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New feature of the solution of a Timoshenko beam
carrying the moving mass particle
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THE PAPER DEALS WITH the problem of vibrations of a Timoshenko beam loaded
by a travelling mass particle. Such problems occur in a vehicle/track interaction
or a power collector in railways. Increasing speed involves wave phenomena with
significant increase of amplitudes. The travelling speed approaches critical values.
The moving point mass attached to a structure in some cases can exceed the mass of
the structure, i.e. a string or a beam, locally engaged in vibrations. In the literature,
the travelling inertial load is often replaced by massless forces or oscillators. Classical
solution of the motion equation may involve discussion concerning the contribution
of the Dirac delta term, multiplied by the acceleration of the beam in a moving point
in the differential equation. Although the solution scheme is classical and successfully
applied to numerous problems, in the paper the Lagrange equation of the second kind
applied to the problem allows us to obtain the final solution with new features, not
reported in the literature. In the case of a string or the Timoshenko beam, the inertial
particle trajectory exhibits discontinuity and this phenomenon can be demonstrated
or proved mathematically in a particular case. In practice, large jumps of the travelling
inertial load is observed.
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1. Introduction

IN ENGINEERING PRACTICE, problems with travelling masses are of special in-
terest. The influence of the mass attached locally to the structure can not be
neglected (Fig. 1). We can only mention that the mass of a single train wheel
is 500 kg and a wheelset has a mass equal to 1500 kg. A similar case occurs
in the problem with power collectors in railways. The speed of a rail vehicle in
certain circumstances can reach the critical speed. In such a case, the wave phe-
nomena significantly differ from the responses of systems subjected to massless
loads.
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Fic. 1. Examples of problems with a mass ms travelling over a string or a beam m.

There are two types of the problems with a travelling load: a moving massless
force and a moving inertial force (Fig. 2). In the second case, the moving force
is accompanied by the mass placed directly on a structure: a string, a beam or
a plate. The analysis of the moving massless force is relatively simple and has
been treated in numerous papers [1, 2]. We include in this group all the papers
devoted to the travelling oscillator, i.e. a mass particle joined to the base with
a spring [3]. Although the authors call this type of load an inertial one, we consider
it as a massless force generated only by the particle’s inertia. The inertial force
moving over the structure is widely reported in the literature [4-12]. These are
mainly semi-analytical solutions or, as in the case of the mass particle moving
along a massless string, we know the full analytical solution [13].
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Fic. 2. a) Massless load, b) inertial load, c¢) inertial load with a massless force.

In the paper we present the semi-analytical solution of the problem with
a mass travelling on the simply supported Timoshenko beam, by using of the
Lagrange equation of the second kind. The alternative type of the solution gives
the Fourier transformation in a finite domain [7], or integro-differential solution
[8]. Unfortunately, the Bernoulli-Euler beam considered in the paper does not
exhibit the discontinuity of the mass trajectory. In [9] the authors formulated and
solved an integro-differential equation. They found a continuous function that
satisfied the given equation. However, they did not consider the Timoshenko
beam. The classical method of the Fourier transformation with respective com-
ments is only mentioned below. For details, the reader is addressed to reference
papers.
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Two coupled motion equations of the Timoshenko beam under a moving mass
particle are given by the equation

Pw(x,t) GA (Pw(x,t) O(a,t)\
L) PA 5 _T< 922 Oz >‘q<x’t)’
' 0% (z, 1) ?Y(z,t)  GA [Ow(w,t) B
7 gyt = S8 (M v <o
where
(1.2) q(z,t) = §(x — vt)m (g - %) :

The acceleration of the moving mass particle at a constant speed v is called the
Renaudot formulation
dPw(vt,t)  0*w(x,t)
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The solution given by the Fourier transformation starts from the partial differ-
ential equation (1.1), and by the direct mathematical transformation is reduced
to the second-order matrix ordinary differential equation. The last stage is per-
formed numerically and for this reason we call this solution semi-analytical.
This solution has one disadvantage. The formulation (1.2) contains the term
§(x — vt)m d*w(vt,t)/dt?> which defines the inertial force of the mass particle in
space = and time t. The Dirac delta contributes discontinuities to the formula-
tion. Although the solution can be defined, we can not prove that it verifies the
equation of the problem. That is why we intend to apply another method which
avoids the discontinuous formulation. In such a case we could eliminate a weak
point of the investigation.

