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The main aim of this paper is to estimate the effective moduli of an isotropic elastic
composite, analyzed within the framework of the Kirchhoff-Love theory of thin plates
in bending. Results of calculations provide explicit functional correlations between the
homogenized properties of a composite plate made of two isotropic materials, thus
yielding more restrictive bounds on pairs of effective moduli than the classical (un-
coupled) Hashin–Shtrikman–Walpole ones. Applying the static-geometric analogy of
Lurie and Goldenveizer, enables rewriting of these new bounds in the two-dimensional
elasticity (plane stress) setting, thus revealing a link to the formulae previously found
by Gibiansky and Cherkaev. Consequently, simple cross-property estimates are pro-
posed for the plate subject to the simultaneous bending and in-plane loads.
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1. Introduction

The history of estimating the averaged constitutive moduli of multi-
phase materials goes back at least as far as the introduction of the harmonic and
arithmetic (Voigt–Reuss) estimates and it is worth pointing out that, despite
their simplicity, they proved to be optimal (i.e. attainable on certain microstruc-
tural layouts of constituent materials) for some macroscopically anisotropic mix-
tures. However, in general these bounds can be improved, hence new ideas leading
to more accurate estimates have emerged, see Milton [11] for the treatment of
this topic in exhaustive detail.

In this paper we tackle the problem of calculating the range of the homog-
enized effective moduli (kh, µh) of a Kirchhoff–Love isotropic elastic composite
plate made of two materials, whose Hooke’s tensors are also isotropic. To this
end we estimate the energy accumulated in a particle of a two-material mix-
ture subject to three linearly independent plate moments or curvature tensor
components with fixed macroscopic values. Our research is thus related to the
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“Gm-closure” problem for a set of basic materials U (GmU for short), which
consists in finding the totality of effective constitutive tensors for all possible
microstructural layouts of constituents, mixed in fixed proportions expressed by
m ∈ (0, 1). In Cherkaev [1, Ch. 10], see also Milton [11, Ch. 30.3], it is
shown that GmU is estimated from outside by minimizing sums of energies and
dual energies, but the question of its precise calculation is still open in broad
elasticity setting.

In the present work we investigate the Kirchhoff-Love theory of thin plates
in bending for an outside estimate of a particular subset of GmU , consisting of
its isotropic members. It is well known that for “well-ordered” basic materials,
the smallest rectangle containing this subset can be determined through the
Hashin–Shtrikman variational principle in two-dimensional elasticity as well as
plate theory settings, see Hashin and Shtrikman [6], Li [8]. The counterpart of
Hashin–Shtrikman estimates in case of “badly-ordered” materials was found by
Walpole [14]. An important point to note here is that the Hashin–Shtrikman–
Walpole (HSW for short) estimates are independent (uncoupled).

Mutually dependent bounds on kh and µh were introduced in Cherkaev

and Gibiansky [2] in case of plane stress elasticity, see also Gibiansky [4]
for a discussion of the same problem from a different viewpoint, and it follows
that admissible values of pairs (kh, µh) occupy a region that is smaller than
the one predicted by HSW principle. In their research, authors of both papers
make use of the quasi-convexity theory-based method, developed by F. Murat
and L. Tartar and independently, in alternative setting, by K. A. Lurie and
A. V. Cherkaev. In the remainder we follow the latter approach based on the
estimation of energy accumulated in the mixture subject to macroscopic fields of
any type, see Cherkaev [1, Ch. 8] or Milton [11, Ch. 24, Ch. 25.1], where the
Lurie–Cherkaev’s variational approach is compared to the Murat-Tartar’s idea
of compensated compactness.

The main idea of calculations follows from the definition of the outer es-
timate of GmU . Roughly speaking, constitutive tensors of basic materials are
translated by a certain constant fourth-order tensor and then the classical har-
monic mean bound is applied. Thus, following Milton [10], the estimation tech-
nique is referred to as a “translation method”. Its quality depends on the choice
of a translator which in general can be any quasi-convex function, but here
we restrict ourselves to quasi-affine quadratic functions, see e.g. Cherkaev [1,
Ch. 8.2] and Milton [11, Ch. 24.3]. We refer the Reader to these works for the
thorough derivation of the translation method and its application to modern
mechanics.

The problem of bounding the effective properties of a multiphase composite
is less developed if it is set in a theory of plates in bending. Some of its aspects
are dealt with in Lewiński and Telega [7, Ch. 22], where HS estimates were
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derived by the translation method. Lurie and Cherkaev [9] used the same
approach to characterize the “G-closure” of the set of basic materials with equal
shear moduli.

In the present paper we wish to investigate the Kirchhoff–Love theory for
the analytical formulae, establishing (kh, µh)-coupling of an isotropic assembly
of two isotropic constituents whose moduli kα, µα, α = 1, 2 are arbitrary. We are
looking for correlative bounds which are tighter than the known HSW (uncou-
pled) estimates obtained in Lewiński and Telega [7], see also Li [8].

2. Basic equations of a composite thin plate in bending

The Kirchhoff–Love theory of thin plates can be discussed from different view-
points, hence the exposition of its equations ranges from the classical develop-
ment based on the kinematical assumptions imposed on a thin three-dimensional
body to the precise, mathematical justification of the theory; for details we refer
the Reader to e.g. Timoshenko and Woinowski–Krieger [13], Ciarlet [3].
Below we recall the formulae necessary for further considerations.

Let (e1, e2) denote the Cartesian basis in R
2, also referred to as a “physical

basis”, and introduce an orthonormal basis:

(2.1)
E1 =

1√
2

(e1 ⊗ e1 + e2 ⊗ e2) , E2 =
1√
2

(e1 ⊗ e1 − e2 ⊗ e2) ,

E3 =
1√
2

(e1 ⊗ e2 + e2 ⊗ e1) , E4 =
1√
2

(e1 ⊗ e2 − e2 ⊗ e1) ,

convenient for representing the second-order tensors related to E = R
2 ⊗R

2, i.e.
for any f = fαβ eα ⊗ eβ , α, β = 1, 2, we may write f = Fi Ei, where

(2.2)
F1 =

1√
2
(f11 + f22), F2 =

1√
2
(f11 − f22),

F3 =
1√
2
(f12 + f21), F4 =

1√
2
(f12 − f21).

Note that subspaces Es and Ea of symmetric and antisymmetric members of
E respectively, admit bases {E1,E2,E3} and E4. Moreover, E1 corresponds to
the one-dimensional subspace of hydrostatic tensors, while {E2, E3} span the
two-dimensional subspace of symmetric deviators.

Write Ω ∈ R
2 for the mid-plane of a plate and set w for a scalar field of

its transverse displacement (deflection). According to the Kirchhoff kinematical
assumption, the rotation angles of a segment perpendicular to Ω and components
of the mid-plane curvature tensor κ = καβ eα ⊗ eβ are respectively denoted by

(2.3) ϑα = −w,α, καβ = ϑα,β ,
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where α, β = 1, 2, and καβ satisfy the compatibility condition

(2.4) κ11,22 + κ22,11 − 2κ12,12 = 0,

where (·),α = ∂ (·) /∂xα. Since κ is a symmetric tensor, thus in (2.1) we have

(2.5) κ =
1√
2









ϑ1,1 + ϑ2,2

ϑ1,1 − ϑ2,2

2ϑ1,2

0









.

