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The paper discusses theoretical fundamentals necessary for accurate vibroacous-
tical modeling of structures or composites made up of poroelastic, elastic, and (ac-
tive) piezoelectric materials, immersed in an acoustic medium (e.g. air). An accurate
modeling of such hybrid active-passive vibroacoustic attenuators (absorbers or in-
sulators) requires a multiphysics approach involving the finite element method to
cope with complex geometries. Such fully-coupled, multiphysics model is given in
this paper. To this end, first, the accurate PDE-based models of all the involved
single-physics problems are recalled and, since a mutual interaction of these vari-
ous problems is of the uttermost importance, the relevant couplings are thoroughly
investigated and taken into account in the modeling. Eventually, the Galerkin fi-
nite element model is developed. This model should serve to develop designs of
active composite vibroacoustic attenuators made up of porous foams with passive
and active solid implants, or hybrid liners and panels made up of a core or lay-
ers of porous materials fixed to elastic faceplates with piezoelectric actuators, and
coupled to air-gaps. A widespread design of such smart mufflers is still an open
topic and should be addressed with accurate predictive tools based on the model
proposed in the present paper. The model is accurate in the framework of kine-
matical and constitutive (material) linearity of behaviour. This is, however, the
very case of the vibroacoustic application of elasto-poroelastic panels or compos-
ites, where the structural vibrations are induced by acoustic waves. The developed
fully-coupled FE model is finally used to solve a generic two-dimensional example
and some issues concerning finite element approximation and convergence are also
discussed.
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1. Introduction

1.1. Hybrid active-passive vibroacoustical attenuator

There are methods to cope with the unwanted vibroacoustical behaviour of
structures which have already become classic. In the active structural acoustic
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control, the vibrations of noise radiating surfaces (plates, beams, shells) are ac-
tively controlled to reduce the generation of low-frequency noise [1]. These clas-
sic solutions have drawbacks and practical limitations and a hybrid approach
has been recently proposed [2–7], relevant especially for barriers limiting the
transmission of acoustic waves and, in general, for attenuators and dissipative
materials for noise insulation and absorption. In such applications porous liners
and multilayered panels (usually, with a core of porous material and thin elastic
faceplates) are widely used but since they are passive, their efficiency is limited
only to high and medium frequencies. The smart hybrid approach is also termed
the hybrid active-passive approach [5, 7, 8] since it proposes an active control
as a remedy for the lack of performance at low frequency, while in the high
and medium-frequency range an excellent passive acoustic absorption should be
guaranteed thanks to the inherited absorbing properties of well-chosen porous
components.

Investigations concerning such smart hybrid approach started several years
ago in the USA [2, 3] and France [4]. Recently new solutions have been developed
in France by Galland and her collaborators [5–11]. They have started to study
active sandwich panels with a core of poroelastic material. The panels are active

in the sense that piezoelectric patches are added to their elastic faceplates which
behave as a secondary vibrational source, interfering with the low-frequency
disturbance propagating in the panel. Very recently, the active-passive concept
of smart foams combining the passive dissipation capability of porous material
in the medium and high frequency ranges and the active absorption ability of
piezoelectric actuator (PVDF) in the low frequency range, has been investigated
extensively by Leroy et al. [12–14].

Now, another even more innovative concept is being proposed: an active
composite vibroacoustical attenuator made of porous layers (foams, etc.) with
some solid implants (inclusions) – some of them may be passive (e.g., small
distributed masses), the others are active (e.g., piezoelectric elements: patches
of piezoceramic PZT, pieces of PVDF foil, piezo-fibres, etc.).

The widespread design of such smart mufflers (composites, liners, panels)
is still an open topic and should be addressed with accurate predictive tools.
Moreover, very often, an interaction of the mufflers with air-gaps or a fragment
of the surrounding acoustical medium (the air) should also be taken into account
in the modelling. The present paper intends to provide a complete theoretical
basis necessary for the development of such tools using the finite element method
which allows for modelling of complex geometries. Finally, the developed fully-
coupled FE model will be used to solve a generic two-dimensional example of
the aforementioned problems. In the context of this example, some convergence
issues will be also discussed.
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1.2. Physical problems involved, relevant theories, and general assumptions

Accurate modelling of active elasto-poroelastic noise attenuators (liners, pan-
els or composites) means a multiphysics approach involving the finite element
method to cope with a complex geometry. To this end the following theories will
be used (relevant to the physical problems involved):

• the Biot’s theory of poroelasticity – to model the vibroacoustic transmis-
sion and passive dissipation of acoustic waves in porous layers,

• the linear acoustics – to model the propagation of acoustic waves in the
surrounding air and in air-gaps,

• the linear elasticity – to model the vibrations of elastic faceplates (and
implants),

• the theory of piezoelectricity – to model the piezo-actuators for active
control of low-frequency vibrations.

Moreover, a mutual interaction of all these various physical problems is of the
uttermost importance, so the relevant couplings must be thoroughly investigated
and taken into account in modelling.

The considered vibroacoustic application allows for using perfectly linear the-
ories, so the superposition principle holds and may be effectively used. Conse-
quently, the frequency analysis may be used as an efficient and sufficient tool
for design and testing of the active liners, panels or composites. Therefore, apart
from Eqs. (2.1) and (2.2) below, all other expressions (for all the problems in-
volved) will be formulated for the case of harmonic oscillations with angular
frequency ω = 2πf , where f is the frequency of oscillations.

The equations of poroelasticity presented below assume no body forces act-
ing on the poroelastic material. Consequently, the problems of elasticity and
piezoelectricity are considered with zero body forces. Moreover, in the piezo-
electricity problem there is no body electric charge applied. These assumptions
comply with the modeling requirements of hybrid piezo-elasto-poroelastic noise
attenuators.

Two sets of subscripts will be used, namely: i, j, k, l ∈ {1, 2, 3}, to denote
vector and tensor components in the three-dimensional system of reference and
m,n ∈ {1, . . . Ndof}, to number the degrees of freedom of a discrete model (Ndof

is the total number of degrees of freedom). The summation convention is in use
for both the types of subscripts. The (invariant) differentiation symbol is used
which, in the Cartesian coordinate system, simply reads: (.)|i = ∂(.)/∂xi. For
brevity, symbols dΩ and dΓ are skipped in all the integrals presented below since
it is obvious that we integrate on the specified domain or boundary. Furthermore,
the following notation rule for the symbol of variation (or test function) is used:
δ(v w) = v δw+w δv, where u and v are two dependent variables (fields) and δv
and δw – their admissible variations.
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2. Biot’s theory of poroelasticity

2.1. Isotropic poroelasticity and the two formulations

Certainly, a vital component of a vibroacoustic panel, liner or composite is
a layer (or layers) of porous material. Porous materials are quite often modeled
in acoustics by using the so-called fluid-equivalent approach (see, e.g., [15]).
This is acceptable for most of the porous media in some applications, especially
in higher frequency range, where the vibrations of skeleton can be completely
neglected; then, the so-called models of porous materials with rigid frame are
valid. There are, however, many applications where the contribution of elastic
frame vibrations is very significant, particularly in lower frequencies. This is
relevant to sandwich panels with a poroelastic core (layer) and certainly it is the
very case of porous composite noise absorbers. Here, the simple fluid-equivalent
modelling is no longer valid and instead, a more complicated theory should be
used since it is necessary to take into consideration the vibrations of elastic
skeleton and their coupling to the wave propagating in the fluid in pores. There
are two main theories which permit an adequate and thorough description of such
problems: the Biot’s theory of poroelasticity [15–17] and the so-called theory of
porous media [18]; the latter one has been essentially established quite recently
and is more general. An excellent work by de Boer [18] provides a current
state of the theory of porous media, offering also highlights in the historical
development and a comparison to the Biot’s poroelasticity. The Biot’s theory
[16, 17] allows for modelling of materials made up of solid elastic skeleton (matrix,
frame), with the pores filled up with a compressible fluid. Without doubt, within
the framework of the geometrically- and physically-linear theory, it gives good
results for a wide range of practical problems – in particular for the dynamic
ones. A large number of applications have been worked out using this theory:
starting from the acoustics [15, 19] (and vibroacoustics) up to the bio- and
geomechanics [20]. In this theory, a biphasic approach is applied where the so-
called solid phase is used to describe the behaviour of elastic skeleton, while
the so-called fluid phase pertains to the fluid in the pores. Both the phases are,
in fact, coupled homogenized continua of the “smeared” skeleton and pore-fluid.
This homogenization (or rather, averaging) uses the concept of Average Volume
Element (AVE) and it works very well if the shortest length of waves propagating
in a porous medium is significantly greater than the characteristic dimension of
pores.

