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Exact solutions for the longitudinal flow of a generalized
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This paper deals with the longitudinal flow of a generalized Maxwell fluid in an
infinite circular cylinder, due to the longitudinal variable time-dependent shear stress
that is prescribed on the boundary of the cylinder. The fractional calculus approach
in the constitutive relationship model of a Maxwell fluid is introduced. The velocity
field and the resulting shear stress are obtained by means of the Laplace and finite
Hankel transforms and satisfy all the imposed initial and boundary conditions. The
solutions corresponding to ordinary Maxwell fluids as well as those for Newtonian
fluids are obtained as limiting cases of our general solutions. Finally, the influence of
the fractional coefficient on the velocity and shear stress of the fluid is analyzed by
graphical illustrations.

Key words: generalized Maxwell fluid, velocity field, shear stress, exact solutions.

Copyright c© 2010 by IPPT PAN

1. Introduction

Generally speaking, rheological properties of materials are specified
by their so-called constitutive equations. The simple constitutive equation for
a fluid is a Newtonian one, and the classical Navier–Stokes theory is based on
this equation. The mechanical behavior of many fluids is well-described by this
theory. However, there are many rheological complex fluids such as polymer so-
lutions, blood, heavy oils and many emulsions, which are inadequately described
by a Newtonian constitutive equation that does not show any relaxation and re-
tardation phenomena. For this reason, various fluid concepts have been proposed
and studied by different authors.

The fluids that cannot be modeled by Navier–Stokes equations are called
non-Newtonian fluids. The term of non-Newtonian is used to classify all fluids in
which shear stress is not directly proportional to the shear rate. Among the many
constitutive assumptions that were employed to study the non-Newtonian fluid
behavior, rate-type fluids [1] as well as differential-type fluids [2] have gained the
acceptance of both the theoreticians and experimentalists. The first viscoelas-
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tic rate-type model is due to Maxwell [3] and this model had some success in
describing the response of some polymeric liquids.

In the last decade, many authors have made use of rheological equations with
fractional derivatives [4, 5] to describe the properties of polymers. In general, the
constitutive equations with fractional derivative are obtained from the known
non-Newtonian models by replacing the ordinary time derivatives by deriva-
tives of fractional order, e.g. [6]. Other very important models regarding non-
Newtonian fluids with a fractional derivatve were investigated by Tong et al. [7,
8], Akhtar et al. [9], C. Fetecau et al. [10], Corina Fetecau et al. [11, 12]
and Vieru et al. [13].

In this paper, we study the unsteady longitudinal flow of a generalized
Maxwell fluid with a fractional derivative model within a circular cylinder of
radius R. Generally, in one dimension, the constitutive equation of fractional
Maxwell fluid can be expressed as [14, 15]

(1.1) τ(t) + λβDβ
t τ(t) = µ

dε(t)

dt
,

where τ(t) is the shear stress, ε(t) is the shear strain, λ is the relaxation time, µ
is the dynamic viscosity and β is the fractional parameter such that 0 ≤ β ≤ 1.
AlsoDβ

t is the Riemann–Liouville fractional differential operator defined as [4, 5]:

(1.2) Dβ
t [f(t)] =

1

Γ (1 − β)

d

dt

t
∫

0

f(u)

(t− u)β
du, 0 < β < 1,

where Γ (·) is the Gamma function. This model can be reduced to the ordinary
Maxwell model when β → 1, because in this case D1

t = df(t)/dt. Furthermore,
this model can be reduced to the classical Newtonian model for β → 1 and
λ→ 0.

The flow of the fluid is generated by the shear stress which is prescribed on
the surface of the cylinder in the form

τ(R, t) =
f

λ

∞
∫

0

(t− s)aGβ,0,1(−1/λ, s)ds, t > 0,

where f is a constant, a ≥ 0 and Ga,b,c(·, ·) is the generalized G-function [16].
The velocity fields and the resulting shear stresses, obtained by means of the
Laplace and finite Hankel transforms, are presented in terms of generalized G-
functions. The solutions corresponding to ordinary Maxwell fluids or Newtonian
fluids are obtained as special cases of our solutions. Finally, for comparison, the
profiles of the velocity v(r, t), for Newtonian, Maxwell and generalized Maxwell
fluids, for different values of the fractional coefficient β and for a constant shear
stress on the boundary, are plotted as functions of cylindrical coordinate r.



