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The constitutive law of a two-phase isotropic polymer blending described by
fractional derivative models is obtained through a classical self-consistent scheme.
A parametric analysis is driven to describe the influence of the four parameters
associated with the constitutive law description and to comprise the conditions of
application of the model. An identification of the set of parameters is performed by
mechanical spectroscopy for two amorphous polymers: the polymethyl methacrylate
(PMMA) and the styrene acrylonytrile copolymer (SAN) and their mixture, to eval-
uate the ability of the model to reproduce the experimental results obtained from the
Dynamic Mechanical Thermal Analysis.
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1. Introduction

Blending of polymeric materials is an efficient way of improving the me-
chanical and/or the physicochemical properties of existing polymers. The prob-
lem is significant both from the academic and practical points of view. An ade-
quate description of the visco-elastic constitutive law of polymers is prescribed
by hierarchical elements often called ‘spring dashpots’ (Koeller, [1]). These
elements are particularly efficient to describe the polymer constitutive law in
the glass transition range, in great accordance with experimental results (see
Oldham and Spanier, [2]). The corresponding memory kernel is formulated in
function of a characteristic relaxation time which may be related to the effective
disentanglement vibration frequency. The creep and stress relaxation phenom-
ena are decaying non-exponentially unlike the classical Maxwell or Kelvin–Voigt
descriptions.

Several attempts have already been conducted to describe the equivalent con-
stitutive law of visco-elastic heterogeneous media. If the employed methods are
often concentrated on dealing with the difficulties induced by the visco-elastic
coupling in the constitutive equations, the material constitutive law is proposed
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as Maxwellian. However, there is experimental evidence that the equivalent con-
stitutive law of a multiphase material made of Maxwellian constituents is not
Maxwellian either. This results from complex long-range memory effects de-
scribed by an additional effective contribution which takes the form of an inter-
action kernel (Suquet, [3]). This particular feature was subjected to different
treatments intended to get through the difference of derivative orders of stress
and strain, encountered in the constitutive equations. Some resolution schemes
were based on the tangent linearisation of the local material constitutive law
(Molinari et al., [4]). An alternative procedure proposed the description of the
visco-elastic effects by adequate internal variables, leading to a step-by-step esti-
mate of the effective behavior by means of variational methods (Lahellec and
Suquet, [5]). Paquin et al. [6] applied the internal variables procedure with
translated fields to give a new instantaneous formulation of the strain rate and
its derivations. More recently, Coulibaly [7] included the viscoelastic effects
via a second independent integral equation written for the stress rate field.

The difficulty of the simultaneous occurrence of different derivative orders
may be bypassed with the help of the Laplace–Carson technique and the as-
sociated correspondence principle formulated by Mandel [8]. After a direct
Laplace–Carson transform, the visco-elastic problem is written as a symboli-
cal elastic one which may have a closed-form solution known from the refer-
ence work. Using this elegant scheme, Laws and McLaughlin [9] proposed the
equivalent compliance of composites, they emphasized however the complex and
computer time-consuming character of the Laplace inversion. Rougier et al.

[10] proposed a representation of the equivalent two-phases Maxwellian media
in relaxation spectra; this spectral analysis was further extended by Beurthey

and Zaoui [11] for a multiphase model, under a self-consistent scheme method
first historically presented by Hershey [12]. In order to improve the inverse
Laplace transform usually conducted by a collocation method, Brenner et al.

[13] gave an approximate estimate of the time-response by considering a quasi-
linear development of the frequency response in the vicinity of a ’well-chosen’
frequency in a logarithmic scale, in combination with the direct inversion method
advocated by Schapery [14].

The occurrence of a particular frequency in this work corresponds to the char-
acteristic time relaxation associated to the ‘spring dashpots’ or ‘fractional order
viscous elements’, which is one of the material parameters of the fourth-order
fractional derivative model. As presented in the second section, this model de-
scribes worthily the material constitutive law throughout the several frequency
decades covering the glass transition. The visco-elastic constitutive law is de-
scribed in the Fourier space by complex modulus supplied by a Dynamic Me-
chanical Thermal Analysis device (DMTA). The evolutions of the loss factor
defined as the ratio of the dissipative and conservative moduli, are translated
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according to the frequency to allow their treatment in the homogenisation model.
The inherent mathematical properties of the fractional order derivation are par-
ticularly powerful in the Laplace and Fourier domains, when the correspondence
principle is used to transform the visco-elastic problem. The equivalent constitu-
tive law of the two-phase isotropic visco-elastic materials described by fractional
derivative model is developed in the third section by means of a classical self-
consistent scheme. A parametric study gives the numerical equivalent response
in the Fourier domain when the phases present alternatively close and separated
glass transitions. The fourth section is devoted to an experimental validation of
the proposed model for a blending, consisting of two amorphous polymers whose
glass transition are relatively close: the polymethyl methacrylate (PMMA) and
the styrene acrylonytrile copolymer (SAN). The model developed in this work
supplies the estimation of the blend constitutive law according to the set of four
parameters identified for every pure polymer and of the volume fraction. The loss
factor calculated by the homogenisation technique is compared to the results fol-
lowing from the spectroscopic experimental analysis. The last, concluding section
proposes further developments that may be conducted.