In practical applications, the most frequently used is the Biot’s isotropic the-
ory of poroelasticity [15–17, 19]. In this approach, both the phases are isotropic.
Moreover, the fluid is modeled as perfect (i.e., inviscid), though viscous forces
are taken into account but only when modelling the interaction between the
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fluid and the frame. Two formulations of Biot’s isotropic poroelasticity may be
distinguished:

• the classical displacement formulation proposed by Biot, where the un-
knowns are the solid and fluid-phase displacements, which yields 6 degrees
of freedom in every node of a three-dimensional numerical model;

• the mixed displacement-pressure formulation, where the dependent vari-
ables are the solid-phase displacements and the fluid-phase pressure; there-
fore, there are only 4 degrees of freedom in a three-dimensional model.

The second formulation is valid only for harmonic motion and it was presented
by Atalla et al. [21]. Debergue et al. [22] discussed a very important subject
of the boundary and interface-coupling conditions for this formulation.

2.2. The classical displacement formulation

As mentioned above, in the classical formulation [15–17] a state of poroelastic
medium is unequivocally described by the displacements of solid, u = {ui}, and
fluid phase, U = {Ui}. Therefore, this is often referred to as the displacement-
displacement, or the {u,U} formulation. Biot’s equations for a local dynamic
equilibrium state of poroelastic medium, link partial stress tensors associated
with the skeleton particle (σs

ij) and the macroscopic fluid particle (σf
ij) with the

solid and fluid macroscopic displacements

σs
ij|j = ̺ss üi + ̺sf Üi + b̃ (U̇i − u̇i),(2.1)

σf
ij|j = ̺ff Üi + ̺sf üi + b̃ (u̇i − U̇i),(2.2)

where b̃ is the viscous drag coefficient and ̺ss, ̺ff, ̺sf are the so-called effective
densities. First of these equilibrium equations refers to the solid phase, and the
second one to the fluid phase; nevertheless, it is easy to notice that both the
equations are strongly coupled by the inertial and viscous coupling terms: the
viscous drag coefficient pertains to the traction between the interstitial fluid and
the solid skeleton (the fluid by itself is inviscid, i.e., in the sense that there are
no viscous forces between the fluid particles), whereas the last of the effective
densities, ̺sf, is the so-called mass coupling coefficient responsible for considera-
tion of the inertial interaction forces which occur between the solid skeleton and
the fluid. The effective densities are expressed as follows:

(2.3) ̺ss = (1 − φ) ̺s − ̺sf, ̺ff = φ ̺f − ̺sf, ̺sf = −(α∞ − 1)φ ̺f.

They depend on the porosity, φ, the tortuosity of pores, α∞, the density of the
material of skeleton, ̺s, and the density of saturating fluid, ̺f.

Consider now the case of harmonic motion (with the angular frequency ω).
Then, all time-dependent quantities can be presented using the co-called complex
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notation involving a term exp(jω t) (where j =
√
−1 is the imaginary unit). This

exponential term is reduced from the equations and all the relevant quantities are
represented in these equations in the form of their (frequency-dependent) com-
plex amplitudes. Remembering this, the equilibrium equations (2.1) and (2.2)
read as follows:

σs
ij|j + ω2 ˜̺ss ui + ω2 ˜̺sf Ui = 0,(2.4)

σf
ij|j + ω2 ˜̺ff Ui + ω2 ˜̺sf ui = 0,(2.5)

where the so-called frequency-dependent effective densities are introduced:

(2.6) ˜̺ss = ̺ss +
b̃

jω
, ˜̺ff = ̺ff +

b̃

jω
, ˜̺sf = ̺sf −

b̃

jω
.

As a matter of fact, these densities are responsible not only for the inertia of solid-
or fluid-phase particles but also for the combined inertial and viscous coupling
(interaction) of both phases.

The partial solid and fluid stress tensors are linearly related to the partial
strain tensors prevailing in the skeleton and the interstitial fluid. This is given
by the following linear and isotropic constitutive equations of the Biot’s theory
of poroelasticity (where linear kinematic relations have already been used to
replace the strain tensors with the gradients of displacements):

σs
ij = µs (ui|j + uj|i) +

(

λ̃s uk|k + λ̃sf Uk|k

)

δij ,(2.7)

σf
ij =

(

λ̃f Uk|k + λ̃sf uk|k

)

δij.(2.8)

(Here and below, δij is the Kronecker’s delta symbol.) One may clearly see that
in this modelling both the phases are isotropic. Four material constants are in-
volved here, namely µs, λ̃s, λ̃f, and λ̃sf. The first two are similar to the two
Lamé coefficients of isotropic elasticity. Moreover, µs is the shear modulus of
the poroelastic material and consequently, the shear modulus of the frame, since
the fluid does not contribute to the shear restoring force. The three dilatational
constants, λ̃s, λ̃f and λ̃sf are frequency-dependent and are functions of Kb, Ks,
and K̃a (λ̃s depends also on µs), where: Kb is the bulk modulus of the frame at
constant pressure in the fluid, Ks is the bulk modulus of the elastic solid from
which the frame is made, and K̃a is the effective bulk modulus of fluid in porous
material. The adequate exact formulae to compute the poroelastic material con-
stants can be found in [15]. Notice here that only one material constant, namely,
the constitutive coupling coefficient, λ̃sf, is responsible for a multiphysics cou-
pling occurring between the constitutive equations of both phases. However, the
Reader should be reminded of the visco-inertial coupling present in the equations
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of equilibrium; thus, the interaction of solid skeleton with the fluid in the pores
is very well represented in this biphasic approach.

The equations of equilibrium (2.1)–(2.2), or (2.4)–(2.5) in case of harmonic
motion, form with the constitutive relations (2.7)-(2.8) the displacement formu-
lation of linear, isotropic poroelasticity. Finally, total quantities are defined for
this biphasic model, namely, the total stress tensor as a simple sum of the partial,
i.e. phasic, stress tensors:

(2.9) σt
ij = σs

ij + σf
ij = µs (ui|j + uj|i) +

[(

λ̃s + λ̃sf

)

uk|k +
(

λ̃f + λ̃sf

)

Uk|k

]

δij ,

and the total displacement vector of poroelastic medium which reads

(2.10) ut
i = (1 − φ)ui + φUi,

where the porosity-dependent contributions of the displacements of both phases
are involved.

2.3. The mixed displacement-pressure formulation

Finite element models based on the displacement formulation of Biot’s poroe-
lasticity have been used to predict the acoustical and structural behavior of
porous multilayer structures [23–26]. Since these models, while accurate, lead to
large frequency-dependent matrices for three-dimensional problems, Atalla et
al. proposed in [21] a novel exact mixed displacement-pressure formulation de-
rived directly from the Biot’s poroelasticity equations. The boundary conditions
for this formulation were extensively discussed in [22].

The mixed formulation uses the fact that the fluid-phase stress tensor can be
expressed as σf

ij = −φ p δij, where p is the pressure of fluid in the pores. Basing
on this relation, some mathematical manipulations applied to the harmonic case
allow to get rid of the fluid-phase displacements, Ui, introducing instead a new
unknown field of pressure in the pores, p. These manipulations are presented
in the Appendix. Eventually, the harmonic equilibrium for the solid phase can
expressed as

(2.11) σss
ij|j + ω2 ˜̺ui + φ

(

˜̺sf

˜̺ff
− λ̃sf

λ̃f

)

p|i = 0 where ˜̺ = ˜̺ss −
˜̺2
sf

˜̺ff
.

Here, a new stress tensor is introduced (which depends only on the solid-phase
displacements)

(2.12) σss
ij = µs (ui|j + uj|i) + λ̃ss uk|k δij where λ̃ss = λ̃s −

λ̃2
sf

λ̃f

.



350 T. G. Zieliński

The fluid-phase equation is transformed to the following form

(2.13)
φ2

ω2 ˜̺ff
p|ii +

φ2

λ̃f

p− φ

(

˜̺sf

˜̺ff
− λ̃sf

λ̃f

)

ui|i = 0,

where the last term couples this equation with the solid-phase equation (2.11).
Equations (2.11) and (2.13) together with the constitutive relation (2.12) consti-
tute the mixed displacement-pressure formulation of harmonic isotropic poroe-
lasticity, where the primary dependent variables are solid-phase displacements,
ui, and pressure in the pores, p.

3. Weak forms of poroelasticity, elasticity, piezoelectricity,

and acoustics

3.1. Weak form of the mixed formulation of poroelasticity

The weak integral form of the mixed formulation of Biot’s poroelasticity was
presented by Atalla et al. [21]. An enhanced version of this weak formulation
was proposed in [27]. Here, the enhanced version will be used since the enhance-
ment allows to handle easily some boundary and interface-coupling conditions.
This matter was extensively discussed in [27, 28]. Finite element models based on
the enhanced weak form of the mixed poroelasticity problem involving coupling
to elastic and acoustic media are presented in [27, 29, 28]. In [29] the convergence
of model using hierarchical elements was investigated.