The problem of the moving mass is important since in the case of a string
and a simply supported Timoshenko beam, the results exhibit discontinuity of
the mass trajectory at the end support. This phenomenon in the case of a string
was presented and discussed for the first time in our former paper [14] and
in the case of a massless string it was mathematically proved. It can be also
noticed in engineering practice. In railway traction systems the cables are bro-
ken just before the end support. Also the road plates are destroyed at the end
parts.

Travelling loads are generally unlikely to be solved by commercial codes.
Most of the existing systems for dynamic simulations usually do not allow us to
solve even simple problems comprising travelling massless point forces, travel-
ling distributed non-inertial loads and even the travelling and elastically joined
moving substructures. Inertial moving loads are not completely implemented in



330 B. Dyniewicz, C. I. BAJER

computer systems. The intuitive approach to the discrete analysis with the ad
hoc lumping of forces and masses to neighbouring nodes always fails. Sometimes,
especially in the case of beams, numerical solutions are limited, but significantly
inaccurate. We emphasise here that the travelling mass problem is not trivial,
even if at the first sight it seems to be such a problem.

2. Mathematical model of a travelling mass particle

The Dirac delta term which describes the point distribution of the quan-
tity which is analysed in partial differential equations (1.1), results in solutions
which are not solutions in the classical sense. We must here extend the mean-
ing of the solution. We assume that each limit of the almost uniformly conver-
gent sequence of the classical solutions will be considered as a general solution
(distributive solution). Distributions are defined then as limits of sequences of
continues functions. It is a base of the sequential theory of distributions [15].
Another known theory is called functional [16]. For each Schwartz distribution
(functional), exactly one sequential distribution exists in the Mikusinski—Sikorski
sense, and vice versa. Bijection exists [17]. Distributions are then considered as
generalised functions. Distributions are introduced to give mathematical cre-
ations, for example the Dirac delta §(z). A correct sense. The important feature
of distributions is the differentiability, which not always occurs in the case of
functions.

Continuous functions in a constant interval A <z < B (—o0o < A < B < o)
are the starting point of the sequential theory of distributions. If the sequence
fn(x) of continuous functions is almost uniformly convergent to a function f(z),
it is also distributively convergent to f(z) [15]. Each convergent sequence of dis-
tributions can be differentiated term by term, analogously to a series. Finally,
each sequence uniformly convergent is almost uniformly convergent. It enables
differentiation of an arbitrary function in a distributive sense, change of the order
of differentiation and computation of limits without restrictions. In a classical
analysis, such a statement is generally false or requires supplementary assump-
tions. Thus the series uniformly convergent is also distributively convergent.

Energetic description of the issue is removed as a weak point of analysis. The
kinetic energy of a moving mass particle m travelling with a constant speed v is
described by the equation

1 dw(vt,)\* 1

Effect of the moving force of gravity mg can be written as the potential energy:

(2.2) U = mgw(vt, ).
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A moving mass is always in a pure rigid contact with the beam. The displacement
of the point of a beam, being in contact with the mass particle, is described by
the same relation as a travelling point mass motion.

3. Analytical formulation

Let us consider a simply supported Timoshenko beam with the constant
cross-sectional area A, mass density p and moment of area I. The examined
beam has a finite length [. The kinetic and potential energy of the beam take
a form

(3.1) - ;pAO/l <aw 2,) > dx + plo/l <aw((;§,t ) de,
l
(3.2) :% 0/(8‘/’ z,t) > GTAO/ (8“’ 28 t))Zd:c.

