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Cowin–Mehrabadi Theorem in six dimensions
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The Cowin–Mehrabadi Theorem concerning normals to the planes of symme-
try of an anisotropic material is generalized to six dimensions. Commutation of the
reflection matrix with the 6 × 6 matrix representing the elasticity tensor in the six-
dimensional formulation of the elasticity tensor, provides the condition for the ex-
istence of a plane of symmetry. This condition implies the existence of at least two
isochoric states for every class except the triclinic one. A simple proof is presented of
the fact that an axis of symmetry An, with n > 4 must be an axis of isotropy.
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1. Introduction

Lord Kelvin’s description of the properties of an elastic material in terms
of eigenvalues and eigenvectors of the elasticity tensor was made in the middle
of the nineteenth century [1], but it was entirely forgotten until it was inde-
pendently rediscovered by Rychlewski [2] and by Mehrabadi and Cowin [3]
(also see [4, 5]). The main idea of [2, 3] is to represent the elasticity tensor C,
which has rank 4 in three dimensions, by a tensor ĉ of rank 2 in six dimensions.
Eigenvectors of ĉ are 6 × 1 column vectors but they can be interpreted as ten-
sors of rank 2 in three dimensions. This formulation has several advantages, one
of them being that the coordinate transformations of the elasticity tensor are
accomplished by means of matrix multiplications and standard results of linear
algebra become applicable. For example, if the elasticity tensor is invariant under
a coordinate transformation, then the matrix Q̂ corresponding to that transfor-
mation must commute with the 6× 6 matrix ĉ representing the tensor. Recently
Ahmad and Khan have used this fact to construct matrix representations for ĉ

belonging to various symmetry classes [6]. The six-dimensional representation of
the elasticity tensor has found many applications (see, for example, [8, 9], and
references therein). For an orthotropic material, Blinowski and Ostrowska-

Maciejewska have found expressions for the Young’s modulus and Poisson’s



216 F. Ahmad

ratio in terms of eigenvalues and eigenvectors of the elasticity tensor [7]. They
also found the general representation of the rotation matrix in six dimensions.
In [10], Mehrabadi et al. have found the six-dimensional representation of the
rotation in terms of the axis of rotation n and the angle of rotation θ and Nor-

ris [11] has used this representation to derive the coaxiality condition for the
strain energy to be a minimum under a state of uniform stress.

A tensor of rank 2 in three dimensions is called a pure shear if both its trace
and determinant vanish. A traceless tensor of rank 2 will be called an isochoric

tensor. Of course, a pure shear is isochoric but the converse is not necessarily
true. Blinowski and Rychlewski have discussed properties of the set of pure
shears in [12]. They proved the following result (Theorem 4.2, p. 489) which we
can rightly name after them:

Theorem 1 (Blinowski–Rychlewski Theorem). An elastic material is a sym-

metric one only if at least two of its proper states are pure shears belonging to

some subspace of shears with common direction PA.

In our terminology it means that the elasticity tensor for an elastic material
possessing a plane of symmetry must have at least two eigenvectors which are
pure shears.

In this short note, we shall use the six-dimensional formulation of the
elasticity tensor to elucidate two interesting properties of elastic materials,
namely:

• An eigenvector of the elasticity tensor represents a state of stress tensor
which is proportional to a strain tensor. The top three components of these
tensors represent the normal stresses and strains. Vanishing of the sum of
normal strains implies that the rate of change of volume is zero i.e. the
strain tensor represents an isochoric or an equivoluminal state. We shall
show that, for all materials which possess a plane of symmetry, at least
two such states of strain exist. This result is less general than Theorem 1.
However, our method is capable of providing a simple proof of this theorem.

• A geometrical argument using the ‘law of rational indices’ establishes the
result that if a crystal possesses an n-fold axis of symmetry, An, then
n must be such that cos(2π/n) is a rational number [13, Chap. 2]. This
allows n = 2, 3, 4 and 6 but forbids n = 5. However, this argument does not
imply that an arbitrary rotation about the A6 axis should leave the system
invariant. On the other hand, Hermann’s theorem [14] states that if a tensor
of rank r possesses an axis of symmetry Ap with p > r, then Ap is an axis of
isotropy for that tensor. Hermann’s proof uses sophisticated mathematics
to prove his theorem. In this note we shall give an elementary proof of the
result: ĉ can have at most four distinct coaxial planes of symmetry and an
n-fold axis of symmetry, An, with n > 4, must be an axis of isotropy.
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To prove the above results we need to generalize the following Theorem of
Cowin and Mehrabadi [15], to six dimensions.

Theorem 2. A set of necessary and sufficient conditions for a unit vector n

to be a normal to a plane of symmetry is that it should be a common eigenvector

of the following tensors:

Uij = Cijkk,

Vij = Cikjk,

Qik(n) = Cijksnjns,

Qik(m) = Cijksmjms,

where m is any vector perpendicular to n.

2. Six-dimensional formulation

With respect to a Cartesian basis {e1, e2, e3}, let Tij and Eij respectively
denote the stress tensor and the strain tensor. They are related through the
generalized Hooke’s law

(2.1) Tij = CijklEkl.