Let Ωp be a domain of poroelastic material and Γp – its boundary, with
ni being the components of the vector normal to the boundary and pointing
outside the domain. The harmonic poroelasticity problem can be described in
this domain by the mixed formulation equations (2.11) and (2.13). Both sides of
these equations are multiplied by the so-called test (or weighting) functions, δui

and δp, respectively for the solid phase equations and the fluid phase equation,
and then integrated in the whole domain Ωp and summed up to one integral
equation. Integration by parts of some of the terms and using the divergence
theorem, yields the weak form for the harmonic poroelasticity problem, valid for
any arbitrary yet admissible virtual displacements, δui, and pressure, δp. This
form can be expressed as follows:

(3.1) −
∫

Ωp

σss
ij δui|j+

∫

Ωp

ω2 ˜̺ui δui−
∫

Ωp

φ2

ω2 ˜̺ff
p|i δp|i+

∫

Ωp

φ2

λ̃f

p δp+

∫

Ωp

φ

(

1+
˜̺sf

˜̺ff

)

δ(p|i ui)

+

∫

Ωp

φ

(

1+
λ̃sf

λ̃f

)

δ(p ui|i)+

∫

Γp

σt
ij nj δui+

∫

Γp

φ (Ui−ui)ni δp = 0.
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Here, σss
ij = σss

ij (u) is a function of solid phase displacements according to
Eq. (2.12). The total stresses, σt

ij = σt
ij(u, p), and the fluid phase displacements,

Ui = Ui(u, p), may also be formally considered as functions of solid phase dis-
placements and fluid phase pressure (see Eqs. (A.8) and (A.3) in the Appendix),
but they appear only in the boundary integrals and will be reduced or replaced
by specific, prescribed values when considering the boundary or interface cou-
pling conditions. These integrals of (Neumann) boundary conditions are in the
last line of Eq. (3.1) while the second line contains the coupling terms. Thanks
to the proposed weak formulation, the boundary and interface conditions are
naturally handled for rigid piston displacements and when coupling to elastic
medium or to a layer of another poroelastic material. They are also adequately
simple when imposing a pressure field and in the case of coupling to an acoustic
medium. Since the issue of boundary and coupling interface conditions is not a
simple one in case of a double-phase modeling, this matter will be extensively
discussed later on in Sections 4 and 5.

3.2. Weak form for an elastic solid

The theory of (linear) elasticity and the derivation of the weak form used
by FEM and other variational methods can be found in many textbooks (e.g.,
[30]). Below, the weak integral of the principle of virtual work for a harmonic
elastic-body system is given (without derivation), and the natural and essential
boundary conditions are briefly discussed.

Let Ωe be an elastic solid domain with mass density ̺e and boundary Γe, and
let ne

i be the components of the vector normal to the boundary and pointing
outside the domain. Assuming zero body forces and the case of harmonic os-
cillations, the weak variational form of the problem of elasticity expressing the
principle of virtual work reads

(3.2) −
∫

Ωe

σe
ij δu

e
i|j +

∫

Ωe

ω2̺e u
e
i δu

e
i +

∫

Γe

σe
ij n

e
j δu

e
i = 0,

where ue
i are the elastic solid displacements and δue

i are their arbitral yet admis-
sible variations; the elastic stress tensor σe

ij = σe
ij(u

e) substitutes here a linear
function of elastic displacements. Generally, in the anisotropic case it equals

(3.3) σe
ij = Ce

ijkl

ue
k|l + ue

l|k

2
,

where Ce
ijkl is the fourth-order tensor of linear elasticity. One may notice that

the linear kinematic relations between the elastic strain tensor and the elastic
displacements, εeij = 1

2(ue
i|j + ue

j|i), have been already used in (3.3). In the case
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of isotropy, the constitutive equation can be expressed as follows:

(3.4) σe
ij = µe (ue

i|j + ue
j|i) + λe u

e
k|k δij,

where the well-known Lamé coefficients appear, that is: the shear modulus,

µe
Ee

2(1 + νe)
, and the dilatational constant, λe =

νeEe

(1 + νe)(1 − 2νe)
, related to

the material’s Young modulus, Ee, and Poisson’s coefficient, νe.

Boundary conditions. Two kinds of boundary conditions will be discussed here,
namely Neumann’s and Dirichlet’s, although they may be combined into the
third specific type, the so-called Robin (or generalized Dirichlet) boundary con-
dition. For the sake of brevity, the latter type will not be considered; remember
only that, in practice, the well-known technique of Lagrange multipliers is usu-
ally involved when applying it. The Neumann (or natural) boundary conditions
describe the case when forces t̂ei are applied on a boundary, that is,

(3.5) σe
ij n

e
j = t̂ei on Γt

e ,

whereas the displacements ûe
i are prescribed by the Dirichlet (or essential) bound-

ary conditions

(3.6) ue
i = ûe

i on Γu
e .

According to these conditions, the boundary is divided into two (directionally
disjoint) parts, i.e., Γe = Γt

e ∪Γu
e . There is an essential difference between the two

kinds of conditions. The displacement constraints form the kinematic require-
ments for the trial functions while the imposed forces appear in the weak form;
thus, the boundary integral, that is, the last left-hand-side term of Eq. (3.2),
equals

(3.7) BIe =

∫

Γe

σe
ij n

e
j δu

e
i =

∫

Γt
e

t̂ei δu
e
i .

Here, the property δue
i = 0 on Γu

e has been used.

3.3. Weak form of piezoelectricity

The theory of piezoelectricity is extensively discussed, for example, in [31, 32].
More or less brief recapitulations of the linear theory of piezoelectricity may be
found also in many papers and books on active vibration control and piezoelec-
tric actuators and sensors (e.g., [1, 33, 34]). A very good survey of the advances
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and trends in finite element modeling of piezoelectricity was presented by Ben-

jeddou [35]. In this paper the basic theoretical considerations and equations of
linear piezoelectricity as well as the variational piezoelectric equations are also
given.

Piezoelectric elements (actuators and sensors) of the proposed active com-
posites, liners and panels are to be modeled using the linear theory. It is ade-
quate enough and, moreover, it is a very accurate model when comparing it to
some frequently used approximations (as a matter of fact, the so-called thermal
analogy approach is usually an acceptable approximation when modeling piezo-
actuators). Here, a variational form of linear piezoelectricity will be presented as
being the most used one for piezoelectric finite element formulations. This form
should be regarded as the sum of the conventional principle of virtual mechanical
displacements and the principle of virtual electric potential.

Let Ωpz be a domain of piezoelectric material, ̺pz its mass density, and Γpz its
boundary. The unit boundary-normal vector, npz

i , points outside the domain. The
dependent variables of piezoelectric medium are the mechanical displacements,
upz

i , and electric potential, V pz. The case of harmonic oscillations (with the
angular frequency ω) with no mechanical body forces and electric body charge is
considered. Then, for arbitrary yet admissible virtual displacements, δupz

i , and
virtual electric potential, δV pz, the variational formulation of the piezoelectricity
problem can be given as

(3.8) −
∫

Ωpz

σpz
ij δu

pz
i|j +

∫

Ωpz

ω2̺pz u
pz
i δupz

i +

∫

Γpz

σpz
ij n

pz
j δupz

i

−
∫

Ωpz

Dpz
i δV pz

|i +

∫

Γpz

Dpz
i npz

i δV pz = 0,

where σpz
ij = σpz

ij (upz, V pz) and Dpz
i = Dpz

i (upz, V pz) are expressions of mechan-
ical displacements and electric potential. Obviously, from the physical point of
view they represent the mechanical stress tensor and the electric displacement
vector, respectively. As a matter of fact, these expressions are the so-called stress-
charge form of the constitutive relations of piezoelectricity – they are given below
for the case of linear anisotropic piezoelectricity:

(3.9) σpz
ij = Cpz

ijkl

upz
k|l + upz

l|k

2
− epz

kij V
pz
|k , Dpz

i = epz
ikl

upz
k|l + upz

l|k

2
+ ǫpz

ik V
pz
|k .

Here, Cpz
ijkl, e

pz
ikl, and ǫpz

ik denote (the components of) the fourth-order tensor of
elastic material constants, the third-order tensor of piezoelectric material con-
stants, and the second-order tensor of dielectric material constants, respectively.
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These three tensors of material constants characterize completely any piezo-
electric material, i.e., its elastic, piezoelectric, and dielectric properties. Only
one of these tensors is responsible for the piezoelectric effects. Therefore, piezo-
electricity can be viewed as a multiphysics problem, where in one domain of
a piezoelectric medium the problems of elasticity and electricity are coupled by
the piezoelectric material constants present in (additional) coupling terms in the
constitutive relations. One should notice that the (linear) kinematic relations,
εpz
ij = (upz

k|l + upz
k|l)/2, linking mechanical strain (εpz

ij ) and displacements (upz
i ),

and the Maxwell’s law for electrostatics, Epz
i = −V pz

|i , relating the electric

field (Epz
i ) with its potential (V pz), have been explicitly used in Eqs. (3.9).