Assume that q stands for a scalar field of transversal loading applied to Ω
and let M = Mαβ eα ⊗ eβ denote the symmetric tensor field of plate moments.
Components of M are related by the local equlibrium equation

(2.6) Mαβ,αβ = −q,

hence the stress functions Ψ1, Ψ2, see e.g. Goldenveizer [5, Ch. 3.21], such that

(2.7) M11 = Ψ2,2, M22 = Ψ1,1, 2M12 = 2M21 = −(Ψ1,2 + Ψ2,1),

satisfy Eq. (2.6) for q = 0. In the sequel we refer to σ ∈ E given by

(2.8) σ =
1√
2









Ψ1,1 + Ψ2,2

Ψ1,1 − Ψ2,2

Ψ1,2 + Ψ2,1

Ψ1,2 − Ψ2,1









.

Suppose that the mid-plane Ω of a plate is built from microscopic cells ω and
each cell is occupied by an arbitrary mixture of two isotropic elastic materials,
whose bulk and shear moduli are denoted by

(2.9) kα =
Eα t

3

24 (1 − να)
, µα =

Eα t
3

24 (1 + να)
,

α = 1, 2, where Eα, να stand for Young’s modulus and Poisson’s ratio of material
α respectively, and t denotes the thickness of a plate. Consequently, matrices

(2.10)
Dα = diag

⌈

2 kα, 2µα, 2µα, 0
⌋

,

dα = diag
⌈

1/(2 kα), 1/(2µα), 1/(2µα), 0
⌋

,

represent plate stiffness and compliance tensors. Area fractions of constituent
phases in ω are given by m1(ω), m2(ω) such that

(2.11) m1(ω) +m2(ω) = 1,

while their distribution in the direction perpendicular to Ω is homogeneous.
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Our main interest lies in estimating the range of macroscopic elastic proper-
ties related to the microscopic mixture of basic materials in ω. By the theory of
G-convergence applied to the case under study and due to the Dal Maso–Kohn–
Raitums theorem, see Lewiński and Telega [7, Ch. 26], without any loss of
generality we can restrict our considerations to the ω-periodic distributions of
materials in Ω, where ω denotes a basic periodicity cell. Obviously, the effec-
tive tensor also reflects the microscopic layout of materials in ω and it is worth
pointing out that this tensor is not necessarily isotropic. Following the idea of
periodicity, in the remainder we assume that Ψ1, Ψ2 and ϑ1, ϑ2 are represented
by their ω-periodic expansions in an appropriate Fourier space. Consequently,
we write σ0 = 〈σ〉 and κ0 = 〈κ〉 for the constant macroscopic fields, where

(2.12) 〈F〉 = m1 F1 +m2F2

for F1, F2 acting in ω. The effective stiffness and compliance tensors are respec-
tively calculated by

κ
T
0 Dhκ0 = min

κ∈Vκ

〈κT D κ〉,(2.13)

σ
T
0 dh σ0 = inf

σ∈Vσ

〈σT dσ〉,(2.14)

where

Vκ = {κ : κ is represented by (2.5), ω-periodic and 〈κ〉 = κ0} ,(2.15)

Vσ = {σ : σ is represented by (2.8), ω-periodic and 〈σ〉 = σ0} .(2.16)

3. Outline of the estimation method

3.1. Quasi-affinity of the translation functional

Energy accumulated in a particle of a composite plate in bending can be
understood as a measure of simultaneous action of n ≤ 3 (dim Es = 3) indepen-
dent mean fields acting at ω and according to Cherkaev [1, Ch. 16], complete
derivation of effective property bounds involves consideration of all sums of pri-
mal and dual energy components. Following Milton [10], for the convenience
of calculations in the sequel, we transfer the problem to the higher-order tenso-
rial space E ⊗ Es thus defining the above-mentioned sum of energies as a single
functional.

For a basis {Ei} , i = 1, 2, 3, see (2.1), let

(3.1) VΦ =
{

Φ : Φ = f(1) ⊗E1 + f(2) ⊗E2 + f(3) ⊗E3, where f(i) ∈ {Vκ, Vσ}
}
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denote a set of 12× 1 supervectors and define a 12× 12 constitutive supertensor

(3.2) ∆α = C(1) ⊗ E1 ⊗ E1 + C(2) ⊗E2 ⊗E2 + C(3) ⊗E3 ⊗E3,

where C(i) stands for a stiffness tensor Dα if f(i) ∈ Vκ or a compliance tensor dα

if f(i) ∈ Vσ. It is easily seen that ∆α is represented by a block-diagonal matrix.
By similar notation we denote the translation supertensor:

(3.3) T = T (ij) ⊗Ei ⊗Ej , i, j = 1, 2, 3,

whose components T (ij) will be derived in the remainder of this section. Conse-
quently, we define the energy functional in the form

(3.4) 2U(Φ,∆) =
3

∑

i=1

B∆(f(i), f(i)),

where

(3.5) B∆(f(i), f(i)) = fT
(i) C(i) f(i).

Next, we introduce a quasi-affine function T (Φ), i.e. such that

(3.6) 〈T (Φ)〉 = T (〈Φ〉)

for any periodic field Φ ∈ VΦ. From (3.3) we deduce that T is given by

(3.7) T =





T (11) T (12) T (13)

T (21) T (22) T (23)

T (31) T (32) T (33)



 ,

hence T (Φ) admits the following notation:

(3.8) T (Φ) =

3
∑

i=1

3
∑

j=1

BT

(

〈f(i)〉, 〈f(j)〉
)

,

where

(3.9) BT

(

〈f(i)〉, 〈f(j)〉
)

= 〈f(i)〉T T (ij) 〈f(j)〉.

Determination of T (ij) satisfying (3.6) is the key issue of the translation method.
To this end we make use of the well-known result for the function

(3.10) J(∇u,∇v) = det

(

u,1 v,1

u,2 v,2

)

,
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where u, v denote two potentials. According to Cherkaev and Gibiansky [2],
see also references therein, this function is quasi-affine, i.e.

(3.11) 〈J(∇u,∇v)〉 = J
(

〈∇u〉, 〈∇v〉
)

provided u, v are periodic. This result is valid for the linear combination of
functions defined in (3.10), that is for any vector-valued periodic functions

(3.12) g = g1e1 + g2e2, h = h1e1 + h2e2

and for arbitrary parameters τ1, . . . , τ4 in R, the function

(3.13) τ1 J(g1, h1) + τ2 J(g1, h2) + τ3 J(g2, h1) + τ4 J(g2, h2)

is also quasi-affine. By rewriting ∇g and ∇h in the form of (2.2), we deduce
that (3.13) is compatible with (3.9), i.e.

(3.14) BT (∇g,∇h) = ∇gT









−t1 −t2 −t3 −t4
t2 t1 −t4 −t3
t3 t4 t1 t2
t4 t3 −t2 −t1









∇h

and tk, k = 1, . . . , 4, are linearly dependent on τk. Obviously, ∇g and ∇h can be
taken as two arbitrary fields belonging to Vκ or Vσ, whose components are defined
as derivatives of periodic potential functions, see (2.15), (2.16). By applying
(3.14) in (3.7) we deduce that T (Φ) admits 36 different translation parameters,
but this number can be reduced to 4, as will be shown in the sequel.