Eq. (2.1) is a constitutive equation for linear elasticity. The general relation
connecting the stress to the strain tensor can be more complicated. Mehrabadi

and Cowin have defined an orthonormal basis in a six-dimensional space [3]
which can be written concisely as

(2.2) êα(i,j) = 2−1/(2−δij)(ei ⊗ ej + ej ⊗ ei),

where α(i, j) = iδij + (9− i− j) and δij is the Kronecker delta. Define T̂α(i,j) =

21/(2−δij)Tij and Êα(i,j) = 21/(2−δij)Eij where i, j take values from 1 to 3 and α
from 1 to 6. With respect to the basis {êα, α = 1, . . . , 6}, Eq. (2.1) becomes

(2.3) T̂α = ĉαβÊβ , α, β = 1, . . . , 6,

where ĉαβ has the matrix representation

(2.4) ĉαβ =




c11 c12 c13

√
2c14

√
2c15

√
2c16

c12 c22 c23

√
2c24

√
2c25

√
2c26

c13 c23 c33

√
2c34

√
2c35

√
2c36√

2c14

√
2c24

√
2c34 2c44 2c45 2c46√

2c15

√
2c25

√
2c35 2c45 2c55 2c56√

2c16

√
2c26

√
2c36 2c46 2c56 2c66




,
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where, on the right-hand side, the well-known two-index notation

11 ↔ 1, 22 ↔ 2, 33 ↔ 3, 23 ↔ 4, 13 ↔ 5, 12 ↔ 6,

has been used, i.e. c11 = C1111, c45 = C2313, etc.
Mehrabadi and Cowin [3] have shown that if the three-dimensional basis

vectors transform as

(2.5) e′i = Qijej , i, j = 1, 2, 3,

then the basis vectors in six dimensions transform as

(2.6) ê′α = Q̂αβ êβ , α, β = 1, . . . , 6,

where the matrix representation of Q̂ in terms of components of Q is as follows:

(2.7) Q̂ =



Q2
11 Q2

12 Q2
13

√
2Q12Q13

√
2Q11Q13

√
2Q11Q12

Q2
21 Q2

22 Q2
23

√
2Q22Q23

√
2Q21Q23

√
2Q22Q21

Q2
31 Q2

32 Q2
33

√
2Q33Q32

√
2Q33Q31

√
2Q31Q32√

2Q21Q31

√
2Q22Q32

√
2Q23Q33 Q22Q33+Q23Q32 Q21Q33+Q31Q23 Q21Q32+Q31Q22√

2Q11Q31

√
2Q12Q32

√
2Q13Q33 Q12Q33+Q32Q13 Q11Q33+Q13Q31 Q11Q32+Q31Q12√

2Q11Q21

√
2Q12Q22

√
2Q13Q23 Q12Q23+Q22Q13 Q11Q23+Q21Q13 Q11Q22+Q21Q12



.

With Q̂ defined as above, Eq. (2.5) becomes a tensor equation in six dimen-
sions. We shall use this fact to find a generalized version of Theorem 2.

3. Cowin–Mehrabadi Theorem in six dimensions

Consider a plane L with normal n and the tensor Ω of rank two in three
dimensions:

(3.1) Ωij = δij − 2ninj .

Let m be a unit vector in the plane L. Since

(3.2) Ωijnj = −ni, and Ωijmj = mj ,

it follows that the transformation associated with Ω is a reflection in the plane L.
If L is a plane of symmetry for a material, then the tensor C must be invariant
under this transformation i.e.

(3.3) ΩipΩjqΩkrΩlsCpqrs = Cijkl,



Cowin–Mehrabadi Theorem in six dimensions 219

[16, Ch. 2]. The matrix form of (3.1) is

(3.4) Ω(n) =




1 − 2n2

1 −2n1n2 −2n1n3

−2n1n2 1 − 2n2
2 −2n2n3

−2n1n3 −2n2n3 1 − 2n2
3



.

The transformation matrix N̂(n) corresponding to the reflection in plane L, in
six dimensions, will be in the same relation to the matrix (3.4) as the matrix Q̂

of (2.7) is to the 3 × 3 matrix Q, whose components Qij appear in Eq. (2.5).
Since Ω11 = 1−2n2

1, Ω12 = Ω21 = −2n1n2, Ω22 = 1−2n2
2, Ω13 = Ω31 = −2n1n3,

Ω23 = Ω32 = −2n2n3, Ω33 = 1 − 2n2
3, the matrix N̂ is easily obtained from Q̂

by simply replacing in (2.7) Qij by Ωij , i, j = 1, 2, 3. Since Ω is symmetric, so
is N̂. The orthogonality of Ω implies orthogonality of N̂, i.e.

(3.5) N̂ N̂
T

= N̂2 = I,

where I is the unit matrix in six dimensions. The condition of invariance under
reflection in the plane P now becomes

(3.6) N̂ ĉ N̂
T

= ĉ.

Since N̂T = N̂−1, the above condition becomes

(3.7) N̂ ĉ = ĉ N̂.

