are taken in the procedure based on the Maxwell
model with fixed parameters in the Abaqus system [24].
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In Table 1, the same values are referred to the time steps ti = tchi · (40/3580).
It means that the time scale has been reduced proportionally. One can do it, if
the material parameters do not depend on the polymerization rate. In our case,
these parameters are functions of the polymer conversion degree only (cf. Sec. 2.1
and 2.2).

Table 1. Input data (according to [1]).

Step Time [s] s [%] Y [MPa] η [MPa s] λ [s]

t1 3.13 0.200 100 0 0.00

t2 4.25 0.500 1100 2800 2.54

t3 6.48 0.600 3700 26800 7.24

t4 9.83 0.700 5700 109100 19.14

t5 17.37 0.725 6725 288050 42.83

t6 24.91 0.750 7750 467000 60.25

t7 32.46 0.775 8775 645950 73.61

t8 40.00 0.800 9800 824900 84.17

The shrinkage-time plot (Fig. 1) and the Young modulus-time plot (Fig. 6)
point out the time tg = 4.25 s as the gel point. It is assumed as the start point
t2 = 4.25 s for the analysis. The end of the photo-curing process is taken as

a) b)

Fig. 6. The Young modulus for Clearfil F2: a) the piecewise linear plot connecting the
experimental data [1], b) its smooth approximation (Eq.(6.2)).
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t8 = 40 s. On the basis of the data given in Table 1, one can plot the piecewise
linear functions ṡ(t) and λ−1(t) (Fig. 7).

6.2. A smooth approximation of the material data functions

To use the Eq. (4.8) effectively, one can introduce smooth approximations of
the piecewise linear functions ṡ(t), Y (t) and λ−1(t) for the time t0 ≤ t ≤ tn.
Because the period t0 ≤ t ≤ tn succeeds the glass point, a rapid change of the
process character (Fig. 1a) cannot appear. The auto-acceleration effect connected
with the glass point is outside of the considered period [25]. Then, one can assume
smooth approximations of the reflected functions in the following way6).

Denote by A(t) one of these functions. As an approximation of A(t), one can
assume a smooth function:

(6.1) Aapprox(t) =
a

t+ b
+ c.

Here, three constants a, b, c are determined from three conditions: A(t2) =
Aapprox(t2), A(t4) = Aapprox(t4) and A(t8) = Aapprox(t8)

7). In this way we obtain
three smooth functions:

(6.2) ṡ(τ) =
as

τ + bs
+ cs, Y (τ) =

am

τ + bm
+ cm, λ−1(τ) =

aλ

τ + bλ
+ cλ.

where constants as, bs, cs, am, bm, cm, aλ, bλ, cλ, are given in Table 2.

Table 2. Fitting parameters for smooth approximations of the material data
functions.

Coefficient ṡ(t) Y (t) λ−1(t)

a as = 2.0337 × 10−3 am = −7364900 aλ = 0.31239

b bs = −3.4946 bm = 2.8223 bλ = −3.4455

c cs = −2.2562 × 10−5 cm = 11520 cλ = 3.3348 × 10−3

Figure 7 shows a comparison of the piecewise linear functions ṡ(t), Y (t),
λ−1(t), with their smooth approximations.

A higher number of fitting parameters in Eq. (6.1) gives better approxima-
tions, but this change has small influence on the results.

6)The way of approximation is the one possible; it is adapted to the shape of the given
piecewise-linear functions.

7)The time-points t2, t4, t8 correspond to the beginning, the gel-point, and the end of these
process.
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Fig. 7. The piecewise linear functions ṡ(t), Y (t) and λ−1(t), and their smooth
approximations for Clearfil F2.

6.3. The relaxation factor

If we introduce the function λ−1(t′) given by Eq. (6.2) into Eq. (4.10), the
relaxation factor fτ (t) will take the following form:

(6.3) fτ (t) =

(

τ + bλ
t+ bλ

)aλ

· e−cλ(t−τ),

where aλ, bλ and cλ are given in Table 2. The values of fτ (t) at the time points
τ = t2, . . . , t8 and t = t2, . . . , t8 are given in Table 3. The last column gives the
values of the relaxation factor fτi

(t8) for the case of cured material. According to
the rule (4.8), the final shrinkage stress σ(t8) is determined by the values fτi

(t8)
and Y (τi) for i = 2, . . . , 8.

The 2D plot of the relaxation factor fτ (t) (see Eq. (6.3)) is shown in Fig. 8.
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Table 3. Values of the relaxation factor fτ=τi
(t = ti) for i = 1, 2, . . . , 8.

t2 t3 t4 t5 t6 t7 t8

τ2 1.000 0.6545 0.5130 0.3921 0.3340 0.2965 0.2690

τ3 – 1.000 0.7838 0.5991 0.5103 0.4530 0.4110

τ4 – – 1.000 0.7644 0.6511 0.5780 0.5244

τ5 – – – 1.000 0.8519 0.7561 0.6860

τ6 – – – – 1.0000 0.8876 0.8053

τ7 – – – – – 1.0000 0.9073

τ8 – – – – – – 1.0000

Fig. 8. The relaxation factor fτ (t)
def
= exp(−

R t

τ

dt′

λ(t′)
) for Clearfil F2.