3.2. Symmetry and isotropy of the translation matrix

Following Milton [10], we take into account the invariance of T (Φ) with
respect to rotation of the physical basis. Moreover, we limit our concern to sym-
metric translators since in the course of calculations, T admits certain properties
of the constitutive supertensor. Our exposition extends the result in Gibian-

sky [4].
The symmetry of T is handled by setting

(3.15)1 T (ji) = T T
(ij)

in (3.7) and, if i = j,

(3.15)2 t
(ii)
2 = t

(ii)
3 = t

(ii)
4 = 0.
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To satisfy the isotropy of T (Φ) we will set the conditions of its invariance
with respect to the rotation of the physical basis. For this purpose we assume

(3.16) f(1) =









q1
q5 + q7
q6 + q8
q4









, f(2) =









q5 − q7
q2 + q11

q3 + q12

q9









, f(3) =









q6 − q8
−q3 + q12

q2 − q11

q10









in (3.1) and we reshape Φ to a 4 × 3 matrix form

(3.17) Φ̃ =
(

f(1) f(2) f(3)

)

.

Next, we introduce a rotation operator R∗ defined as

(3.18) R ∗ Φ = R4Φ̃RT
3 ,

where

(3.19)

R3 =





1 0 0
0 cos(2ϕ) − sin(2ϕ)
0 sin(2ϕ) cos(2ϕ)



 ,

R4 =









1 0 0 0
0 cos(2ϕ) − sin(2ϕ) 0
0 sin(2ϕ) cos(2ϕ) 0
0 0 0 1









.

Basis B1, . . . ,B12 composed of 4 × 3 matrices such that

(3.20)

B1 = E1 ⊗E1, B2 = E2 ⊗ E2 + E3 ⊗E3,
B3 = E3 ⊗E2 −E2 ⊗E3, B4 = E4 ⊗ E1,
B5 = E1 ⊗E2 + E2 ⊗E1, B6 = E1 ⊗ E3 + E3 ⊗E1,
B7 = E2 ⊗E1 −E1 ⊗E2, B8 = E3 ⊗ E1 − E1 ⊗E3,
B9 = E4 ⊗E2, B10 = E4 ⊗ E3,

B11 = E2 ⊗E2 −E3 ⊗E3, B12 = E3 ⊗ E2 + E2 ⊗E3

is convenient for representing of Φ ∈ VΦ as a sum of orthogonal components,
stable under rotation of a physical basis. We will show that

(3.21) Φ = Φinv + Φ2ϕ + Φ4ϕ,

where

(3.22)

Φinv = q1 B1 + q2 B2 + q3 B3 + q4 B4,

Φ2ϕ = q5 B5 + q6 B6 + q7 B7 + q8 B8 + q9 B9 + q10 B10,

Φ4ϕ = q11 B11 + q12 B12
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and Φinv denotes a rotationally invariant supervector, whereas Φ2ϕ and Φ4ϕ

stand for supervectors remaining stable if the physical basis is rotated by angles
π + 2kπ and π/2 + 2kπ, k ∈ N, respectively. Application of (3.18) leads to

(3.23)1 R ∗ (qiBi) = q ′i Bi = qiBi

if i = 1, . . . , 4,

(3.23)2 R ∗ (qiBi + qi+1Bi+1) = q ′i Bi + q ′i+1Bi+1

= (qi cos(2ϕ) − qi+1 sin(2ϕ))Bi + (qi sin(2ϕ) + qi+1 cos(2ϕ))Bi+1

if i = 5, 7, 9 and

(3.23)3 R ∗ (q11B11 + q12B12) = q ′11B11 + q ′12B12

= (q11 cos(4ϕ) − q12 sin(4ϕ))B11 + (q11 sin(4ϕ) + q12 cos(4ϕ))B12,

hence the decomposition (3.21) follows. The requirement of isotropy

(3.24) T (Φ) = T (R ∗ Φ) ,

is satisfied if T (Φ) is represented as a linear combination of invariants of super-
vectors Φinv, Φ2ϕ and Φ4ϕ. An easy computation shows that

(3.25)

iinv = {q ′1, q ′2, q ′3, q ′4},

i2ϕ = {(q ′5)2 + (q ′6)
2, (q ′7)

2 + (q ′8)
2, (q ′9)

2 + (q ′10)
2,

q ′5 q
′

7 + q ′6 q
′

8, q
′

5 q
′

10 − q ′6 q
′

9, q
′

7 q
′

10 − q ′8 q
′

9,

q ′5 q
′

8 − q ′6 q
′

7, q
′

5 q
′

9 + q ′6 q
′

10, q
′

7 q
′

9 + q ′8 q
′

10},

i4ϕ = {(q ′11)
2 + (q ′12)

2}

denote the sets of invariants with respect to the corresponding rotation angles.
Moreover, only 6 elements of i2ϕ are independent, as

(

q ′5 q
′

8 − q ′6 q
′

7

)2
=

[

(q ′5)
2 + (q ′6)

2
][

(q ′7)
2 + (q ′8)

2
]

−
(

q ′5 q
′

7 + q ′6 q
′

8

)2
,(3.26)1

(

q ′5 q
′

9 + q ′6 q
′

10

)2
=

[

(q ′5)
2 + (q ′6)

2
][

(q ′9)
2 + (q ′10)

2
]

−
(

q ′5 q
′

10 − q ′6 q
′

9

)2
,(3.26)2

(

q ′7 q
′

9 + q ′8 q
′

10

)2
=

[

(q ′7)
2 + (q ′8)

2
][

(q ′9)
2 + (q ′10)

2
]

−
(

q ′7 q
′

10 − q ′8 q
′

9

)2
.(3.26)3

In the sequel we take six invariants on the right-hand sides of (3.26) as indepen-
dent and we observe the invariance of

(3.27) (q ′5 + q ′7 + q ′10)
2 + (q ′6 + q ′8 − q ′9)

2.



262 G. Dzierżanowski

3.3. Summary of the procedure for determining the translation supertensor

We satisfy the requirements of quasi-affinity and symmetry of T (Φ) by ap-
plying (3.14) and (3.15) to (3.8). Next, we calculate T (Φ) for f(i), i = 1, 2, 3,
given by (3.16) and we reshape the result in terms of a 12 × 1 vector F(Φ)
divided into 5 following components

(3.28) F(Φ) =
(

(q1, . . . , q4), (q5, q7, q10), (q6, q8,−q9), (q11), (q12)
)T
,

thus obtaining

(3.29) T (Φ) = F(Φ)T G(T)F(Φ),

where G(T) denotes a matrix whose components conform with the requirement
of isotropy, i.e. all components linking qi, qj , i, j = 1, . . . , 12, from different
subvectors in (3.28) are equal to zero. We obtain G(T) in a block matrix form

(3.30) G(T) =













A(T) 0 0 0 0
0 B(T) 0 0 0
0 0 B(T) 0 0
0 0 0 C(T) 0
0 0 0 0 C(T)













,

where matrices

(3.31)

A(T) =









−t1 −2 t3 0 0
2 t2 − 2 t4 0 0

2 t2 − 2 t4 −2 t3
sym −t1









,

B(T) =





t1 − t2 + 2 t3 t1 + t2 −t3 − t4
t1 − t2 − 2 t3 −t3 + t4

sym −t2



 ,

C(T) = 2 t2 + 2 t4

depend on 4 free parameters, which have to be optimally adjusted during the
calculations of estimates for the effective constitutive properties. The non-zero
components of matrices T (ij) in (3.7), see also (3.14), are thus given by

(3.32)
t
(11)
1 = t1, t

(12)
2 = t

(13)
3 = −t(21)

2 = −t(31)
3 = t3,

t
(22)
1 = t

(33)
1 = t2, t

(23)
4 = −t(32)

4 = t4.