Exact solutions for the longitudinal flow. . . 307

2. Governing equations

Let us consider an incompressible fractional Maxwell fluid at rest in an
infinite circular cylinder of radius R. At time t = 0+, the cylinder is pulled
by a time-dependent shear stress along its axis. Obviously, the motion is axial
symmetric, so we choose the cylindrical coordinates (r, θ, z) and the components
of the velocity are vr = 0, vθ = 0, vz = v(r, t). Under the above assumptions,
the constitutive equation of fractional Maxwell fluid is [17, 18]

(2.1) τ(r, t) + λβDβ
t τ(r, t) = µ

∂v(r, t)

∂r
,

where τ(r, t) = τrz(r, t) is the shear stress.
In absence of the pressure gradient in the axial direction and neglecting the

body forces, the balance of linear momentum leads to the partial differential
equation [19]

(2.2) ρ
∂v(r, t)

∂t
=

(

∂

∂r
+

1

r

)

τ(r, t),

where ρ is the constant density of the fluid.
By eliminating τ(r, t) between Eqs. (2.1) and (2.2) we acquire the following

motion equation of fractional Maxwell fluid:

(2.3) (1 + λβDβ
t )
∂v(r, t)

∂t
= ν

(

∂2

∂2r
+

1

r

∂

∂r

)

v(r, t), r ∈ (0, R), t > 0,

where ν = µ/ρ is the kinematic viscosity of the fluid. The appropriate initial
and boundary conditions are

v(r, 0) =
∂v(r, 0)

∂t
= 0, τ(r, 0) = 0, r ∈ [0, R),(2.4)

(1 + λβDβ
t )τ(R, t) = µ

∂v(r, t)

∂r

∣

∣

∣

∣

r=R

= fta, t > 0,(2.5)

where f is a constant and a ≥ 0.

3. Analytical solution of the model

The velocity field and the associated shear stress corresponding to the afore-
mention problem will be determined by means of the Laplace and finite Han-
kel transforms. Applying the Laplace transform to Eqs. (2.3) and (2.5)2, using
(2.4)1,2 and formulae

(3.1) L{Dβ
t f(t)} = qβL{f(t)}, L{ta} =

Γ (a+ 1)

qa+1
, a > −1,



308 I. Siddique

we obtain the following problem with boundary condition (for simplicity, we take
λβ = λ hereinafter):

(q + λqβ+1)v̄(r, q) = ν

(

∂2

∂r2
+

1

r

∂

∂r

)

v̄(r, q),(3.2)

∂v̄(r, q)

∂r

∣

∣

∣

∣

r=R

=
f

µ

Γ (a+ 1)

qa+1
,(3.3)

where v̄(r, q) =
∫

∞

0 v(r, t)e−qtdt is the Laplace transform of function v(r, t) and
q is the transform parameter.

In the following, let us denote by [20]

(3.4) v̄H(rn, q) =

R
∫

0

rv̄(r, q)J0(rrn)dr,

the finite Hankel transform of v̄(r, q), where rn, n = 1, 2, 3, . . . are the positive
roots of the transcendental equation J1(Rr) = 0. In the above relations, Jν(·) is
the first-kind, ν-order Bessel function.

By using the following formulae [21, 22]

(3.5)

d

dr
J0[u(r)] = −J1[u(r)]u

′(r),

d

dr
J1[u(r)] =

[

J0[u(r)] −
1

u(r)
J1[u(r)]

]

u′(r),

we obtain that

(3.6)

R
∫

0

r

(

∂2

∂r2
+

1

r

∂

∂r

)

v̄(r, q)J0(rrn)dr =
RJ0(Rrn)

µ

∂v̄(R, q)

∂r
− r2nv̄H(rn, q).

Applying the Hankel transform to Eq. (3.2) and taking into account Eqs. (3.3)
and (3.6), we find that

(3.7) v̄H(rn, q) = RfJ0(Rrn)Γ (a+ 1)
1

ρqa+1(q + λqβ+1 + νr2n)
.

Now, for a more suitable presentation of the final results, we rewrite Eq. (3.7)
in the following equivalent form:

(3.8) v̄H(rn, q) =
RfJ0(Rrn)

µr2n

Γ (a+1)

qa+1
−RfJ0(Rrn)

µr2n

Γ (a+1)

qa

1+λqβ

q+λqβ+1+νr2n
.
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The inverse Hankel transform of the function v̄H(rn, q) is [20]

(3.9) v̄(r, q) =
fr2

2µR

Γ (a+ 1)

qa+1
− 2f

µR

∞
∑

n=1

J0(rrn)

r2nJ0(Rrn)

Γ (a+ 1)

qa

1 + λqβ

q + λqβ+1 + νr2n
.