Here F is the Young’s modulus, G is the shear modulus and k is the shear
coefficient, which depends on the shape of the beam cross-section.
We impose the boundary conditions

l\.')lr—t

w(x,t)|,_g =0, w(z,t)|,_, =0,
(3.3) oY(x,t) (. t)
=0, =0,
O =0 O x=l

and initial conditions

ow(x,t
w(x,t)|,_, =0, 7((% ) =0,
t=0
4 D (w, t)
x,t
Y(x, )],y =0, ’ =0.
t=0 825 =0

We assume the general solution in the following form:

(3.5) wiz,t) =Y Xi(@)&t),  dla,t) = Xoj(a)y(t)
j=1 j=1

where Xi;(z) and Xg;(x) are orthogonal functions which fulfil the boundary
conditions (3.3):
jTx jmT

(3.6) Xij(z) =sin - Xsj(z) = cos -
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The displacement of the beam in a contact point with a travelling mass is
expressed by the equation

t
(3.7) w(vt, t) Zé’j sin ]771) :

According to the differentiation rule, we obtain the following formula:

dw vt, t) mut - jmv jmut
(3.8) Z &;(t) T + ij(t)T cO8 T
j=1

The kinetic energy of the moving inertial point (2.1) is expressed as a function
of both the generalised coordinates and the derivative of generalised coordinates
with respect to time:

(3.9) T = f(€,€).

Required derivation of the above quantity results in essential consequences. Ac-
cording to the Hamilton’s principle for a conservative system, we can write the
well-known law

(3.10) / ST — U)dt =

Equation (3.10) with respect to (3.9) is transformed to the following form:

to
(3.11) /(—555 agdf a€5§>dt:0.

Integration by parts with the assumption of 0§(t1) = 0&(t2) = 0 results in the
Lagrange equation of the second kind. The general form of it is given below

d (0T or ou

According to the formula for kinetic and potential energy of the beam, we
obtain two coupled motion equations. These two equations can be reduced to two
uncoupled equations with £ and ~y. Let us focus our attention on a displacement
case:
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(3.13)  &(0+8Y L1k DE)+28 S (w2l b, ) 423, k. £)én(D)
k=1 k=1
2 .
FARE WO+ D (G DE )

n

+> (90 A1 s 1) +6B(wswr fa(3, by t)—wi f1(, B, 1)1k (2)

k=1
+2) 90wk f3(d, k, 1) =B(Bw;wi fa (G, k. 1) +2w} f3.(4, ks 1)) 16k (£)
k=1

{1 n
+%c%c%@(t)—2[g(j)wif1 (J, ks 1) +B(2w;wi f4(j, b, t) —wip f1 (4, k. 1)) (1)

k=1
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where

|G |E 2m kmv jmv
(3 ) Cl k’p’ 02 p ’ /8 IOAZ’ wk l 9 w] l 9

J1(J, k,t) = sinw;t sinwyt,

f2(4, k,t) = cosw;t sinwyt,
(3.15) i i

f3(j7 kat) = Sinwjt COS wit,

fa(j, k,t) = coswjt cos wyt,

(3.16) o =5(F4+2(2-1)).

Coefficients ¢; and co are the shear and bending wave velocity in a Timoshenko
beam, respectively. Lagrange methods lead us to the system of differential equa-
tions (3.13) with variable coefficients. This system of equations can not be easily
solved in an analytical way and we must integrate it numerically. We perform
this integration by means of the Runge-Kutta method. Equation (3.13) can be
written in a short form

(3.17) Té 4+ UE + ME + Cf + Ke = P.

Matrices ', U, M, C, K and a vector P are given in the Appendix. Formula
(3.17) constitutes a system of ordinary differential equations of the 4th order
with respect to time, hence we need two additional initial conditions [18]:
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02w (z, 1)
at?

1

= p_Aq(xa t)

O3w(z,t) 1 9q(z,1)
t:O, ot =g PA Ot 15:07

(3.18)

t=0

where ¢(z,t) is given by the equation (1.2). According to the Fourier sine trans-
formation in a finite range of the initial conditions (3.4) and (3.18), we can write
initial subvectors for displacements in the following form:

‘ . Puw;
(319)  &M)|—g=0. &®)],g=0, &W],,=0. &)= p_jxj'

Finally, the displacements of the arbitrary point of the beam can be determined
from the following relation (see Eq. 3.5):

(3.20) w(z,t) = é}@‘“ sin <?)