Choosing different invariants in i2ϕ as independent would obviously result in
different representation of matrices in (3.31). However, in such cases the num-
ber of free parameters in their description would decrease to 2, hence imposing
redundant constraints in calculations of estimates.
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3.4. Algorithm of the effective properties estimation routine

Taking

(3.33) ∆α = ∆α −T + T

and estimating the underlined term from below by harmonic mean, yields the
translated constitutive supertensor

(3.34) ∆t = 〈(∆ − T)−1〉−1 + T.

Denoting an effective constitutive supertensor by

(3.35) ∆h = Ch
(1) ⊗E1 ⊗E1 + Ch

(2) ⊗E2 ⊗E2 + Ch
(3) ⊗ E3 ⊗ E3,

we express the energy accumulated in a particle of a composite plate as

(3.36) U(Φ0,∆h) ≥ U(Φ0,∆t),

see (3.5), where Φ0 ∈ VΦ is a 9 × 1 supervector whose components are given in
the form of (3.16) with q4 = q9 = q10 = 0, as they are symmetric tensors from E.
Translated constitutive supertensors are admissible in (3.34) if for any T they
retain their symmetry and semi-positiveness, that is

(3.37) ∆α − T ≥ 0, α = 1, 2.

Arbitrariness of Φ0 clearly forces

(3.38) ∆h ≥ 〈(∆ − T)−1〉−1 + T,

hence determining the translation bound on the effective supertensor ∆h.
Analogously to Sec. 3.3, formula (3.37) can be transformed into a system

(3.39) A(∆α − T) ≥ 0, B(∆α −T) ≥ 0, C(∆α −T) ≥ 0.

Indeed, for given α = 1 or 2 we first calculate U(Φ,∆α) by (3.4) with f(i),
i = 1, 2, 3, and ∆α set by (3.16) and (3.2), respectively. Next, we reshape this
obtained result in terms of F(Φ), see (3.28), hence determining

(3.40) U(Φ,∆α) = F(Φ)T G(∆α)F(Φ),

where G(∆α) is a block-diagonal matrix with components A(∆α), B(∆α) and
C(∆α). Next, we conclude that

(3.41) U(Φ,∆α) − T (Φ) = FT (Φ)G(∆α −T)F(Φ) > 0
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and this inequality has to be valid for any choice of Φ, hence establishing (3.39).
However, it is obvious from the comparison of (2.5) and (3.16) that if any of the
fields in Φ is symmetric, then q4 = 0 and/or q9 = 0 and/or q10 = 0. If this is
the case then we delete appropriate rows and columns from the representation
of G(∆α −T). By the observation made in Cherkaev [1, Ch. 8.3] and Milton

[11, Ch. 25.2], the optimal translation parameters in T retain non-degeneracy of
matrices in (3.39) and they are extremal, i.e. such that

(3.42)
2

∑

α=1

(

rank(A(∆α − T)) + rank(B(∆α − T)) + rank(C(∆α −T))
)

achieves its minimal value.
We will also make use of Y -transformation of a tensor, see e.g. Cherkaev

[1, Ch. 16.2] and Milton [11, Ch. 24.10]. The Y -transformed estimates of ∆h

do not depend on volume fractions of materials in ω and (3.38) assumes a simple
form

(3.43) Y (∆h) + T ≥ 0,

valid however only if the tensor ∆1 − ∆2 is nonsingular. To deal with this
incovenience we follow Cherkaev and Gibiansky [2] in introducing matrices
P and Q as projectors on the non-degenerated and degenerated subspaces of
∆1 −∆2 respectively and rewriting (3.43) in the form

(3.44)1 YP (∆h) ≥ 0,

where

(3.44)2 YP (∆h) = Y (P∆h PT ) + PTPT − (PTQT )(QTQT )−1(QTPT ).

Full construction of ((3.44)2) is omitted here and we refer the Reader to Cher-

kaev and Gibiansky [2] for detailed exposition of this formula. Let us only
mention that shapes of matrices P and Q depend on the fields defining the
supervector Φ. Influence of this fact on the calculations is clarified in Section 4.

For isotropic ∆h, the Y -transformation can be applied directly to scalar
components of the effective tensor. The following three equalities:

(3.45)

y(xh, x1, x2,m1,m2) =
xh − 〈x−1〉−1

〈x〉 − xh
(m2x1 +m1x2),

y(xh, x1, x2,m1,m2) =
1

y
(

x−1
h , x−1

1 , x−1
2 ,m1,m2

) ,

y(a xh, a x1, a x2,m1,m2) = a y(xh, x1, x2,m1,m2),



Bounds on the effective isotropic moduli. . . 265

see (2.12) for 〈·〉, hold true for any a ∈ R and for xh being the effective modulus
of isotropy. In the sequel we write y(xh) for short when no confusion can arise.

Formula ((3.44)1) is easily transformable to the form

(3.46) A(YP (∆h)) ≥ 0, B(YP (∆h)) ≥ 0, C(YP (∆h)) ≥ 0

by the procedure similar to the one developed in the prequel for (3.37). Let us
assume that the projectors P and Q are given and optimal translation parame-
ters, denoted by t∗i , i = 1, . . . , 4, are calculated with help of (3.42), hence defining
(3.7) through (3.32). This, in turn, allows for calculating of the projections of
∆h and T in (3.44)2. Obviously, the dimensions of the non-reduced supertensors
conform with those of ∆α. Then, for f0

(i), i = 1, 2, 3, given by (3.16), we calculate
U(Φ0, YP (∆h)) by (3.4) and we reshape the result in terms of F(Φ), see (3.28),
hence establishing (3.46). Examination of the determinants of these matrices will
lead to the most restrictive bounds on effective properties of a composite.

4. Calculating bounds on effective isotropic moduli

4.1. Summary of known bounds

The estimation method outlined in Sec. 3 is general, therefore capable of
predicting bounds on any anisotropic effective tensor. However, in the remainder
we restrict our concern to the simplest isotropic case. For this purpose, we take
into consideration that the response of a composite material to any deviatoric
field has to be identical, hence we limit the class of admissible supervectors to

(4.1) Φ = f (H) ⊗ E1 + f (D) ⊗E2 + f (D) ⊗ E3,

where f (H) and f (D) respectively denote hydrostatic and deviatoric ω-periodic
fields. The well-known HSW uncoupled bounds on the bulk and shear moduli
are obtained by estimating the energy in specific directions. Indeed, taking

(4.2) Φ0 = κ
(H)
0 ⊗E1 and Φ0 = σ

(H)
0 ⊗ E1

respectively, leads to the lower and upper HSW bounds on kh. The effective
shear modulus µh is estimated by exposing the composite to the simultaneous
action of two deviatoric fields of the same type , i.e.

(4.3) Φ0 = κ
(D)
0 ⊗E2 + κ

(D)
0 ⊗E3 and Φ0 = σ

(D)
0 ⊗E2 + σ

(D)
0 ⊗E3.