2. Constitutive modelling of visco-elastic materials using

fractional differential operators

2.1. Statement of reasons

Among the specific properties of amorphous polymers and elastomers, the
substantial modifications of physical properties in the glass transition is sub-
ject of great interest as it concerns a wide variety of engineering applications –
such as tire conception and vibration isolation. The glass transition, indeed, is
commonly observed through the behaviour change from glassy state to rubbery
state (and vice versa) when frequency and/or temperature are modified. The
material behaviour follows a variable combination of pure elastic and viscous
contributions depending on the frequency and the temperature. As a conse-
quence, the visco-elastic constitutive behaviour of amorphous polymers in glass
transition is affected by this mixed dependence, which reveals to be linked by
the corresponding effects commonly called time-dependence superposition. This
equivalence principle allows to present the experimental data recorded at various
frequencies and temperatures in a single curve, called by Ferry [15] a master
curve. The spectroscopic experiments, usually called Dynamic Mechanic Ther-
mal Analyses (DMTA), are conducted by imposing elementary cyclic loading
spectra (traction or shearing) to the polymeric sample during a temperature in-
crease cycle, at various frequencies. DMTA can exhibit both elastic and viscous
behaviours which are respectively correlated to stored and dissipated energies.
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In the Fourier domain, constitutive equations of the visco-elastic material
can be expressed as:

(2.1) σ̄(iω) = Ē(iω)ε̄(iω).

The complex modulus Ē(iω) is decomposed into real and imaginary parts
E′(ω) and E′′(ω), defined respectively as conservative and dissipative moduli:

(2.2) Ē(iω) = E′(ω) + iE′′(ω).

The quantity of primary industrial interest is the ratio E′′/E′ which is a measure
of the damping efficiency. It represents the tangent of the phase angle between
stress and strain and is called the loss factor η(ω):

(2.3) η(ω) =
E′′(ω)

E′(ω)
.

The loss factor appears to be the most significant function to consider when
identification of relaxation parameters is conducted. Moreover, it allows an ac-
curate description of the damping properties in the glass transition.

First attempts to describe visco-elastic behaviour implied a combination of
ideal elementary elements: spring and dashpot. The simplest combinations in
series and in parallel give respectively the Maxwell and Kelvin–Voigt models. In
the Maxwell model, the strain rate is taken as the sum of parts proportional to
the stress and the rate of stress as:

(2.4) ε̇ = (1/E∞)σ̇ + (1/τE∞)σ

and the Kelvin–Voigt model corresponds to a stress equal to the sum of parts
proportional to the strain and the strain rate

(2.5) σ = τE∞ε̇+ E0ε.

E0 and E∞ denote respectively the long time (or relaxed) and the instantaneous
(or un-relaxed) moduli. The index in moduli notation has to be interpreted as
frequency limit as described in [19]. The viscosity ηe associated to the dashpot
has been expressed as a function of the relaxation time: τ = ηe/E∞ for the sake
of comparison between the different formulations. Unfortunately, these simplified
models do not describe the real behaviour of a wide class of polymers in the glass
transition: the Maxwell model does not describe any strain recovery and the
Kelvin–Voigt model does not describe any instantaneous response after sudden
change in stress. The simplest improvement is a three-element association called
Zener or a single relaxation time model whose constitutive equation is

(2.6) σ + τ σ̇ = E0ε+E∞τ ε̇.
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It is found that this model is not coherent with certain experimental observations:
the width dependence of the loss tangent η = E′′/E′ versus the material is
insufficiently described by the set of the parameters (E0, E∞, τ).

These limitations conducted first to add more elementary associations of
Maxwell or Kelvin–Voigt type, to end up at the Generalized Maxwell or Kelvin–
Voigt models. However, the multiple combination and the number of involved
parameters led to consider alternative formulations.

2.2. Fractional derivative model

Polymeric materials exhibit fading memory, i.e. the stress generates a strain
state which not only depends on the current strain history but also on the pre-
vious strain states. A particular class of material constitutive laws has been
formulated through integral, hereditary or convolution forms, following the su-
perposition principle introduced by Boltzmann [16]. The classical hereditary
models correspond to exponentially decaying memory resulting from a continu-
ous distribution of relaxation times of the Generalized Maxwell model. Enelund

and Olsson [17] gave an alternative formulation of this spectral description by
means of a fractional derivative operator. They proposed a mathematical frame
to previous empirical descriptions of constitutive laws, based on similarities ob-
served between the mechanical and dielectric relaxations.