In order to determine the inverse Laplace transform of function v̄(r, q), we in-
troduce the following notations:

F1(q) =
Γ (a+ 1)

qa+1
, F2(q) =

Γ (a+ 1)

qa
,(3.10)

F3(rn, q) =
1 + λqβ

q + λqβ+1 + νr2n
=

qβ−1 +
1

λ
q−1

(

qβ +
1

λ

)

+ νr2
n

λ q−1

(3.11)

=

∞
∑

k=0

(−νr2n
λ

)k qβ−k−1 +
1

λ
q−k−1

(

qβ +
1

λ

)k+1
.

Using (3.1)2 and the known result [16, Eq. (97)]

(3.12) L−1

{

qc

(qb − p)d

}

= Gb,c,d(p, t), Re(bd− c) > 0, Re(q) > 0, |p| > |qa|,

where

(3.13) Gb,c,d(p, t) =

∞
∑

j=0

Γ (d+ j)pj

Γ (d)Γ (j + 1)

t(d+j)b−c−1

Γ [(d+ j)b− c]

is the generalized G-function, we find that the inverse Laplace transforms of
functions Fi, i = 1, 2, 3, are [23]:

f1(t) = L−1{F1(q)} = ta, a ≥ 0,

f2(t) = L−1{F2(q)} = ata−1, a > 0,
(3.14)

f3(rn, t) = L−1{F3(rn, q)}(3.15)

=

∞
∑

k=0

(−νr2n
λ

)k[

Gβ,β−k−1,k+1

(

− 1

λ
, t

)

+
1

λ
Gβ,−k−1,k+1

(

− 1

λ
, t

)]

.

Applying the inverse Laplace transform to Eq. (3.9), using (3.12), (3.14),
(3.15) and the convolution theorem, we find the velocity field v(r, t) under the
following forms.
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If a > 0, then

(3.16) v(r, t) =
fr2

2µR
ta − 2f

µR

∞
∑

n=1

J0(rrn)

r2nJ0(Rrn)
f2(t) ∗ f3(rn, t),

and if a = 0, then

(3.17) v(r, t) =
fr2

2µR
− 2f

µR

∞
∑

n=1

J0(rrn)

r2nJ0(Rrn)
f3(rn, t),

where h(t) ∗ g(t) =
∫ t
0 h(t− τ)g(τ)dτ =

∫ t
0 h(τ)g(t− τ)dτ represents the convo-

lution of functions h and g.

3.1. Calculation of the shear stress

Applying the Laplace Transform to Eq. (2.1) and using the initial condition
(2.4)3, we find that

(3.18) (1 + λqβ)τ̄(r, q) = µ
∂v̄(r, q)

∂r
.

Differentiating Eq. (3.9) with respect to r and using the identity (3.5)1, we find
that

(3.19) τ̄(r, q) =
fr

R

Γ (a+ 1)

qa+1

1

1 + λqβ

+
2f

R

∞
∑

n=1

J1(rrn)

rnJ0(Rrn)

Γ (a+ 1)

qa

1

q + λqβ+1 + νr2n
.

To determine the inverse Laplace transform of function τ̄(r, q), we introduce the
following notations:

F4(q) =
1

1 + λqβ
=

1

λ

1

qβ +
1

λ

,(3.20)

F5(rn, q) =
1

q + λqβ+1 + νr2n
=

1

λq

(

qβ +
1

λ
+
νr2n
λ
q−1

)(3.21)

=
1

λ

∞
∑

k=0

(−νr2n
λ

)k q−k−1

(

qβ +
1

λ

)k+1
.
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The inverse Laplace transform of the above functions, by using (3.12), are [23]

f4(t) = L−1{F4(q)} =
1

λ
Gβ,0,1

(

− 1

λ
, t

)

,(3.22)

f5(rn, t) = L−1{F5(rn, q)} =
1

λ

∞
∑

k=0

(−νr2n
λ

)k

Gβ,−k−1,k+1

(

− 1

λ
, t

)

.(3.23)

Applying again the inverse Laplace transform to Eq. (3.19), using (3.14)1, (3.22),
(3.23) and the convolution theorem, we find the shear stress τ(r, t) in the follow-
ing form.