The ranges of Y -transformed effective moduli of an isotropic composite plate
in bending were found in Lewiński and Telega [7, Ch. 23.4]. They are given
by

(4.4) y(kh) ∈ [µ2, µ1] , y(µh) ∈ [2 kmin + µ2, 2 kmax + µ1] ,
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where kmin = min{k1, k2}, kmax = max{k1, k2}. Taking

(4.5) k1 ≥ k2, µ1 ≥ µ2, y(µh) ∈ [2 k2 + µ2, 2 k1 + µ1] ,

in a “well-ordered materials” case leads to the Hashin–Shtrikman estimates for
y(µh) in (4.4). In the sequel, these bounds are referred to as y(µh) ∈ [HSl,HSu]
whereas for “badly-ordered materials” we assume without any loss of generality
that

(4.6) k1 ≤ k2, µ1 ≥ µ2, y(µh) ∈ [2 k1 + µ2, 2 k2 + µ1] ,

which gives y(µh) ∈ [Wl,Wu] denoting the Walpole bounds in (4.4).
Placing no restrictions on the direction of searching for extremal values of

energy potentials in (3.4), leads to coupled estimates on pairs (kh, µh) of an
isotropic composite, as will be shown in the sequel.

4.2. Coupled estimates for “well-ordered materials”

4.2.1. The upper bound Let us consider a supervector

(4.7) Φ = κ ⊗ E1 + σ ⊗ E2 + σ ⊗ E3,

and the corresponding constitutive supertensors of basic materials (α = 1, 2):

(4.8) ∆α = Dα ⊗ E1 ⊗ E1 + dα ⊗E2 ⊗E2 + dα ⊗E3 ⊗E3.

We note that (4.7) corresponds to q4 = 0 in (3.16), as κ is a symmetric field.
Procedure described in Sec. 3.4 yields the following form of matrices in (3.39):

A(∆α − T) =











2 kα + t1 2 t3 0
1

µα
− 2t2 + 2t4 0

sym
1

µα
− 2t2 + 2t4











,(4.9)1

B(∆α − T)(4.9)2

=











2µα +
1

2kα
− t1 + t2 − 2t3 2µα − 1

2kα
− t1 − t2 t3 + t4

2µα +
1

2kα
− t1 + t2 + 2t3 t3 − t4

sym t2











,

C(∆α − T) =
1

µα
− 2t2 − 2t4.(4.9)3
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Next, we attempt to fulfill the requirement set in (3.42) by assuming

(4.10) t4 =
1

2µ1
− t2.

This gives C(∆1 − T) = 0 and C(∆2 − T) > 0 in (4.93) and we see that
det A(∆α − T) and det B(∆α − T) are expressed by (A.1)1 and (A.2). Since
t3 ∈ R, then inequalities g2(Hα, t1, t2) ≥ 0 restrict the domain of pairs (t1, t2) to

(4.11) S1 =

{

(t1, t2) : (t1, t2) ∈ [−2k2, 2µ2] ×
[

k1

2µ1(µ1 + 2 k1)
,

1

2µ1

]}

.

We check by inspection that g1(Hα, t1, t2) > 0 for any (t1, t2) ∈ S1 hence we
limit our search to those translations whose parameters (t1, t2, t3) correspond to

(4.12) g2(Hα, t1, t2) − t23 = 0.

This task can be reduced to the following algorithm based on a simple geometrical
interpretation: examine each intersection of all planes defined as

(4.13) π2(Hα) : S1 7→ g2(Hα, t1, t2) − t23 = 0.

Straightforward calculations lead to the conclusion that the set of mappings
{π2(A2), π2(B1), π2(B2)} yield optimal values of translation parameters

(4.14)

t∗1 = −2
(k1µ2HSl − k2µ1HSu)Wu + (µ2)

2µ1(k1 − k2)

(µ2HSl − µ1HSu)Wu + 2k2µ2(k1 − k2)
,

t∗2 =
2k1µ1Wu − 2k2µ2HSu − µ1(k1 − k2)t

∗

1

4µ1(µ1 − µ2)HSuWu
,

t∗3 =

√

(2k2 + t∗1)

(

1

4µ2
+

1

4µ1
− t∗2

)

,

t∗4 =
1

2µ1
− t∗2.

Matrix ∆1 −∆2 has two zero eigenvalues, hence we introduce the projectors

(4.15)1 P =





I 0 0

0 P 0

0 0 P





9×11

, Q =

(

0 Q 0

0 0 Q

)

2×11

,

where I denotes a 3 × 3 unity matrix and

(4.15)2 P =





1 0 0 0
0 1 0 0
0 0 1 0



 , Q =
(

0 0 0 1
)

.
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Next we apply the algorithm defining matrices in (3.46) thus obtaining

A(YP (∆h)) =











2y(kh) − t∗1 −2t∗3 0
1

y(µh)
+ 2t∗2 − 2t∗4 0

sym
1

y(µh)
+ 2t∗2 − 2t∗4











,(4.16)1

B(YP (∆h))(4.16)2

=

























2y(µh) +
1

2y(kh)
+

+ t∗1 − t∗2 + 2t∗3 +
(t∗3 + t∗4)

2

t∗2

2 y(µh) − 1

2 y(kh)
+

+ t∗1 + t∗2 +
(t∗3)

2 − (t∗4)
2

t∗2

sym

2y(µh) +
1

2y(kh)
+

+ t∗1 − t∗2 − 2t∗3 +
(t∗3 − t∗4)

2

t∗2

























,

C(YP (∆h)) =
1

y(µh)
+ 2t∗2 + 2t∗4.(4.16)3

The most restrictive upper coupled estimate on pairs (y(kh), y(µh)) is given by

(4.17) detA(YP (∆h)) = 0

and reads

(4.18) y(kh) ∈ [µ2, µ1], y(µh) ≤ h1(y(kh)),

where

(4.19) h1(y(kh)) =
1

2

2y(kh) − t∗1
(2 y(kh) − t∗1)(t

∗

4 − t∗2) + 2(t∗3)
2
.

4.2.2. The lower bound. Next, let us consider a supervector

(4.20) Φ = σ ⊗ E1 + κ ⊗E2 + κ ⊗E3,

and the corresponding constitutive super-tensors of basic materials (α = 1, 2)

(4.21) ∆α = dα ⊗ E1 ⊗ E1 + Dα ⊗E2 ⊗E2 + Dα ⊗E3 ⊗E3.

Field κ is symmetric, hence q9 = q10 = 0 in (3.16). Matrices in (3.39) take a
form

A(∆α − T) =













1

2kα
+ t1 2t3 0 0

4µα − 2t2 + 2t4 0 0
4µα − 2t2 + 2t4 2 t3

sym t1













,(4.22)1
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B(∆α − T)(4.22)2

=







1

2µα
+ 2kα − t1 + t2 − 2t3

1

2µα
− 2kα − t1 − t2

sym
1

2µα
+ 2kα − t1 + t2 + 2t3






,

C(∆α − T) = 4µα − 2t2 − 2t4.(4.22)3

By setting

(4.23) t4 = 2µ2 − t2,

we obtain detA(∆α −T) and detB(∆α −T) through (A.1)1, (A.1)2 and (A.3).
Similarly to Section 4.2.1., we restrict the range of (t1, t2) to

(4.24) S2 =

{

(t1, t2) : (t1, t2) ∈
[

0,
1

2µ1

]

× [−2 k2, 2µ2]

}

.