Boundary conditions. In piezoelectricity the boundary conditions are divided
into two groups – there are mechanical conditions (referring to the elasticity
problem) and electrical conditions (referring to the electricity). Consequently,
the boundary of piezoelectric domain can be subdivided as follows:

(3.10) Γpz = Γt
pz ∪ Γu

pz and Γpz = ΓQ
pz ∪ ΓV

pz.

The parts belonging to the same group of subdivision are disjoint and both sub-
divisions are completely independent. Here, Γt

pz and ΓQ
pz pertain to the Neumann

conditions for surface-applied mechanical forces and electric charge, respectively,
while Γu

pz and ΓV
pz refer to the Dirichlet conditions on imposed mechanical dis-

placements and electric potential, respectively. The third possibility of Robin
boundary condition is skipped; however, it would involve another parts – one in
the mechanical and one in the electric subdivision of the boundary.

First, consider the mechanical boundary conditions. The forces, t̂pz
i , applied

to a boundary are expressed by the Neumann (or natural) condition

(3.11) σpz
ij n

pz
j = t̂pz

i on Γt
pz,

whereas the imposed displacements, ûpz
i , will appear in the Dirichlet (i.e., essen-

tial) boundary condition

(3.12) upz
i = ûpz

i on Γu
pz.

The Dirichlet condition must be a priori explicitly met by the trial functions
while the Neumann condition (3.11) is used for the mechanical boundary integral,
that is, the third term in Eq. (3.8), which equals

(3.13) BImech
pz =

∫

Γpz

σpz
ij n

pz
j δupz

i =

∫

Γt
pz

t̂pz
i δupz

i ,

since δupz
i = 0 on Γu

pz.
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The electric boundary condition of the Neumann kind serves for a surface
electric charge Q̂pz applied to a boundary

(3.14) −Dpz
i npz

i = Q̂pz on ΓQ
pz,

whereas the Dirichlet condition allows to prescribe the electric potential V̂ pz on
a boundary

(3.15) V pz = V̂ pz on ΓV
pz.

The electric boundary integral, that is the last term in Eq. (3.8), equals

(3.16) BIelec
pz =

∫

Γpz

Dpz
i npz

i δV pz = −
∫

ΓQ
pz

Q̂pz δV pz.

Here, the Neumann condition for electric charge (3.14) has been used together
with the condition for voltage variation, δV pz = 0 on ΓV

pz.
By summing up the mechanical and electrical boundary integrals (3.13)

and (3.16), the following total mechanical-electric boundary integral results:

(3.17) BIpz = BImech
pz + BIelec

pz =

∫

Γt
pz

t̂pz
i δupz

i −
∫

ΓQ
pz

Q̂pz δV pz.

3.4. Weak form for an acoustic medium

Classical acoustic media are homogeneous inviscid fluids where compres-
sional acoustic waves propagate with velocity being the material property of the
medium, termed the speed of sound. The classical linear time-harmonic acous-
tics is governed by the Helmholtz equation. The derivation of this equation may
be found in many textbooks, e.g., in [36]. Finite (and infinite) element methods
for time-harmonic acoustics are reviewed in [37, 38]. Below, the weak integral
form (used by FEM) of harmonic acoustics is given and the relevant natural and
essential boundary conditions are briefly discussed.

Let Ωa be an acoustic medium domain and Γa its boundary, with na
i being the

components of unit normal vector pointing outside the domain. The dependent
variable of acoustical medium is the acoustic pressure, pa. For harmonic motion
with the angular frequency ω, the following weak form should be used:

(3.18) −
∫

Ωa

1

ω2̺a
pa
|i δp

a
|i +

∫

Ωa

1

Ka
paδpa +

∫

Γa

1

ω2̺a
pa
|i n

a
i δp

a = 0,

where ̺a and Ka are the acoustic medium mass density and the bulk modulus,
respectively. In the case of fluids, usually, the given data is how fast a sound
wave propagates in the medium. Therefore, the bulk modulus can always be
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replaced by Ka = ̺a c
2
a where ca is the speed of sound. However, in the case of

fluid-equivalent models of porous materials (with rigid frame) one often prefers
to use the bulk modulus which – together with the (now, effective) density –
is a frequency-dependent quantity, i.e.: Ka = K̃a(ω) and ̺a = ˜̺a(ω). Knowing
the acoustic pressure one can always determine the (complex amplitudes of)
displacements, velocities and accelerations of fluid particle using the following
formulae:

(3.19) ua
i =

1

ω2̺a
pa
|i, va

i = jω ua
i = − 1

jω ̺a
pa
|i, aa

i = −ω2 ua
i = − 1

̺a
pa
|i.

Boundary conditions. Two kinds of boundary conditions will be considered: the
Neumann condition when a rigid piston of known acceleration, âa

i , is imposed on
a boundary, and the Dirichlet condition when a value of acoustic pressure, p̂a,
is prescribed. In the harmonic case: âa

i = −ω2 ûa
i with ûa

i being the (complex)
amplitude of displacements, and the Neumann condition reads

(3.20)
1

ω2̺a
pa
|i = ûa

i on Γu
a .

The Dirichlet boundary condition simply states that

(3.21) pa = p̂a on Γp
a .

Like in the case of poroelastic, elastic, and piezoelectric media, the third (i.e.,
Robin’s) kind of boundary conditions is skipped in the present discussion.

Now, using the Neumann condition (3.20) and the condition for pressure
variation, δpa = 0 on Γp

a , the boundary integral, that is, the last term in Eq. (3.18)
can be written as follows:

(3.22) BIa =

∫

Γa

1

ω2̺a
pa
|i n

a
i δp

a =

∫

Γu
a

ua
i n

a
i δp

a.

4. Boundary conditions for poroelastic medium

4.1. The boundary integral

The boundary integral in the weak variational form of the mixed formulation
of poroelasticity (3.1) has the following form:

(4.1) BIp =

∫

Γp

σt
ij nj δui +

∫

Γp

φ (Ui − ui)ni δp.
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Here, two types of boundary conditions that may occur at the boundary of
poroelastic medium will be discussed. Although some other conditions might
be formally applied, these two are the most representative and important in
practice. In other words, skipped will be, for example, the mixed conditions which
prescribe in the same point of the boundary, different fields to both phases.

4.2. Imposed displacement field

A displacement field, ûi, applied on a boundary of poroelastic medium de-
scribes, for example, the case of a piston in motion acting on the surface of the
medium. Here, it is assumed that the solid skeleton is fixed to the surface of the
piston while the fluid obviously cannot penetrate into the piston. Therefore,

(4.2) ui = ûi, (Ui − ui)ni = 0.

The first condition expresses the continuity between the imposed displacement
vector and the solid-phase displacement vector. The second equation expresses
the continuity of normal displacements between the solid phase and the fluid
phase. Using these conditions and the fact that the variations of the known solid
displacements are zero (δui = 0), the boundary integral reduces to zero [27]:

(4.3) BIp = 0.

Notice that this result holds also when the poroelastic medium is not glued
but only adherent to the rigid piston, provided that there is no friction or any
imposed tangential forces at the interface between the piston and the poroelastic
medium. In that case, the second boundary condition of formulae (4.2) holds (and
so the second term of the boundary integral (4.1) disappears) whereas, instead
of the three equations of the solid displacement condition ui = ûi (i = 1, 2, 3),
there is one requirement for the normal solid displacement: ui ni = û (where û is
the prescribed normal displacement of piston), and two additional requirements
about the total stress vector (σt

ij nj), which state that the components tangential
to the surface of piston are zero. This assumption, together with the fact that
the variation of the prescribed normal component of solid displacement must be
zero (δui ni = 0), make the first term of the boundary integral (4.1) vanish, and
so the result (4.3) is valid. Remember, however, that this result cannot be used
if the friction occurs between the piston and the poroelastic medium, or if any
tangential forces are imposed. In this latter (rather academic) case the prescribed
tangential forces would appear in the boundary integral. The case of friction can
be important in practice and will yield a nonlinear boundary condition.

4.3. Imposed pressure field

A harmonic pressure field of amplitude p̂ is imposed on the boundary of
poroelastic domain what means that it affects at the same time the fluid in the
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pores and the solid skeleton. Therefore, the following boundary conditions must
be met:

(4.4) p = p̂, σt
ij nj = −p̂ ni.

The first condition is of Dirichlet type and must be applied explicitly. It describes
the continuity of pressure in the fluid. It means also that the pressure variation
is zero (δp = 0) at the boundary. The second condition expresses the continuity
of the total normal stress. All this, when used for Eq. (4.1), leads to the following
boundary integral [27, 28]:

(4.5) BIp = −
∫

Γp

p̂ ni δui.

Now, consider an important case when there is no pressure (nor any dis-
placement field) applied on the boundary of a poroelastic medium. In spite of
appearances, this is not identical with, but can only be approximated by the case
when the pressure at the boundary is kept at zero (p̂ = 0). Then, the boundary
integral vanishes: BIp = 0, and only the Dirichlet boundary condition, p = 0,
must be applied.