4. Examples

We use dimensionless data L=1, p=1, A=1,1 =001, E=1,G =04
and k = 1. These data result in the shear wave speed ¢; = 0.63 and the bending
wave speed co = 1.0 (Eq. (3.14)). Results of the semi-analytical solution are
depicted in Fig. 3. Displacements are related to the amplitude of the quasi-
static displacement of the mid-point beam wy. A more detailed presentation
of the Timoshenko beam motion is given in Fig. 4. Both types of waves are
noticeable. We emphasise the sharp edge of the wave and the reflection from the
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Fic. 3. Semi-analytical solution of the mass trajectory moving along the Timoshenko beam
at various velocities (¢1 = 0.63, c2 = 1.00).
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F1G. 4. Deflection in time of the Timoshenko beam under the load moving at the speed
v=0.5ca.

support and from the moving mass point. The velocity v = 0.5¢o is characteristic
in our example, since the discontinuity of the mass trajectory is well visible.
Further tests will be performed with this velocity. The convergence rate is low
and we examined it in relation to the number of terms (Fig. 5), taken in the
Eq. (3.20). The plot with low number of terms is smooth in the neighbourhood
of the support. The increasing number of terms makes the plot of the last 1 per
cent of the trajectory sharp. It can be compared with the same phenomenon
obtained for a string [14].
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F1G. 5. The convergence of the mass trajectory travelling with v= 0.5¢2 near the end point,
for various numbers of terms (10,20, ...,200) in Eq. (3.20).
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Examples show the same type of discontinuity of the solution in the case
of the Timoshenko beam. Although we can not prove mathematically this fea-
ture in the case of the inertial Timoshenko beam matter, we can say that for
practical use, the differential equation of the Timoshenko beam motion under
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F1a. 6. Trajectory of a mass travelling at the speed: a) v =0.1, b) v = 0.2, ¢) v = 0.3,
d)v=04,e)v=0.5and f) v =0.6 (c1 =0.63, co = 1.00).



NEW FEATURE OF THE SOLUTION OF A TIMOSHENKO BEAM. . . 337

the assumption of small displacements, involves the discontinuity of the struc-
ture in the neighbourhood of the support. Such a phenomenon is observed in
real structures (a track or bridge plates) in a form of high value impacts. The
Bernoulli-Euler beam does not exhibit the discussed discontinuity of the solu-
tion. Comparison of trajectories of the moving inertial point travelling along
the Euler beam and the Timoshenko beam illustrates Fig. 6. Figure 7 depicts
the deflection of the Timoshenko beam in time and reflections of the transverse
wave c1, and longitudinal wave co at the subcritical and critical speed.
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Fic. 7. Simulation of the Timoshenko beam under the moving inertial point at the speed:
a)v=02,b)v=04,c)v=06,d) v=0.7,¢e) v=0.9 and f) v = 1.0 (¢; = 0.63, c2 = 1.00).
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5. Conclusions and discussion

In the paper we have derived the solution of the mass particle travelling on
the Timoshenko beam. The problem is complex, since the product of the Dirac
delta function with the acceleration commonly used in literature to problems
with moving point mass, contributes certain discontinuities to the governing
differential equation. The Lagrange equation of the second kind allowed us to
solve the problem and to prove correctness of the results. They are identical with
the direct transformation of differential equations of motion.

The solution of the problem discussed here can not be simply applied to
complex problems, for example strings, beams, or three-dimensional bodies, sub-
jected to a system of masses or composed of segments with variable rigidity.
In such cases, discrete methods should be applied. However, it enables us to
exhibit qualitative features or to validate numerical solutions. The existing nu-
merical approaches fail in the case of inertial loads. Although solutions converge
in some cases, the error in the case of the mass motion, compared with the
critical speed, is significant. A numerical solution with the space-time finite ele-
ment method was elaborated in [19]. The space-time finite element carrying the
mass particle enables us to incorporate the local mass effect to classical general
codes.

Appendix
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