We next examine all intersections of planes

(4.25)
π1(Hα) : S2 7→ g1(Hα, t1, t2) − t23 = 0,

π2(Hα) : S2 7→ g2(Hα, t1, t2) − t23 = 0,

hence the set of mappings {π1(A2), π2(B1), π2(B2)} yield

(4.26)

t∗1 =
1

2

k1 − k2

(k1 + µ2)µ1 − (k2 + µ2)µ2
,

t∗2 = 2
k1µ2 − k2 µ1 − 2µ1µ2(k1 − k2)t

∗

1

µ1 − µ2
,

t∗3 =
√

t∗1(2µ2 − t∗2),

t∗4 = 2µ2 − t∗2.

Matrix ∆1−∆2 has one zero eigenvalue, hence the projectors on the subspace
of non-degenerate matrices are given by (4.15)2 and

(4.27) P =





P 0 0

0 I 0

0 0 I





9×10

, Q =
(

Q 0 0
)

1×10
.



270 G. Dzierżanowski

The procedure put forward in Sec. 3.4 leads to (3.46) with matrices

A(YP (∆h))(4.28)1

=













1

2y(kh)
− t∗1 −2 t∗3 0

4y(µh) + 2t∗2 − 2t∗4 0

sym 4y(µh) + 2t∗2 − 2t∗4 +
4(t∗3)

2

t∗1













,

B(YP (∆h,T))(4.28)2

=







1

2y(µh)
+ 2y(kh) + t∗1 − t∗2 + 2t∗3

1

2y(µh)
− 2y(kh) + t∗1 + t∗2

sym
1

2y(µh)
+ 2y(kh) + t∗1 − t∗2 − 2t∗3






,

C(YP (∆h,T)) = 4y(µh) + 2t∗2 + 2t∗4.(4.28)3

The most restrictive lower coupled estimate on pairs (y(kh), y(µh)) is due to

(4.29) detA(YP (∆h)) = 0

and reads

(4.30) y(kh) ∈ [µ2, µ1], h2(y(kh)) ≤ y(µh),

where

(4.31) h2(y(kh)) =
1

2

(

1

2y(kh)
− t∗1

)

(t∗4 − t∗2) + 2t∗3

1

2 y(kh)
− t∗1

.

New estimates attain HSW points, see Fig. 1, that is

(4.32)
h1(µ2) = 2k2 + µ1, h1(µ1) = 2k1 + µ1,

h2(µ2) = 2k2 + µ2, h2(µ1) = 2k1 + µ2

and it is worth pointing out that the ordering of HSW estimates strongly depend
on kα, µα, α = 1, 2. For chosen characteristics of the constituent materials,
k1 = 3, µ1 = 3, k2 = 1, µ2 = 1, order of the Walpole estimates, see (4.6), is
inversed.



Bounds on the effective isotropic moduli. . . 271

Fig. 1. “Well-ordered materials”, k1 = 3, µ1 = 3, k2 = 1, µ2 = 1. Coupled estimates on
effective stiffnesses (y(kh), y(µh)) are shown by solid lines H -C and A-F ; the Hashin–Shtrikman

rectangle – by dashed line A-B-C -D ; the Walpole points correspond to H, F.

4.3. Coupled estimates for “badly-ordered materials”

4.3.1. The upper bound In case of “badly-ordered materials”, see (4.6), we first
consider a supervector

(4.33) Φ = σ ⊗E1 + σ ⊗E2 + σ ⊗E3,

and corresponding constitutive supertensors of basic materials (α = 1, 2)

(4.34) ∆α = dα ⊗E1 ⊗E1 + dα ⊗E2 ⊗E2 + dα ⊗ E3 ⊗ E3.

Using notation (3.39) we obtain

A(∆α −T) =



















1

2kα
+ t1 2t3 0 0

1

µα
− 2t2 + 2t4 0 0

1

µα
− 2t2 + 2t4 2t3

sym t1



















,(4.35)1
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B(∆α − T) =(4.35)2










1

2µα
+

1

2kα
− t1 + t2 − 2t3

1

2µα
− 1

2kα
− t1 − t2 t3 + t4

1

2µα
+

1

2kα
− t1 + t2 + 2t3 t3 − t4

sym t2











,

C(∆α −T) =
1

µα
− 2t2 − 2t4.(4.35)3

By setting

(4.36) t4 =
1

2µ1
− t2

we obtain detA(∆α −T) and detB(∆α −T) through (A.1)1, (A.12) and (A.4).
By restricting the range of (t1, t2) to

(4.37) S3 =

{

(t1, t2) : (t1, t2) ∈
[

0,
1

2µ1

]

×
[

k2

2µ1 (µ1 + 2 k2)
,

1

2µ1

]}

and examining all intersections of planes

(4.38)
π1(Hα) : S3 7→ g1(Hα, t1, t2) − t23 = 0,

π2(Hα) : S3 7→ g2(Hα, t1, t2) − t23 = 0,

we conclude that the set of mappings {π1(A1), π2(B1), π2(B2)} yield

(4.39)

t∗1 =
1

2

(k2 − k1)µ1

2µ1(µ1 + k1)Wu − 2µ2(µ1 + k2)HSu
,

t∗2 =
k2µ1HSu − k1µ2Wu − 2(µ1)

2µ2(k2 − k1)t
∗

1

2µ1(µ1 − µ2)HSuWu
,

t∗3 =

√

t∗1

(

1

2µ1
− t∗2

)

,

t∗4 =
1

2µ1
− t∗2.

Matrix ∆1 −∆2 has three zero eigenvalues, so projectors are due to (4.15)2 and

(4.40) P =





P 0 0

0 P 0

0 0 P





9×12

, Q =





Q 0 0

0 Q 0

0 0 Q





3×12

.
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The procedure put forward in Sec. 3.4 leads to (3.46) with matrices

A(YP (∆h))(4.41)1

=















1

2y(kh)
− t∗1 −2t∗3 0

1

y(µh)
+ 2t∗2 − 2t∗4 0

sym
1

y(µh)
+ 2t∗2 +

4(t∗3)
2

t∗1
− 2t∗4















,(4.41)2

B(YP (∆h))(4.41)3

=

























1

2 y(µh)
+

1

2 y(kh)
+

+t∗1 − t∗2 + 2 t∗3 +
(t∗3 + t∗4)

2

t∗2

1

2 y(µh)
− 1

2 y(kh)
+

+t∗1 + t∗2 +
(t∗3)

2 − (t∗4)
2

t∗2

sym

1

2 y(µh)
+

1

2 y(kh)
+

+t∗1 − t∗2 − 2 t∗3 +
(t∗3 − t∗4)

2

t∗2

























,(4.41)4

C(YP (∆h)) =
1

y(µh)
+ 2 t∗2 + 2 t∗4.(4.41)5

The most restrictive upper estimate on pairs (y(kh), y(µh)) is determined by

(4.42) detA(YP (∆h)) = 0

and reads

(4.43) y(kh) ∈ [µ2, µ1] , y(µh) ≤ h3 (y(kh)) ,

where

(4.44) h3 (y(kh)) =
1

2

1

2 y(kh)
− t∗1

(

1

2 y(kh)
− t∗1

)

(t∗4 − t∗2) + 2 (t∗3)
2
.