5. Interface coupling conditions for poroelastic and other media

5.1. Poroelastic-poroelastic coupling

To begin with, consider the coupling conditions between two different poroe-
lastic media (domains) fixed one to another. The superscripts 1 and 2 (put in
parenthesis) denote which domain the superscripted quantity belongs to. Let
Γ(1)-(2) be an interface between the two media and let n(1)

i be the components of
the unit vector normal to the interface and pointing outside the medium 1 (and
into the medium 2), while n(2)

i are the components of the unit normal vector
pointing outside the medium 2 (into the medium 1), which means that at every
point of the interface: n(2)

i = −n(1)

i . The coupling integral terms (given at the
interface) are a combination of the boundary integrals resulting from the weak
variational forms (3.1) obtained for both poroelastic domains, that is:

(5.1) CI(1)-(2) =

∫

Γ
(1)-(2)

σt(1)
ij n(1)

j δu(1)

i +

∫

Γ
(1)-(2)

φ(1)(U
(1)

i − u(1)

i )n(1)

i δp(1)

+

∫

Γ
(1)-(2)

σt(2)
ij n(2)

j δu(2)

i +

∫

Γ
(1)-(2)

φ(2)(U
(2)

i − u(2)

i )n(2)

i δp(2).
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It will be demonstrated that this coupling integral (resulting from the weak
form (3.1) of the mixed formulation of harmonic poroelasticity) equals zero,
what means that the coupling conditions are naturally handled [27, 28] at the
interface between two domains made of poroelastic materials.

At the interface between two poroelastic media, the following coupling con-
ditions must be met:

(5.2)
σt(1)

ij n(1)

j = σt(2) n(1)

j , φ(1)(U
(1)

i − u(1)

i )n(1)

i = φ(2)(U
(2)

i − u(2)

i )n(1)

i ,

u(1)

i = u(2)

i , p(1) = p(2).

The first condition ensures the continuity of total stresses while the second one
ensures the continuity of the relative mass flux across the interface. The two
last conditions express the continuity of the solid-phase displacements and of
the pressure of pore-fluids, respectively. This also entails that the appropriate
variations are the same (i.e., δu(1)

i = δu(2)

i and δp(1) = δp(2)). Now, applying the
coupling conditions for Eq. (5.1) and taking into account that n(2)

i = −n(1)

i , it is
easy to obtain the following result:

(5.3) CI(1)-(2) = 0,

which means that the coupling conditions between two poroelastic media are
naturally handled indeed [27, 28].

5.2. Poroelastic-elastic coupling

Let Γp-e be an interface between poroelastic and elastic media. Let ni be
the components of the unit vector normal to the interface and pointing outside
the poroelastic domain into the elastic one. The coupling integral combines the
boundary integral terms resulting from both – poroelastic and elastic – weak
forms (Eqs.(3.1) and (3.2), respectively):

(5.4) CIp-e =

∫

Γp-e

σt
ij nj δui +

∫

Γp-e

φ (Ui − ui)ni δp+

∫

Γp-e

σe
ij n

e
j δu

e
i ,

where ne
i = −ni are the components of the unit normal vector pointing out-

side the elastic domain (and into the poroelastic medium). Now, the following
coupling conditions must be met at the interface:

(5.5) σt
ij nj = σe

ij nj , (Ui − ui)ni = 0, ui = ue
i .

The first condition states the continuity of total stress tensor, the second one
expresses that there is no mass flux across the interface, and the last one assumes
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the continuity of the solid displacements. The last condition involves also the
equality of the variations of displacements, δui = δue

i . Now, applying the coupling
conditions for the coupling integral (5.4) results in

(5.6) CIp-e = 0.

This is similar to the result obtained for coupling between two poroelastic
domains: the coupling between poroelastic and elastic media is also naturally
handled [27, 28].

5.3. Poroelastic-acoustic coupling

Now, the coupling between poroelastic and acoustic media will be discussed.
Let Γp-e be an interface between a poroelastic material and an acoustic medium,
with ni being the components of the unit vector normal to the interface and
pointing outside the poroelastic domain (and into the acoustic medium), whereas
na

i are the components of the similar unit normal vector pointing in the opposite
direction; therefore, in every point of the interface na

i = −ni. The coupling
integral is a combination of the boundary integral terms from the poroelastic
weak form (3.1) and the acoustic weak form (3.18):

(5.7) CIp-a =

∫

Γp-a

σt
ij nj δui +

∫

Γp-a

φ (Ui − ui)ni δp+

∫

Γp-a

1

ω2̺a
pa
|i n

a
i δp

a.

The coupling conditions between the two media express the continuity of (total)
stresses, (total) normal displacements, and pressure – respectively:

(5.8) σt
ij nj = −p ni,

1

ω2̺a
pa
|i n

a
i = ut

i n
a
i , p = pa.

Now, using these conditions and the expression for the total displacements of
poroelastic medium, ut

i = (1 − φ)ui + φUi, the coupling integral (5.7) [27, 28]
simplifies to

(5.9)

CIp-a = −
∫

Γp-a

p ni δui +

∫

Γp-a

φ (Ui − ui)ni δp−
∫

Γp-a

[

(1 − φ)ui + φUi

]

ni δp

= −
∫

Γp-a

(

p ni δui + ui ni δp
)

= −
∫

Γp-a

δ(p ui ni).
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5.4. Acoustic-elastic coupling

The coupling integral on an interface Γa-e between the elastic and acoustic
subdomains reads as follows:

(5.10) CIa-e =

∫

Γa-e

1

ω2̺a
pa
|i n

a
i δp

a +

∫

Γa-e

σe
ij n

e
j δu

e
i .

On the interface, the conditions of continuity of the displacements normal to the
interface and normal stresses must be satisfied, that is,

(5.11)
1

ω2̺a
pa
|i n

a
i = ue

i n
a
i , σe

ij n
e
j = −pa ne

i .

These conditions are used for the integral and since on the interface the two unit
normal vectors are in the opposite direction one to another, i.e., na

i = −ne
i , the

interface coupling integral (5.10) simplifies to

(5.12) CIa-e =

∫

Γa-e

(

pa na
i δu

e
i + ue

i n
a
i δp

a
)

=

∫

Γa-e

δ(pa ue
i n

a
i ).

Obviously, this result is also valid and, moreover, complete in the case of a piezo-
electric medium in contact with an acoustic one, since the interface coupling oc-
curs explicitly only between the acoustic problem and its mechanical (i.e., elas-
tic) counterpart in the piezoelectric subdomain. To be formal, one should only
change Γa-e to Γa-pz, and ue

i to upz
i in the formulae given above.

6. Galerkin finite element model of a coupled system of piezoelectric,

elastic, poroelastic and acoustic media

6.1. Weak form of the coupled multiphysics system

Consider a coupled multiphysics system (see the diagram in Fig. 1) made
up of some piezoelectric, elastic, poroelastic, and acoustic subdomains, useful
for analysis of some complex active noise absorbers or insulators. The Galerkin
method will be used to approach the problem by means of finite elements.

To this end, a weak form of the coupled system must be constructed. The
weak form combines all the weak forms for the corresponding problems presented
in Sec. 3. The discussion of coupling interface conditions in Sec. 5 has presented
very important results, namely, that the coupling of two poroelastic domains,
or a poroelastic domain to an elastic one, is naturally handled; that is, the
interface coupling integrals are zero what results from the continuity of the fields
of primary variables. Such result is also straightforwardly obtained for elastic
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p
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Fig. 1. Abstract configuration of a system made up of poroelastic, acoustic, elastic and
piezoelectric media.

and piezoelectric domains. This is not the case of coupling to an acoustical
domain. Therefore, define (for convenience) the following interface: Γa-p,e,pz =
Γa-p ∪ Γa-e ∪ Γa-pz, which is a simple sum of all interfaces where the acoustic
domain is coupled to the poroelastic, elastic, and piezoelectric domains. Now,
the weak form of the coupled system reads

(6.1)
∫

Ωpz

(

− σpz
ij δui|j + ω2̺pz ui δui +Dpz

i δV|i
)

+

∫

Γt
pz

t̂pz
i δui +

∫

ΓQ
pz

Q̂pz δV

+

∫

Ωe

(

− σe
ij δui|j + ω2̺e ui δui

)

+

∫

Γt
e

t̂ei δui +

∫

Ωp

(

P
)

−
∫

Γp
p

p̂ ni δui

+

∫

Ωa

(

− 1

ω2̺a
p|i δp|i +

1

Ka
p δp

)

+

∫

Γu
a

ûa
i n

a
i δp+

∫

Γa-p,e,pz

na
i

(

δp ui + p δui

)

= 0,

where P stands for the integrand of a poroelastic domain and equals

P = − σss
ij δui|j + ω2 ˜̺ui δui −

φ2

ω2 ˜̺ff
p|i δp|i +

φ2

λ̃f

p δp(6.2)

+ φ

(

1 +
˜̺sf

˜̺ff

)

(

δp|i ui + p|i δui

)

+ φ

(

1 +
λ̃sf

λ̃f

)

(

δp ui|i + p δui|i

)

.