The product of the smooth functions described by Eq. (6.2) and Eq. (6.3)
gives the relaxed Young modulus:

(6.4) Y relax
τ (t) =

(

am

τ + bm
+ cm

)(

τ + bλ
t+ bλ

)aλ

· e−cλ(t−τ),

where am, bm and cm are given in Table 2. The plots of Y relax
τ (t) for τ = t2, . . . , t8

are shown in Fig. 9.
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Fig. 9. The relaxed Young modulus Y relax
τ (t) = Y (t) · fτ (t), for τ = t2, . . . , t8.

6.4. The shrinkage stress

According to the rule (4.8), the basic influence on the shrinkage stress level
has the strain rate determined by the shrinkage rate. The smooth strain rate
function ε̇(τ) has the form:

(6.5) ε̇(τ) = ṡ(τ) =
as

τ + bs
+ cs,

where as, bs and cs are given in Table 2. The expression for the shrinkage stress
follows from Eq. (4.8) and the relations (6.4)–(6.5).

(6.6) σ(t) =

t
∫

t0

(

am

τ + bm
+ cm

)(

as

τ + bs
+ cs

)(

τ + bλ
t+ bλ

)aλ

· e−cλ(t−τ)dτ.

Remark. The stress σ(t) is determined uniquely by the set of nine constants:
am, bm, cm, as, bs, cs, aλ, bλ, cλ, calculated on the basis of given material data.

To integrate the expression (6.6), one can write it in the form:

(6.7) σ(t) = g(t) ·
t
∫

t0

h(τ)dτ,

where

(6.8) g(t)
def
=

(

1

t+ bλ

)aλ

e−cλt,
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and

(6.9) h(τ)
def
=

(

am

τ + bm
+ cm

)(

as

τ + bs
+ cs

)

(τ + bλ)aλ · ecλτ .

Because h(τ) is a product of a rational function and an exponential function,
its integral may be a non-elementary one. Integration of the function h(τ) using
standard numerical procedures causes some difficulties. To avoid the problem,
we assume the following approximation of the function h(τ):

(6.10) happrox(τ) =
τ

ahτ2 + bhτ + ch
,

where the constants ah, bh, ch are determined from the conditions merging both
functions at the time-points: t2, t4 and t8. We obtain: ah = 0.021462, bh =
−0.012938 and ch = 1.1877. A comparison of the plots h(τ) and happrox(τ) is
shown in Fig. 10.

Fig. 10. The plots of the functions h(τ) and happrox(τ).

Then, if the material data s(t), Y (t) and η(t) are given, one can get the shrink-
age stress from the rules (6.7)–(6.10). The results for the composite Clearfil F2
are presented in Fig. 11. Values of the stress at the assumed time-points are
given in Table 4. The final stress, in the cured material, is equal to 21.26 MPa.
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Fig. 11. Time-evolution of the visco-hypoelastic stress in the photo-cured composite
Clearfil F2.

Table 4. Values of the shrinkage stress in Clearfil F2 for time steps t2, . . . , t8.

Step Time [s] σ [MPa]

t2 4.25 0.00

t3 6.48 4.74

t4 9.83 9.58

t5 17.37 15.87

t6 24.92 18.90

t7 32.46 20.46

t8 40.00 21.26

7. Concluding remarks

7.1. Comparison with other models

Denote by σvisco−hypo(t) the function describing a shrinkage stress evolution
given by Eq. (4.8), which follows from the proposed model. Remember that
σvisco−hypo(t8) = 21.2626 MPa. Let us compare values of the highest shrinkage
stresses obtained by means of some simplifications of the rule (4.8).

The photo-curing process may be considered as an elastic one with a variable
Young’s modulus [26]. If we put fτ (t) ≡ 1 in Eq. (4.8), we obtain an integral
form of the hypoelastic constitutive relation
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(7.1) σhypo(t) =

t
∫

t0

Y (t)
∂ε(τ)

∂τ
dτ =

t
∫

t0

(

am

τ + bm
+ cm

)(

as

τ + bs
+ cs

)

dτ.

From the above rule, it follows that the highest shrinkage stress is equal to
σhypo(t8) = 35.5853 MPa. Then, the hypoelastic model gives the highest stresses
near 70% larger than the proposed model with a relaxed Young’s modulus.

To take into account the stress relaxation, one can assume a fixed, averaged
relaxation factor fa in Eq. (4.8), namely

(7.2) fa
def
= e−

tn−t0
λa ,

where

(7.3) λa
def
=

1

n

n−1
∑

i=0

λi.