4.3.2. The lower bound Finally, let us take a supervector

(4.45) Φ = κ ⊗E1 + κ ⊗ E2 + κ ⊗E3,

and the corresponding constitutive super-tensors of basic materials (α = 1, 2)

(4.46) ∆α = Dα ⊗ E1 ⊗ E1 + Dα ⊗E2 ⊗ E2 + Dα ⊗E3 ⊗E3.
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Next, we observe that q4 = q9 = q10 = 0 in (3.16), because κ is a symmetric
field. Using notation (3.39) we obtain

(4.47)

A(∆α −T) =





2kα + t1 2t3 0
4µα − 2t2 + 2t4 0

sym 4µα − 2t2 + 2t4



 ,

B(∆α −T) =
(

2µα + 2kα − t1 + t2 − 2t3 2µα − 2kα − t1 − t2
sym 2µα + 2kα − t1 + t2 + 2t3

)

,

C(∆α −T) = 4µα − 2t2 − 2t4.

By setting

(4.48) t4 = 2µ2 − t2

we obtain detA(∆α − T) and detB(∆α − T) through (A.1)1 and (A.5). By
restricting the range of (t1, t2) to

(4.49) S4 = {(t1, t2) : (t1, t2) ∈ [−2k1, 2µ2] × [−2k1, 1µ2]}

and examining all intersections of planes

(4.50) π2(Hα) : S4 7→ g2(Hα, t1, t2) − t23 = 0,

we conclude that the set of mappings {π2(A1), π2(B1), π2(B2)} yield

(4.51)

t∗1 = 2
k1(µ1HSu − µ2HSl) − 2µ1µ2(k2 − k1)

µ2Wl − µ1Wu − 2k1(k2 − k1)
,

t∗2 =
2k2µ2 − 2k1µ1 − (k2 − k1)t

∗

1

µ1 − µ2
,

t∗3 =
√

(2k1 + t∗1)(µ1 + µ2 − t∗2),

t∗4 = 2µ2 − t∗2.

Matrix ∆1 − ∆2 is positive-definite provided k1 6= k2 and µ1 6= µ2, thus the
projector P is given by a unity matrix, hence matrices in (3.46) take the form

A(YP (∆h)) =





2y(kh) − t∗1 −2t∗3 0
4y(µh) + 2t∗2 − 2t∗4 0

sym 4y(µh) + 2t∗2 − 2t∗4



 ,(4.52)1
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B(YP (∆h))(4.52)2

=

(

2y(µh) + 2y(kh) + t∗1 − t∗2 + 2t∗3 2y(µh) − 2y(kh) + t∗1 + t∗2
sym 2y(µh) + 2y(kh) + t∗1 − t∗2 − 2t∗3

)

,

C(YP (∆h)) = 4y(µh) + 2t∗2 + 2t∗4.(4.52)3

The most restrictive lower estimate on pairs (y(kh), y(µh)) is obtained by

(4.53) detA(YP (∆h)) = 0

and reads

(4.54) y(kh) ∈ [µ2, µ1], h4(y(kh)) ≤ y(µh),

where

(4.55) h4(y(kh)) =
1

2

(2 y(kh) − t∗1)(t
∗

4 − t∗2) + 2(t∗3)
2

2y(kh) − t∗1
.

New estimates attain HSW points, see Fig. 2, that is

(4.56)
h3(µ2) = 2k2 + µ1, h3(µ1) = 2k1 + µ1,

h4(µ2) = 2k2 + µ2, h4(µ1) = 2k1 + µ2

Fig. 2. “Badly-ordered materials”, k1 = 1, µ1 = 3, k2 = 3, µ2 = 1. Coupled estimates on effective
stiffnesses (y(kh), y(µh)) are shown by solid lines H -C and A-F ; the Walpole rectangle – by

dashed line E -F -G-H ; the Hashin–Shtrikman points correspond to A, C.
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and, as it was mentioned in case of “well-ordered materials”, the ordering of
HSW estimates strongly depend on kα, µα, α = 1, 2. For chosen characteristics
of the constituent materials, k1 = 1, µ1 = 3, k2 = 3, µ2 = 1, order of the
Hashin-Shtrikman estimates, see (4.5), is inversed.

5. Disscussion of the results and conclusions

5.1. Obtaining 2D elasticity bounds by the statical-geometrical analogy

The link between the results obtained in Sec. 4.2 and 4.3 for the theory of
thin plates in bending and those calculated in Cherkaev and Gibiansky [2]
for two-dimensional elasticity, exists through the correspondence between the
equations of both theories (KL and PS for short), known as the static-geometric
analogy. It was discovered in the 1940’s by A.I. Lurie and A.L. Goldenveizer in
the context of the theory of thin shells. For a deeper discussion of this topic we
refer the Reader to Goldenveizer [5, Ch. 5.36.] or Naghdi [12, Ch. 7.].

Write N for the in-plane force tensor of two-dimensional elasticity. Its com-
ponents can be expressed in terms of the Airy function χ derivatives, see e.g.
Goldenveizer [5, Ch. 3.21]. Thus we can substitute w ; χ in the definition
of κ, see (2.5), by observing that the compatibility condition (2.4) is preserved
for καβ = −(

√
12/t)ǫλαǫµβNλµ, α, β, λ, µ = 1, 2; ǫαβ denotes a permutation sym-

bol and t stands for the thickness of the plate. Set u = uαeα for the in-plane
displacement field and ε for the corresponding strain tensor. Applying (purely
formal) relation Mαβ = (t/

√
12)ǫλαǫµβελµ yields the equilibrium equation (2.6)

for q = 0 in terms of ε. By introducing the scaling coefficient
√

12/t in the re-
lations above, we avoid the field measurement unit mismatch. Next, we write
Ψα,β = ǫλαǫµβuλ,µ in (2.8). The stiffness properties interchange according to

(5.1)

kKL
1 ; kPS

1 =
1

kKL
2

, µKL
1 ; µPS

1 =
1

µKL
2

, kKL
2 ; kPS

2 =
1

kKL
1

,

µKL
2 ; µPS

2 =
1

µKL
1

, kKL
h ; kPS

h =
1

kKL
h

, µKL
h ; µPS

h =
1

µKL
h

,

thus we conclude that bounding effective constitutive properties of a Kirchhoff–
Love plate is formally equivalent to the two-dimensional elasticity problem with
materials whose stiffness moduli are properly redefined. This observation was
made in Lewiński and Telega [7, Ch. 23.4], for Hashin–Shtrikman estimates
obtained independently for bending and in-plane load cases, but it also remains
valid for Walpole bounds. Consequently, the coupled estimates of effective prop-
erties kPS

h , µPS
h of two-dimensional elasticity can be re-established by means of

functions h1 . . . h4 derived in Sections 4.2 and 4.3. By straightforward computa-
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tion in cases of “well-” and “badly-ordered materials”, we respectively obtain

(5.2)

y(µPS
h ) ∈

[

h−1
1

(

1

y(kPS
h )

,
1

k2
,

1

k1
,

1

µ2
,

1

µ1

)

, h−1
2

(

1

y(kPS
h )

,
1

k2
,

1

k1
,

1

µ2
,

1

µ1

)]

,

y(µPS
h ) ∈

[

h−1
3

(

1

y(kPS
h )

,
1

k1
,

1

k2
,

1

µ2
,

1

µ1

)

, h−1
4

(

1

y(kPS
h )

,
1

k1
,

1

k2
,

1

µ2
,

1

µ1

)]

,

and one can easily check that (5.2) coincide with estimates calculated in Cher-

kaev and Gibiansky [2].
It is worth pointing out that although the Cherkaev–Gibiansky estimates for

two-dimensional (plane stress) elasticity and those reported in the present paper
can be derived by the same method, the correlation between them strongly relies
on the statical-geometrical analogy. In other words, both results are complemen-
tary in the sense of the above-mentioned purely mathematical formalism, linking
two physically different phenomena of the theory of elasticity.