Therefore we have the following

Theorem 3. An anisotropic material has a plane of symmetry with normal

n if and only if

N̂ ĉ = ĉ N̂.

The above Theorem is a formal extension of the Cowin–Mehrabadi Theorem
[15] to six dimensions. It may, in principle, be employed to find the orientation of
the normals to the planes of symmetry of an anisotropic material, but this task
is more easily accomplished by using Ting’s results such as the following [17]:

Theorem 4. A necessary and sufficient condition for n to be normal to

a symmetry plane is that n should be an eigenvector of U,V,Q(n) and Q(m)
for any m.

4. Applications of Theorem 3

4.1. Isochoric property of eigenvectors

It is easily verified that the matrix N̂, corresponding to an arbitrary n, has
eigenvalues 1, with multiplicity four and −1 with multiplicity two. Also X1 =
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(1, 1, 1, 0, 0, 0)T is an eigenvector belonging to 1. Denote the two eigenvectors
belonging to −1 by X2 and X3. Since N̂ is a real symmetric matrix, X1 is
orthogonal to both X2 and X3. Now suppose that n is a normal to a plane of
symmetry of ĉ, hence N̂(n) commutes with ĉ. Consequently, the eigenspace of N̂

spanned by X2 and X3 will be invariant with respect to ĉ implying that if X is a
vector in that eigenspace, then ĉX will also belong to the subspace. Therefore ĉ

will have two eigenvectors in the subspace [18, Ch. 2]. Since X1 is orthogonal to
every vector in the subspace, it is orthogonal to these two eigenvectors of ĉ. This
proves that ĉ possesses at least two eigenvectors whose top three components
add up to zero.

In [3] the contribution of Lord Kelvin to eigentensors associated with elas-
tic symmetries has been reviewed. The authors list three properties A, B, C
discussed by him of these tensors to which they add a fourth property:

Property D. For any elastic symmetry, the traces of the stress and strain
tensors of identical form, or the traces of the squares of the stress and strain
eigentensors of identical form, are directly proportional.

We can add to this list

Property E. For any elastic symmetry, except triclinic, there are at least
two states in which the mean pressure vanishes and the corresponding deforma-
tion is isochoric.

We shall now use the result of Theorem 3 to prove the Blinowski–Rychlewski
Theorem. Since the trace and the determinant of a second rank tensor are invari-
ants, we can choose a coordinate system to simplify (3.4) and N̂ as a consequence.
To this end, choose x3-axis along n, the normal to a plane of symmetry. Now

Ω(n) = diag(1, 1,−1),

and

(4.1) N̂(n) = diag(1, 1, 1,−1,−1, 1).

The matrix has a two-fold eigenvalue −1 with eigenvectors X4 = (0, 0, 0, 1, 0, 0)T

and X5 = (0, 0, 0, 0, 1, 0)T . Since n = (0, 0, 1)T is assumed to be a normal to a
plane of symmetry, N̂(n) commutes with ĉ, therefore ĉ must have two eigen-
vectors in the eigenspace spanned by X4 and X5, i.e. eigenvectors of the form
(0, 0, 0, a, b, 0)T and (0, 0, 0, b,−a, 0)T for some a, b. Both of these states are pure
shears. This proves the Theorem.

4.2. An axis of symmetry An, with n > 4 implies isotropy

Suppose that a crystal possesses an n-fold axis of symmetry An. If n ≥ 3,
there are n coaxial planes of symmetry with An as the common axis [19, Ch. 4].
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The normals to these planes will all lie in the plane perpendicular to An. Let X1

and X2 be arbitrary but independent vectors in this plane. Define the vector

(4.1) X(θ) = X1 cos θ +X2 sin θ.

We can, in principle, find the reflection matrix N̂(X), the commutator W (θ) =
N̂(X)ĉ− ĉ N̂(X) and the function f(θ) = Tr[W T (θ)W (θ)]. It is clear that f(θ)
will be of the form

(4.2) f(θ) = a0 + a2 cos(2θ + α2) + a4 cos(4θ + α4)

+ a6 cos(6θ + α6) + a8 cos(8θ + α8),

where a0, . . . , a8 and α2, . . . , α8 are constants depending on the components of
ĉ and the vectors X1 and X2. The zeros of f(θ) in [0, π) will determine the
normals to the planes of symmetry. Now let n = 3 and rotate the crystal about
the A3 axis through an angle π/3. The system is invariant with respect to this
rotation but θ in (4.1) is replaced by θ − π/3. This requires

f(θ) = f(θ − π/3),

which is possible only if a2 = a4 = a8 = 0. Thus f(θ) reduces to

(4.3) f(θ) = a0 + a6 cos(6θ + α6).

A similar reasoning for n = 4 will reduce (4.2) to

(4.4) f(θ) = a0 + a8 cos(8θ + α8).

Continuing with this line of argument, it becomes clear that n ≥ 5 will require
f(θ) to vanish identically, i.e. f(θ) = 0 is satisfied for all θ. Hence An, for n > 4,
is an axis of transverse isotropy.
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