Here, ui are the displacements of a piezoelectric or elastic solid, or of the solid-
phase of poroelastic material, V is the electric potential in the piezoelectric
domain and p is the pressure in the acoustic medium or in the pores of poroelas-
tic medium. The variational equation (6.1) must be satisfied for all admissible
variations (i.e., virtual or test functions) of primary variables: δui, δV , and δp.
Furthermore:
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σpz
ij = Cpz

ijkl

uk|l + ul|k

2
+ epz

kij V|k, Dpz
i = epz

ikl

uk|l + ul|k

2
− ǫpz

ik V|k,(6.3)

σss
ij = µs (ui|j + uj|i) + λ̃ss uk|k δij ,(6.4)

and

(6.5) σe
ij = µe (ui|j +uj|i)+λe uk|k δij or (in general) σe

ij = Ce
ijkl

uk|l + ul|k

2
.

Notice that the terms in the first line of the functional (6.1) of coupled multi-
physics system refer to the piezoelectric subdomains, another two terms – to the
elastic subdomains; then, there are two integrals pertaining to the poroelastic
media, and the last line brings terms relevant for the acoustical medium, where
the last integral describes the interface coupling to other media. Obviously, all
material parameters involved in the functional are functions of position defined
on the relevant subdomains. For elastic solids, the first formula in (6.5) refers to
isotropic elastic materials while the second one – to elastic materials in general.

6.2. Galerkin finite element approximation

The discrete equations for a finite element model will be obtained from the
functional (6.1) by using finite element interpolants for the trial and test func-
tions, as stated by the Galerkin method. Remember that i, j, k, l ∈ {1, 2, 3} are
indices referring to the coordinates of the system of reference. Now, new sub-
scripts are introduced for the degrees of freedom of a discrete model, namely:
m,n ∈ {1, . . . Ndof} , where Ndof is the total number of degrees of freedom. For
simplicity and to avoid any inconsistency, the summation convention is in use
also for these subscripts.

Let N u
im, N p

m, N V
m be the interpolants, that is, the so-called global shape

functions defined in the whole domain Ω; they are used to approximate the
fields of displacements, pressure, and electric potential, respectively:

(6.6) ui(x) ≈ N u
im(x) qm, p(x) ≈ N p

m(x) qm, V (x) ≈ N V
m (x) qm,

where qm are the degrees of freedom of discrete model, (x) ≡ (x1, x2, x3). They
form the global vector of degrees-of-freedom, q, and can be divided into five groups
of components as follows:

(6.7)

qm ∈ qui if qm = ui(x) (i = 1, 2, 3),

qm ∈ qp if qm = p(x),

qm ∈ qV if qm = V (x).

Here, qui (i = 1, 2, 3), qp, and qV are subvectors of the vector q, corresponding to
the three mechanical displacements, pressure, and electric potential, respectively.
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The Galerkin method requires that the same shape functions are also used to
approximate the corresponding test functions δui(x), δp(x), δV (x), and using
all these approximations for the functional (6.1) yields eventually the following
system of algebraic equations:

(6.8) Ãmn qn = Fm,

where the governing matrix and the right-hand-side vector can be presented
as an assembled contributions of piezoelectric, elastic, poroelastic and acoustic
subdomains, that is,

Ãmn = Ãpz
mn + Ãe

mn + Ãp
mn + Ãa

mn +Aa-p,e,pz
mn ,(6.9)

Fm = F pz
m + F e

m + F p
m + F a

m.(6.10)

The obtained matrices and vectors contributing to the global system of discrete
equations are the results of integrating – over the relevant subdomains, bound-
aries and interfaces – the terms approximated by the known (i.e., assumed) shape
functions. The relevant integrals defining the component matrices and vectors
are presented below.

Notice that in the formula for the system governing matrix (6.9), there is
also a contribution, Aa-p,e,pz

mn , resulting from coupling on the interface between the
acoustic subdomain and the poroelastic and elastic (or piezoelectric) subdomains
(the naturally-handled coupling between the poroelastic and elastic subdomains
provides no contribution). It will be apparent further below that the system ma-
trix and the first four component-matrices are frequency-dependent, while the
interface-coupling matrix and the right-hand-side vector are not. Therefore, when
carrying out frequency-analysis, these latter quantities (i.e., the boundary or in-
terface terms resulting from the Neumann-type excitations or inter-subdomain
coupling) are to be computed only once, and should be used then for any com-
putational frequency.

The piezoelectric, elastic, poroelastic, and acoustic contribution matrices of
Eq. (6.9) are composed from the following components:

Ãpz
mn = Kpz

mn − ω2Mpz
mn + Lpz

mn +Bpz
mn,(6.11)

Ãe
mn = Ke

mn − ω2M e
mn,(6.12)

Ãp
mn = K̃p

mn − ω2M̃p
mn +

1

ω2
P̃ p

mn − Q̃p
mn − R̃p

mn − S̃p
mn,(6.13)

Ãa
mn =

1

ω2
P a

mn −Qa
mn.(6.14)

The frequency-dependence is explicitly shown in the above formulas. However, in
the case of the poroelastic subdomain matrix (6.13), the frequency-dependence



Fundamentals of multiphysics modelling. . . 365

is also implicit because the component matrices depend on some frequency-
dependent parameters of poroelastic material. Moreover, the component matrices
of the acoustic subdomain matrix (6.14) can also be frequency-dependent, i.e.,
P a

mn = P̃ a
mn(ω), Qa

mn = Q̃a
mn(ω); this happens when the acoustic medium is

a fluid-equivalent model of a porous material with rigid frame rather than a
simple fluid (like the air). Therefore, in the case of porous materials (both, with
rigid and elastic frame), the component matrices for corresponding subdomains
must be recalculated for every computational frequency, whereas in the case of
piezoelectric or elastic media, or perfect fluids, the component matrices need to
be calculated only once, and the corresponding subdomain matrices are then
simply assembled for every computational frequency using Eqs. (6.11), (6.12),
or (6.14), respectively.

The formulae and nomenclature (basing on some physical interpretations)
for all the component matrices and vectors will be given below. Moreover, these
submatrices and subvectors of the discrete system will be visualized in a diagram
(see Fig. 2 on p. 368).

There are four subcomponents in the matrix (6.11) obtained for piezoelectric
subdomain. They are: the stiffness matrix and the mass matrix,

(6.15) Kpz
mn =

1

2

∫

Ωpz

Cpz
ijkl

(

N u
kn|l + N u

ln|k

)

N u
im|j , Mpz

mn =

∫

Ωpz

̺pz N u
im N u

in,

the electric permittivity matrix,

(6.16) Lpz
mn =

∫

Ωpz

ǫpz
ik N V

m|i N V
n|k,

and finally, the piezoelectric coupling matrix,

Bpz
mn =

∫

Ωpz

epz
kij N V

n|k N u
im|j −

1

2

∫

Ωpz

epz
ikl

(

N u
kn|l + N u

ln|k

)

N V
m|i(6.17)

=

∫

Ωpz

epz
ikl

[

N V
n|i N u

km|l − 1

2

(

N u
kn|l + N u

ln|k

)

N V
m|i

]

.

As shown in Eq. (6.13), six component matrices are distinguished for poroe-
lastic subdomain, namely: the stiffness matrix of the skeleton in vacuo and the
mass matrix,
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(6.18)

K̃p
mn =

∫

Ωp

[

µs

(

N u
in|j + N u

jn|i

)

N u
im|j + λ̃ss N u

im|i N u
jn|j

]

,

M̃p
mn =

∫

Ωp

˜̺N u
im N u

in,

the kinetic and compressional energy matrices of the fluid phase,

(6.19) P̃ p
mn =

∫

Ωp

φ2

˜̺ff
N p

m|i N
p
n|i, Q̃p

mn =

∫

Ωp

φ2

λ̃f

N p
m N p

n ,

and finally, the matrix of visco-inertial (or kinetic) coupling and the matrix of
elastic (or potential) coupling, that is, respectively,

R̃p
mn =

∫

Ωp

φ

(

1 +
˜̺sf

˜̺ff

)

(

N p
m|i N

u
in + N p

n|i N
u
im

)

,(6.20)

S̃p
mn =

∫

Ωp

φ

(

1 +
λ̃sf

λ̃f

)

(

N p
m N u

in|i + N p
n N u

im|i

)

.(6.21)

These two coupling matrices can be treated together since they share the same
degrees of freedom (as a matter of fact, they couple the displacement degrees of
freedom with the pressure ones).

The elastic subdomain matrix (6.12) has two component matrices resulting
from the stiffness and inertia of elastic medium. These stiffness and mass ma-
trices read as follows:

(6.22)

Ke
mn =

∫

Ωe

[

µe

(

N u
in|j + N u

jn|i

)

N u
im|j + λe N u

im|i N u
jn|j

]

,

M e
mn =

∫

Ωe

̺e N u
im N u

in.