5.2. Conclusions

Simple cross-property bounds for
(

kh, µ
KL
h , µPS

h

)

related to the thin plate
subject to simultaneous bending and in-plane loads, follow from the results ob-
tained in Sec. 4 and 5.1. They are valid only if bending and membrane effects
remain uncoupled, e.g. like in the theory of shallow shells. New bounds are tighter
than those obtained by aggregating HSW bounds given by the paralellepiped:

H =
{

(kh, µ
KL
h , µPS

h ) : y(kh) ∈ [µ2, µ1],(5.3)

y(µKL
h ) ∈ [2kKL

min + µKL
2 , 2kKL

max + µKL
1

]

, see (4.4),

y(µPS
h ) ∈

[

2kPS
min + µPS

2 , 2kPS
max + µPS

1 ], see (5.1)
}

,

see Figs. 3, 4. Superscripts in kh can be dropped in the description of H because,
up to the scaling factor mentioned in the previous section, the range of admis-
sible values for effective bulk coefficient (or its Y -transformation) is the same,
regardless of the underlying theory.

In cases of “well-” and “badly-ordered materials”, we respectively set

Hw =
{

(kh, µ
KL
h , µPS

h ) : y(kh) ∈ [µ2, µ1],(5.4)

y(µKL
h ) ∈ [h2(y(kh)), h1(y(kh))], see (4.18), (4.30),

y(µPS
h ) as in (5.2)1

}

,
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Fig. 3. “Well-ordered materials”, k1 = 3, µ1 = 3, k2 = 1, µ2 = 1. Coupled bounds on shear
moduli µKL

h , µPS
h . Dotted line rectangles A,B,C,D,E respectively correspond to cross-sections

of Hw for kh = µ2 + {0, 0.25(µ1 − µ2), 0.5(µ1 − µ2), 0.75(µ1 − µ2), 1.0(µ1 − µ2)}. Dashed line
rectangle illustrate the cross-section of the HSW paralellepiped H.

Fig. 4. “Badly-ordered materials”, k1 = 1, µ1 = 3, k2 = 3, µ2 = 1. Coupled bounds on shear
moduli µKL

h , µPS
h . Dotted line rectangles P,Q,R, S, T correspond respectively to cross-sections

of Hb for kh = µ2 + {0, 0.25(µ1 − µ2), 0.5(µ1 − µ2), 0.75(µ1 − µ2), 1.0(µ1 − µ2)}. Dashed line
rectangles illustrate the cross-section of the HSW paralellepipeds H.
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Hb =
{

(kh, µ
KL
h , µPS

h ) : y(kh) ∈ [µ2, µ1],(5.5)

y(µKL
h ) ∈ [h4(y(kh)), h3(y(kh))], see (4.43), (4.54),

y(µPS
h ) as in (5.2)2

}

.

Appendix

Two general equations (α = 1, 2, Hα ∈ {A(∆α),B(∆α)})

detH(∆α −T) = g1(Hα, t1, t2) [g2 (Hα, t1, t2) − (t3)
2],(A.11)

detH(∆α −T) = [g1(Hα, t1, t2) − (t3)
2] [g2(Hα, t1, t2) − (t3)

2],(A.12)

express detA(∆α −T), detB(∆α −T) in Sec. 4. The formulae are shown in the
following order: (A.X)1 → detA(∆1 −T), (A.X)2 → detA(∆2 −T), (A.X)3 →
detB(∆1 −T), (A.X)4 → detB(∆2 −T), where X = 2, 3, 4, 5.

Determinants of matrices in Section 4.2.1

16

(

1

2µ1
− t2

) [

(t1 + 2k1)

(

1

2µ1
− t2

)

− (t3)
2

]

,(A.2)1

16

(

1

4µ2
+

1

4µ1
− t2

) [

(t1 + 2k2)

(

1

4µ2
+

1

4µ1
− t2

)

− (t3)
2

]

,(A.2)2

2 (µ1 + 2k1)

k1µ1

[

(2µ1 − t1)

(

t2 −
k1

2µ1 (µ1 + 2k1)

)

− (t3)
2

]

,(A.2)3

2(µ1 + 2k2)

k2µ1

[

(2µ2 − t1)

(

t2 −
k2

2µ1 (µ1 + 2k2)

)

− (t3)
2

]

.(A.2)4

It is easily seen that all determinants correspond to (A.1)1.

Determinants of matrices in Section 4.2.2

16[t1(µ1 + µ2 − t2) − (t3)
2]

[

(µ1 + µ2 − t2)

(

1

2k1
+ t1

)

− (t3)
2

]

,(A.3)1

16
[

t1(2µ2 − t2) − (t3)
2
]

[

(2µ2 − t2)

(

1

2k2
+ t1

)

− (t3)
2

]

,(A.3)2

4

[(

1

2µ1
− t1

)

(t2 + 2k1) − (t3)
2

]

,(A.3)3

4

[(

1

2µ2
− t1

)

(t2 + 2k2) − (t3)
2

]

.(A.3)4

Formulae (A.3)1,2 correspond to (A.1)1 and (A.3)1,2 are related to (A.1)1.
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Determinants of matrices in Section 4.3.1

16

[

t1

(

1

2µ1
− t2

)

− (t3)
2

][(

1

2k1
+ t1

) (

1

2µ1
− t2

)

− (t3)
2

]

,(A.4)1

16

[

t1

(

1

4µ1
+

1

4µ2
− t2

)

− (t3)
2

]

(A.4)2

×
[(

1

2k1
+ t1

)(

1

4µ1
+

1

4µ2
− t2

)

− (t3)
2

]

,

2 (µ1 + 2k1)

k1µ1

[(

1

2µ1
− t1

) (

t2 −
k1

2µ1 (µ1 + 2k1)

)

− (t3)
2

]

,(A.4)3

2 (µ1 + 2k2)

k2µ1

[(

1

2µ2
− t1

) (

t2 −
k1

2µ1 (µ1 + 2k2)

)

− (t3)
2

]

.(A.4)4

Formulae (A.4)1,2 correspond to (A.1)2 and (A.4)3,4 are related to (A.1)1.

Determinants of matrices in Section 4.3.1

16(µ1 + µ2 − t2)((2k1 + t1)(µ1 + µ2 − t2) − (t3)
2),(A.5)1

16(2µ2 − t2)((2k2 + t1)(2µ2 − t2) − (t3)
2),(A.5)2

4((2µ1 − t1)(t2 + 2k1) − (t3)
2),(A.5)3

4((2µ2 − t1)(t2 + 2k2) − (t3)
2).(A.5)4

It is easily seen that all formulae correspond to (A.1)1.
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