If a > 0, then

(3.24) τ(r, t) =
fr

R
f1(t) ∗ f4(t) +

2f

R

∞
∑

n=1

J1(rrn)

rnJ0(Rrn)
f2(t) ∗ f5(rn, t),

and if a = 0, then

(3.25) τ(r, t) =
fr

λR

t
∫

0

Gβ,0,1

(

− 1

λ
, t

)

+
2f

R

∞
∑

n=1

J1(rrn)

rnJ0(Rrn)
f5(rn, t).

By using (3.13) we obtain

t
∫

0

Gb,c,d(p, τ)dτ = Gb,c−1,d(p, t)

and Eq. (3.25) can be written in the form

(3.26) τ(r, t) =
fr

λR
Gβ,−1,1

(

− 1

λ
, t

)

+
2f

R

∞
∑

n=1

J1(rrn)

rnJ0(Rrn)
f5(rn, t).

4. Limiting cases

4.1. Flow of Maxwell fluid due to longitudinal constant shear stress (β = 1, a = 0)

For β → 1 our model is reduced to the ordinary Maxwell fluid and for a = 0,
the shear stress on the boundary of the cylinder is constant, equal to f .

Introducing β → 1 into Eqs. (3.17) and (3.26), we obtain the velocity field

(4.1) v(r, t) =
fr2

2µR
− 2f

µR

∞
∑

n=1

J0(rrn)

r2nJ0(Rrn)

×
∞

∑

k=0

(−νr2n
λ

)k[

G1,−k,k+1

(

− 1

λ
, t

)

+
1

λ
G1,−k−1,k+1

(

− 1

λ
, t

)]

,
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and the associated shear stress

(4.2) τ(r, t) =
rf

λR
G1,−1,1

(

− 1

λ
, t

)

+
2f

λR

∞
∑

n=1

J1(rrn)

rnJ0(Rrn)

∞
∑

k=0

(−νr2n
λ

)k

G1,−k−1,k+1

(

− 1

λ
, t

)

,

corresponding to the ordinary Maxwell fluid, performing the same motion.
By using (3.13) we find that

(4.3) G1,−1,1

(

− 1

λ
, t

)

= λ

[

1 − exp

(

− t

λ

)]

,

and the expression (4.2) can be written in the simplified form

(4.4) τ(r, t) =
fr

R

[

1 − exp

(

− t

λ

)]

+
2f

λR

∞
∑

n=1

J1(rrn)

rnJ0(Rrn)

∞
∑

k=0

(−νr2n
λ

)k

G1,−k−1,k+1

(

− 1

λ
, t

)

.

4.2. Flow of a Newtonian fluid due to torsional constant shear stress (β = 1, a = 0,
λ→ 0)

Assuming λ→ 0 in Eqs. (4.1) and (4.4), the known solutions

(4.5) v(r, t) =
fr2

2µR
− 2f

µR

∞
∑

n=1

J0(rrn)

r2nJ0(Rrn)
exp(−νr2nt),

and

(4.6) τ(r, t) =
fr

R
+

2f

R

∞
∑

n=1

J1(rrn)

rnJ0(Rrn)
exp(−νr2nt),

corresponding to the Newtonian fluid, are recovered [24, Eqs. (34) and (44)].

4.3. Flow of a Maxwell fluid due to the torsional time-variable shear stress (β = 1,
a > 0)

Assuming β → 1 in Eqs. (3.16) and (3.24) we obtain the velocity field

(4.7) v(r, t) =
fr2

2µR
ta − 2af

µR

∞
∑

n=1

J0(rrn)

r2nJ0(Rrn)

∞
∑

k=0

(

− νr2n
λ

)k

×
t

∫

0

(t− τ)a−1

[

G1,−k,k+1

(

− 1

λ
, τ

)

+
1

λ
G1,−k−1,k+1

(

− 1

λ
, τ

)]

dτ,

and the associated shear stress
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(4.8) τ(r, t) =
fr

λR

t
∫

0

τa exp

[

− 1

λ
(t− τ)

]

dτ +
2af

λR

∞
∑

n=1

J1(rrn)

rnJ0(Rrn)

×
∞
∑

k=0

(

−νr
2
n

λ

)k
t

∫

0

(t− τ)a−1G1,−k−1,k+1

(

− 1

λ
, τ

)

dτ,

corresponding to the Maxwell fluid, performing the same motion.
For a = 1, Eqs. (4.7) and (4.8) can be written in the following forms:

(4.9) v(r, t) =
fr2

2µR
t− 2f

µR

∞
∑

n=1

J0(rrn)

r2nJ0(Rrn)

∞
∑

k=0

(

−νr
2
n

λ

)k

×
t

∫

0

[

G1,−k,k+1

(

− 1

λ
, τ

)

+
1

λ
G1,−k−1,k+1

(

− 1

λ
, τ

)]

dτ,

and

(4.10) τ(r, t) =
fr

λR

[

t− λ

(

1 − exp

(−t
λ

))]

+
2f

λR

∞
∑

n=1

J1(rrn)

rnJ0(Rrn)

×
∞
∑

k=0

(−νr2n
λ

)k
t

∫

0

G1,−k−1,k+1

(

− 1

λ
, τ

)

dτ.

4.4. Flow of a Newtonian fluid due to torsional time-variable shear stress (β = 1,
a > 0, λ→ 0)

Assuming λ→ 0 in Eqs. (4.7) and (4.8) or (4.9) and (4.10), similar solutions
[24, Eqs. (32) and (42)]

(4.11) v(r, t) =
fr2

2µR
ta − 2af

µR

∞
∑

n=1

J0(rrn)

r2nJ0(Rrn)

t
∫

0

(t− τ)a−1 exp(−νr2nτ)dτ,

and

(4.12) τ(r, t) =
fr

R
ta +

2af

R

∞
∑

n=1

J1(rrn)

rnJ0(Rrn)

t
∫

0

(t− τ)a−1 exp(−νr2nτ)dτ,

corresponding to the Newtonian fluid are recovered.
For a = 1 in Eqs. (4.11) and (4.12), the simple solutions

(4.13) v(r, t) =
fr2

2µR
t− 2f

νµR

∞
∑

n=1

J0(rrn)

r4nJ0(Rrn)
[1 − exp(−νr2nt)],
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and

(4.14) τ(r, t) =
fr

R
t+

2f

νR

∞
∑

n=1

J1(rrn)

r3nJ0(Rrn)
[1 − exp(−νr2nt)],

for a Newtonian fluid are recovered in [10, 11, 24, 25].

5. Conclusions

In this paper, the velocity fields and the resulting shear stresses corresponding
to the axial flow of generalized Maxwell fluids through a circular cylinder due to
a longitudinal shear stress are determined. The solutions determined by means
of the Laplace and finite Hankel transforms are presented in integral and series
forms in terms of generalized G-functions, and satisfy all the imposed initial and
boundary conditions.

For β = 1, the model of the fluid with fractional derivatives is reduced to
the classical Maxwell fluid and for β = 1 and λ → 0, our generalized model
is reduced to the Newtonian fluid. Finally, several relevant physical aspects of
the obtained solutions have been shown by means of graphical illustrations. The
diagrams of the velocity fields corresponding to Newtonian (continuous thick
line), Maxwell (black circle line) and generalized Maxwell (circle and triangle
line) fluids are plotted in Fig. 1 for a = 0. From this figure we see that in the

Fig. 1. Profiles of velocity fieldv(r, t) for ν = 0.0357, µ = 32, R = 1, f = 2 and for different
values of the fractional coefficient β; Newtonian fluids, • • • Maxwell fluids (β = 1),
◦ ◦ ◦ generalized Maxwell fluid (β = 0.5), △ △ △ generalized Maxwell fluid (β = 0.2).
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Fig. 2. Profiles of velocity fieldv(r, t) of generalized Maxwell fluids for different values of the
fractional coefficient β and for ν = 0.0357, µ = 32, R = 1, f = 2.

central area of the channel, the Maxwell fluid has lower velocity and the velocity
of the generalized Maxwell fluid increases if the fractional coefficient decreases.
In the closed wall area, the velocity of the generalized Maxwell fluid decreases if
the fractional coefficient decreases. For high values of the time t, the differences
between velocity fields of Maxwell, generalized Maxwell and Newtonian fluids,
disappear. The diagrams of the velocity field corresponding to the generalized
Maxwell fluid are plotted in Fig. 2 for a = 0 and for different values of the frac-
tional coefficient β. We see that for β → 1, the diagrams of the velocity field tend
to the diagram corresponding to the Maxwell fluid. The units of the parameters
in Figs. 1 and 2 are from SI units and the roots rn have been approximated by
rn ≃ (4n+ 1)π/4R [21].
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