There are also two component matrices in the case of the acoustic subdomain
matrix (6.14), namely, the kinetic and compressional energy matrix, respectively:

(6.23) P a
mn =

∫

Ωa

1

̺a
N p

m|i N
p
n|i, Qa

mn =

∫

Ωa

1

Ka
N p

m N p
n .

As it has already been mentioned, the acoustic medium contribution to the
governing matrix (6.9) of the system (6.8) arises also from the interface coupling
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to the poroelastic and elastic (or piezoelectric) media. The relevant interface
coupling matrix is computed as

(6.24) Aa-p,e,pz
mn = Aa-p

mn +Aa-e
mn +Aa-pz

mn = −
∫

Γa-p,e,pz

na
i

(

N p
m N u

in + N p
n N u

im

)

.

Finally, the formulae for the component-vectors of the right-hand-side vec-
tor (6.10) of the system of equations (6.8) must be provided; they are:

(6.25)

F pz
m = F pzt

m + F pzQ
m =

∫

Γt
pz

t̂pz
i N u

im −
∫

ΓQ
pz

Q̂pzN V
m ,

F e
m =

∫

Γt
e

t̂ei N u
im, F p

m = −
∫

Γp
p

p̂ ni N u
im, F a

m =

∫

Γu
a

ûa
i n

a
i N p

m.

These vectors arise from the Neumann boundary conditions of the piezoelectric,
elastic, poroelastic, and acoustic subdomain, respectively. Notice that in case of
elastic medium, an imposed pressure or traction results in the Neumann condi-
tion, whereas it is a prescribed displacement in case of an acoustic subdomain. As
for the biphasic theory of poroelasticity, the mixed displacement-pressure formu-
lation renders the imposed-pressure condition as a hybrid one, that is, essential
for the fluid phase and natural for the solid one; the imposed-displacement con-
dition is essential for the solid phase and naturally-handled by the fluid phase
(thanks to the mentioned enhancement of the mixed formulation).

The linear algebraic system of equations (6.8) constitutes a discrete model of
a multiphysics problem involving poroelastic, acoustic, elastic and piezoelectric
media. Figure 1 (see Sec. 6.1) presents a schematic diagram of such a problem.
The coupling interfaces as well as the boundaries for essential and natural condi-
tions are presented. In the case of piezoelectric subdomain the boundary-division
relevant to electrical conditions is skipped. The couplings of poroelastic or acous-
tic media to a piezoelectric material are similar to the couplings of these media
to an elastic material and, for clearness, they are not presented.

Figure 2 shows a diagram of the system of algebraic equations where partic-
ular submatrices and subvectors are visualized. The system describes a discrete
model of the multiphysics problem of coupled poroelastic, acoustic, elastic, and
piezoelectric media. Different interface couplings are manifested by the inter-
sections of the submatrices. Obviously, the sizes of submatrices are irrelevant
since they depend on a particular problem. Thus, components for an acoustic
subdomain may refer to a usually big region of air, yet in this region there is
only one degree-of-freedom per node, and the mesh density can be usually very
coarse (since the wavelength is comparatively very long); therefore, the relevant
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inΩpz, onΓQ
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− ω
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Ke
− ω

2Me
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− ω

2M̃p
−

(
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(
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Fig. 2. Submatrices and subvectors of the global system of algebraic equations for a discrete
model of piezo-elasto-poroealstic structure coupled to an acoustic medium.

contribution to the global matrix of coefficients may be rather limited. On the
other hand, the piezoelectric actuators may occupy very small regions but they
require 4 DOFs per node and dense meshes. Finally, the porous layers will gener-
ally occupy comparatively big regions and moreover, the poroelastic subdomains
require 4 DOFs per node (for the mixed formulation in 3D) and rather dense
meshes, and so their contribution to the global discrete system should be sig-
nificant. Certainly, any contribution is also affected by the used approximation
order. Generally speaking, for the acoustic subdomain linear shape functions
can be used, whereas for the elastic or piezoelectric subdomains the second-
order (quadratic) Lagrange polynomials should be preferred as shape functions
for all the component fields of displacement, as well as for the scalar field of elec-
tric potential. It is important to emphasize that the usage of the second-order
polynomial for the electric potential is quite important for accurate estimation
of voltage amplitudes used in active control. A first-order interpolation would
result in a linear through-thickness variation of the electric potential and that
would neglect the induced potential and the electromechanical coupling would
be partial. The poroelastic subdomain, which requires dense meshes and many
DOFs per node, can be approximated with linear shape functions. Nevertheless,
to prove convergence in the example below, two solutions will be presented: one
with linear and the other with quadratic approximation.
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Fig. 3. The frequency-dependent wavelegths and wave velocities in the dispersive medium of
poroelastic foam.

Obviously, different finite element discretization is required for different sub-
domains, and moreover, the discretization must depend on frequency. Different
materials and media are supposed to interact in modelled problems and the
wave propagation may change drastically between various subdomains, since
the wavelengths are different. Furthermore, there are three waves that propa-
gate with different speeds in poroelastic media: a fast compressional wave and
a shear wave, both originating mainly from the elastic solid of skeleton, and a
slow compressional fluid-borne wave. Moreover, the poroelastic medium is dis-
persive so that the velocities of (compressional) waves depend on frequency. This
can be observed in Fig. 3, which shows the wavelengths and wave speeds for a
poroelastic material used in the example below. Thus, generally speaking, the
subdomains must be discretized into finite elements of sizes sufficiently small
to satisfy the common requirement of several elements per wavelength, and this
should be done for the shortest waves and so for the highest frequency of interest.
It is obvious though, that the required size of elements will vary drastically for
subdomains of various media and for some, let us say, “longer-wavelegth” sub-
domains, the elements in the vicinity of the interfaces with “shorter-wavelegth”
subdomains may also be significantly smaller than the required size, in order to
maintain the geometrical quality of the mesh. These requirements were fulfilled
by the FE mesh used in the example below.

7. Numerical example

Figure 4 (left) presents a simple generic example for two-dimensional analy-
sis of an active-passive acoustic panel. A simple slat-shaped panel is composed
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Fig. 4. A generic two-dimensional configuration of an active-passive acoustic panel and
a finite element mesh for the modelled area ABCD.

of a single layer of highly-absorbing porous material fixed to an aluminium
plate. The porous material is very light, its porosity being 99%. The frequency-
dependent wavelengths and velocities for the three waves propagating in it have
been presented in the previous section, in Fig. 3. The plate is 1 mm-thick and
the thickness of porous layer is 24 mm, so that the total thickness of panel
is 25 mm. The width of panel is 120 mm, whereas its length is considered to
be significantly bigger, so that such slat panel could be modelled using two-
dimensional (plane strain) approach. The panel is put into a 120 mm-wide slit
of a waveguide filled with air. The plate of panel is simply-supported at both
ends (at the walls) and the skeleton of porous layer can freely slide along the
waveguide walls. (Such boundary conditions can be easily realized in practice.)
The panel should allow an active approach: thus, in the centre of the free face
of aluminium plate, a 0.3 mm-thick piezoelectric patch is glued; its width is
20 mm. A plane harmonic acoustic wave propagates in air of the waveguide,
onto the panel. The amplitude of source pressure is p0 = 1 Pa. Depending on
its frequency, the wave can be partially reflected and absorbed by the panel, or
transmitted through it.

By taking advantage of the symmetry, the problem can be modelled using the
rectangular domain ABCD shown in Fig. 4, where a finite-element mesh of the
modelled domain is also presented. Appropriate boundary conditions must be ap-
plied. The rigid-wall or sliding conditions are set on relevant parts of boundaries
AD and BC (in the latter case, these conditions are valid because of the symmetry
plane). On the boundary CD, the free radiation condition is set, or alternatively,
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the impedance boundary condition (using the characteristic impedance of air)
can be set; as a matter of fact it was checked that both approaches give very
similar results. Such conditions simulate for a finite domain (modelled with fi-
nite elements) the fact that there is no reflection at the relevant boundary and
the wave can freely propagate outside the domain. Finally, a radiation condi-
tion with a plane incident pressure wave is set on the boundary AB. (Another
approach, where simply p = p0 is set on the boundary would result in the appear-
ance of some additional cavity resonances.) The used radiation conditions are
special boundary conditions, often called the non-reflecting boundary conditions
(NRBC) [39], which ensure that no (or little) spurious wave reflection occurs
from the boundary. For the case of this time-harmonic analysis, the second-
order implementation of the Givoli and Neta’s reformulation [40] of the Higdon
conditions for plane waves is used.
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Fig. 5. SPL at point C for the passive panel without porous layer and with porous layer
approximated with linear (L) or quadratic (Q) shape functions