Then, the corresponding stress will take the form

(7.4) σmod−hypo(t) = fa ·
t
∫

t0

Y (t)
∂ε(τ)

∂τ
dτ,

with the highest shrinkage stress equal to the value σmod−hypo(t8)=15.0029 MPa.
This model gives the highest stresses near 30% lower than the proposed one.
A comparison of the plots for σvisco−hypo, σhypo(t) and σmod−hypo(t) is given in
Fig. 12.

Fig. 12. A comparison of shrinkage stresses obtained with the help of three models.
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7.2. Comparison with experimental data

Most of experiments show that shrinkage stresses in 3D cured layers of dental
composites, placed between two discs, do not exceed 10 MPa [27]. On the other
hand, the value σvisco−hypo(t8) = 21.26 MPa was obtained under the assumption
of 1D stress-strain state in the cured composite. In the 3D cured layer, a non-
uniform displacement field appears. A measure of this non-uniformity is the
C-factor determined as the ratio of adhered to the free surface of the cured
composite layer [28]. Then, to confirm our result experimentally, it is necessary
to use in tests a very thin layer.

The influence of layer thickness on the curing stress in thin resin layers for the
composite Clearfill F2 was investigated in the paper [18]. A chemically initiated
resin composite layer was inserted between two discs in a tensiometer. Next, the
curing contraction of the composite layers was corrected by feedback displace-
ment of the tensilometer, and the curing stress development was registered8). The
shrinkage stress was determined for layer thicknesses from 50 µm to 2.7 mm.
After 20 min of the process, the Young’s modulus was equal to 9300 MPa9).
Conclusion of the Authors was the following: “the contraction stress after 20 min
decreased from 23.3±5.3 MPa for the 50 microns layer to 5.5±0.6 MPa for the
2.7 mm layer”.

Notice that the highest value of the Young’s modulus assumed in our calcu-
lations has been reached after 3580 s of the chemical curing [1], or after 40 s of
the photo curing. Here in [18], the chemical process ran three times faster, and
the similar value of the Young’s modulus has been reached after 1200 s. It means
that in the photo-curing process, the time scale must be reduced proportionally
with the coefficient 40/1200.

Figure 13 presents a comparison of the function σvisco−hypo(t) (Fig. 12) with
the measured mean-cured stresses, for various layer thicknesses. Notice that this
function with the highest value 21.26 MPa, corresponds to the layer thickness
close to the value 100 µm. A question appears: how thin layers may give a
correct prediction of the shrinkage stresses? It seems that for layers thinner than
100 µm, the compliance of the experimental set-up and some microscopic effects
may have an essential influence on the results.

One can state that the proposed visco-hypoelastic model gives good results
for the photo-curing processes with a long exposure time. Then the temperature
has no real influence on the process. The above assumption is not valid in the case

8)Because compliance of the system was fixed and equal to 0.029 mm/MPa, the measurement
accuracy for the very thin layers was much lower than that for the thicker layers.

9)Recall that the highest value of the Young’s modulus assumed in our calculations is equal
to 9800 MPa.
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Fig. 13. A comparison of shrinkage stresses prescribed by Eq. (4.8) with experimental
results (according to [21]).

of the process of the stereolithography. In this case, one can apply the concepts
of the temperature-reduced time scale [29–30].

Appendix: Remarks on 3D shrinkage stresses

Let us consider a unidirectional shrinkage in a 3D bar made of the composite
Clearfil F2. In an orthogonal system of coordinates , a uniform strain field is
given by the tensor

(A.1) ε̇ij = ṡ(t)





1 0 0
0 −νs 0
0 0 −νs



 .

The volumetric and the deviatoric part of the tensor take the form:

(A.2)

ε∗ij(t) = ε(t)σij = ṡ(t)(1 − 2νs)δij

ėij(t) = ṡ(t)
2

3
(1 + νs)









1 0 0

0 −1

2
0

0 0 −1

2









.

To find the stress tensor σij , let us use for a moment the general rule
(5.2) with the independent relaxation factors fG

τ (t) and fK
τ (t). Substituting
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G(τ) = Y (τ)/2(1 + νs) and K(τ) = Y (τ)/3(1 − 2νs) into Eq. (5.2), we get:

σ11 =
1

3

t
∫

t0

Y (τ)[2fG
τ (t) + fK

τ (t)]ṡ(τ)dτ,(A.3)

σ22(t) = σ33(t) =
1

3

t
∫

t0

Y (τ)[−fG
τ (t) + fK

τ (t)](τ)dτ,(A.4)

σ12(t) = σ13(t) = σ23(t) = 0.(A.5)

One can see that the conditions

(A.6) σ22(t) = σ33(t) = 0

are satisfied when fG
τ (t) = fK

τ (t) = fτ (t). Moreover, in this case σ11(t) in the
considered 3D bar is the same as the stress σ(t) obtained for the 1D model.
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