Firstly, the behaviour of panel in passive state was analysed. The passive
behaviour means that the piezoelectric patch was simply shunted (no voltage
signal was sent to its electrodes), and the only excitation provided to the system
was by the plane harmonic wave. The passive results are shown in Fig. 5 in the
form of sound pressure level (SPL) curves calculated at point C for a wide range
of frequencies. Remembering that the SPL of source is approx. 94 dB (for the
pressure amplitude p0 = 1 Pa), these curves illustrate the expected reduction of
noise. Three curves are presented for the passive state; namely, two SPL curves
obtained for the poro-elastic panel and an SPL curve obtained for the plate in
absence of the porous layer (in the latter case, the subdomain of porous layer is
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modelled as air using the same mesh of elements). Notice that the two solutions
computed for the system with porous layer are almost identical (Fig. 5), though
the first solution, marked (L), was obtained when the poroelastic and acoustic
domains were approximated with linear shape functions, whereas the second one,
marked (Q), was computed for the approximation with quadratic shape func-
tions. (The elastic and piezoelectric domains were in both cases approximated
with quadratic shape functions.) Both solutions were calculated for the same FE
mesh, so it can also be considered as an example of the P-convergence method
of solution (where, in general, the FE mesh is unaltered and only the poly-
nomial order of approximation is increased). The discrepancies between these
two solutions are very small indeed, and moreover, appear only in the region
of highest frequencies, which means that the assumed FE mesh seems to be
sufficient for the linear approximation and for the quadratic shape functions,
a coarser mesh could be used. Now, from the comparison of these solutions with
the one obtained for the system without porous layer, it is clearly visible that
for frequencies above 1.5 kHz the performance of the panel is better that that
of the plate, and above 3 kHz this improvement reaches and exceeds 6 dB. The
absorbing effect of a rather thin porous layer allows for significant reduction
of vibro-acoustic transmission in higher frequencies. An important observation
concerns two peaks that appear at approx. 240 Hz and 1700 Hz. They are the
vibro-acoustic noise resulting from the first and second eigenmode vibrations of
the plate, caused by the acoustic wave excitation of relevant frequency. It can be
observed that the porous layer damps slightly the effect of noise emitted at plate
eigenfrequencies; it is not so in absence of the porous layer (the inherent plate
damping is comparatively very small and it wasn’t considered in the model of
elastic plate). Nevertheless, an active approach is necessary in order to reduce
the vibro-acoustic transmission not only at these eigenfrequencies, but for lower
frequencies in general.

Figure 6 shows some results of active analyses carried out for the panel ex-
cited by the plane acoustic wave with harmonic frequency of 240 Hz (which is
approximately the first eigenfrequency of the plate) and a voltage signal of the
same frequency applied to the electrodes of the piezoelectric patch in order to
reduce the noisy vibrations. The generated/transmitted low-frequency noise was
observed at point C for different amplitudes of the voltage signal in the range
from 0 to 1 V. (It is worth to mention that a similar noise would be observ-
able even farther from the plate since for the first eigenmode shape, there is
no auto-cancellation of waves generated by the neighbouring parts of the plate
and the total emitted wave quickly becomes plane in the waveguide.) The sound
pressure level computed at point C for different voltage amplitudes is shown in
Fig. 6: from this SPL curve it can be assessed that the necessary amplitude of
the voltage signal is approximately 0.9 V. One should remember, however, that
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Fig. 6. SPL at point C at 240 Hz for different values of the voltage amplitude of the
active signal.

in practice, the noisy vibrations are often induced by causes stronger than im-
pinging acoustic waves, and would generally require higher voltages for active
control. Finally, it was checked that such localization of piezo-patch actuator (in
a node of the relevant eigenmode) does not allow to reduce the noisy vibrations
at 1700 Hz.

8. Conclusions

The theoretical study presented in this paper constitutes a complete basis for
the development of numerical tools, necessary for accurate multiphysics model-
ing of active vibroacoustical problems involving poroelastic, elastic, piezoelec-
tric, and acoustic media. The discrete model derived according to the Galerkin
method is ready for the implementation as a finite element code. The fully-
coupled, multiphysics system has been developed in order to model hybrid vi-
broacoustical attenuators (absorbers, insulators) in the form of active-passive
liners, panels, or composites. The system allows to use the advanced theory of
poroelasticity to model porous media so that the mechanics of elastic skeleton is
coupled with the acoustic wave propagation in the fluid in pores. The active ele-
ments can be modeled using the accurate (not reduced) model of piezoelectricity.
Moreover, all the possible couplings on the interfaces between different media are
also taken into account. Finally, the developed fully-coupled FE model is used to
solve a generic two-dimensional example of the defined problems, and issues con-
cerning finite element approximation and convergence are also discussed. Some,
at least partial, experimental validation of the proposed system (since no porous
media are involved) will be presented in [41] for a problem of active reduction of
structure-borne noise for a thin aluminium plate, with actuators in the form of
piezoelectric patches.
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Appendix A. Derivation of the mixed displacement-pressure

formulation of poroelasticity

Equations for the mixed formulation of poroelasticity will be derived here to
show that it has the form of a classical coupled fluid-structure problem, involv-
ing the dynamic equations of the skeleton in vacuo and the equivalent fluid in
the rigid skeleton limit. First, notice that the fluid-phase stress tensor can be
expressed as

(A.1) σf
ij = −φ p δij

where p is the pressure of fluid in the pores (it should not be mistaken for the
pressure of fluid phase which equals φp). Using this relation for the constitutive
equation of fluid phase (2.8) yields the following expressions:

(A.2) p = − λ̃f

φ
Uk|k − λ̃sf

φ
uk|k, or Uk|k = − φ

λ̃f

p− λ̃sf

λ̃f

uk|k.

They are valid for the general case since only a constitutive equation has been
used. Now, however, the interest is restricted to the harmonic oscillations (with
the angular frequency ω). In this case, by using Eq. (A.1) in the harmonic equilib-
rium equation of fluid phase (2.5), one can express the fluid-phase displacements
as a function of the pressure in the pores and the solid-phase displacements:

(A.3) Ui =
φ

ω2 ˜̺ff
p|i −

˜̺sf

˜̺ff
ui.

And this in turn can be used for Eq. (2.4); so now, the harmonic equilibrium for
the solid phase can be expressed as follows:

(A.4) σss
ij|j + ω2 ˜̺ui + φ

(

˜̺sf

˜̺ff
− λ̃sf

λ̃f

)

p|i = 0 where ˜̺ = ˜̺ss −
˜̺2
sf

˜̺ff
.

Here, a new stress tensor is introduced

(A.5) σss
ij = µs (ui|j + uj|i) + λ̃ss uk|k δij where λ̃ss = λ̃s −

λ̃2
sf

λ̃f

.
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This tensor depends only on the solid-phase displacements and has an interesting
physical interpretation: it is called the stress tensor of the skeleton in vacuo
because it describes the stresses in the skeleton when there is no fluid in the
pores or when at least the pressure of fluid is constant in the pores. This can
be easily noticed when putting p(x) = const. in Eq. (A.4); then, the last term
(which couples this equation with its fluid-phase counterpart) vanishes and so
the remaining terms clearly describe the behaviour of the skeleton of poroelastic
medium filled with a fluid under the same pressure everywhere. The new stress
tensor is related to the solid phase stress tensor in the following way:

(A.6) σs
ij = σss

ij − φ
λ̃sf

λ̃f

p δij.

Now, the fluid-phase displacements are to be eliminated from the fluid-phase
harmonic equilibrium equations (2.5). To this end, Eq. (A.1) and the second
formula from Eqs. (A.2) are used for Eq. (2.5) to obtain (after multiplication
by −φ/ω2 ˜̺ff)

(A.7)
φ2

ω2 ˜̺ff
p|ii +

φ2

λ̃f

p− φ

(

˜̺sf

˜̺ff
− λ̃sf

λ̃f

)

ui|i = 0.

This equation pertains to the fluid phase but the last term couples it with the
solid-phase equation (A.4). This term vanishes for the rigid body motion of the
skeleton (that is, when ui = const.). This means that the main terms describe
the behaviour of the fluid when the skeleton is motionless or rigid. Notice also
that the expression which stands by ui|i in the coupling term is similar to the
one standing by p|i in the coupling term of the solid-phase equation (A.4). This
feature is quite important when constructing the so-called weak variational for-
mulation (and it justifies to present Eq. (A.7) in such a form), since it permits to
simplify the handling of some coupling conditions at the interface between two
different poroelastic media.

Equations (A.4), and (A.7) together with the constitutive relation (A.5),
constitute the mixed displacement-pressure formulation of harmonic isotropic
poroelasticity. For completeness, the total stresses and total displacements in
terms of the fluid pressure and solid-phase displacements are given here:

σt
ij = σss

ij−φ
(

1+
λ̃sf

λ̃f

)

p δij = µs (ui|j+uj|i)+

[

λ̃ss uk|k−φ
(

1+
λ̃sf

λ̃f

)

p

]

δij ,(A.8)

ut
i =

[

1−φ
(

1+
˜̺sf

˜̺ff

)]

ui+
φ2

ω2 ˜̺ff
p|i.(A.9)
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