The generic fractional-order constitutive law equation is retained in the fol-
lowing form:

(2.7) σ(t) + b1
dβ1σ(t)

dtβ1
+ b2

dβ2σ(t)

dtβ2
+ · · · + bm

dβmσ(t)

dtβm

= a0ε(t) + a1
dα1ε(t)

dtα1
+ a2

dα2ε(t)

dtα2
+ · · · + an

dαnε(t)

dtαn
,

where σ and ε can be referred equally to deviatoric or hydrostatic parts with
appropriate set of a parameters, as demonstated by Enelund and Lesieutre

[18] for a high damping polymer. The operator dα of the fractional derivative of
the αth order is defined for 0 < α < 1 as:

(2.8) dα[x(t)] =
1

Γ (1 − α)

d

dt

t∫

0

x(u)

(t− u)α
du

where Γ denotes the Gamma function. It is important that the number of time
derivatives of strain and stress in (2.7) can not be arbitrary to ensure the de-
scription of an effective material constitutive law and to satisfy the causality
condition formulated as βm ≤ αn.

2.2.1. Four-parameter fractional derivative model. As previous attempts of iden-
tifications of visco-elastic constitutive law have already proved (Hartmann
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et al. [19]), fractional order derivative models of visco-elasticity are efficient to
describe polymer relaxation in glass transition with fewer parameters. Typically,
a four-parameter model allows an accurate description of the polymers exhibiting
the symmetrical evolution of the loss factor versus the normalized frequency ωτ
(Fig. 1). The so-called fractional Zener formulation – corresponding to the Cole-
Cole empirical identification – relies on the strain and the stress histories in the
time domain as:

(2.9) σ(t) + ταd
ασ(t)

dtα
= E0ε(t) +E∞τ

αd
αε(t)

dtα
.

η

ωτ

symmetrical 

non-symmetrical 

ωτ

Fig. 1. Symmetrical and non-symmetrical loss factor.

The dispersion modulus defined as d = E∞/E0 ranges between 100 and 1000
for a large class of polymers. A qualitative interpretation of the fractional or-
der α given by Davies and Lamb [20] suggests that the limit value (α = 1)
corresponds to relaxation of pairs of molecules typically in liquid. The parame-
ter α may be interpreted as a measure of the strength of coupling between the
molecular chains within the polymer entanglements. The characteristic time τ
describes a particular oscillation time of the polymeric chains during relaxation;
it is considered as the only temperature-dependent parameter. The most com-
monly used functional form relating the time relaxation to the temperature in
the glass transition, is the WLF (Williams–Landel–Ferry) equation.

The complex modulus Ē(iω) is expressed as:

(2.10) Ē(iω) =
E0 +E∞(iωτ)α

1 + (iωτ)α
.

The loss factor modulus η(ω) is written:

(2.11) η(ω) =
(d− 1) sin(απ/2)(ωτ)α

1 + (1 + d) cos(απ/2)(ωτ)α + d(ωτ)2α
.
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2.2.2. Five parameter fractional derivative model. When the loss factor appears
clearly to be non-symmetrical as a function of the logarithm of the frequency, an
additional parameter has to be introduced in order to produce different slopes
for each side surrounding the loss factor peak (see Fig. 1). A generalization of
the fractional Zener model was proposed by Havriliak and Negami in [21] to
describe the α-dispersions in polymer system: the complex modulus Ḡ(iω) was
empirically written as:

(2.12)
Ḡ(iω) −G∞
G0 −G∞

=
1

(1 + (iωτ)α)β

where the parameter β controls the asymmetry of the loss factor.
An alternative way to describe non-symmetrical loss factor has been devel-

oped by Dinzart and Lipiński [22], which allows a faithful description of this
particularity. The constitutive differential equation is simplified to:

σ(t) + τα d
ασ(t)

dtα
+ τβ d

βσ(t)

dtβ
= E0ε(t) +E0τ

β d
βε(t)

dtβ
+ E∞τ

α d
αε(t)

dtα
.

The complex modulus Ē(ω) is written as:

(2.13) Ē(ω) =
E0 +E0(iωτ)

β +E∞(iωτ)α

1 + (iωτ)α + (iωτ)β

where the parameter β controls the loss peak non-symmetry. It appears also to
be close to α when the loss factor is quasi-symmetrical. The loss factor modulus
calculated by Dinzart and Lipinski is expressed as:

η(ω) =

(d−1)(sin(απ/2)(ωτ)α+sin((α−β)π/2)(ωτ)(α+β))

[1+(d+1) cos(απ/2)(ωτ)α+2 cos(βπ/2)(ωτ)β+d(ωτ)2α+(ωτ)2β+(d+1) cos((α−β)π/2)(ωτ)(α+β)]
.

2.3. Laplace–Carson transform of the fractional derivative equation

The Laplace transforms of fractional derivative functions present similar
properties as those well-known for transforms of integer derivatives. These char-
acteristic properties favour an easier treatment of the constitutive equations. The
Laplace–Carson transform of a fractional derivative of order αth of the function
x(t) is defined by

(2.14) L[Dα[x(t)]] = pαL[x(t)] +

n−1∑

k=0

pkDα−1−kx(0+)

where n is an integer such that n− 1 < α ≤ n.
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The transform of the general constitutive equation may be written as σ̄(p) =
Ē(p)ε̄(p) where the modulus Ē has the form:

(2.15) Ē(p) =
E0 +E∞(τp)α

1 + (τp)α
.

The memory kernel F̄ (p) related to the complex modulus by Ē(p) =
E0(1 − F̄ (p)) presents a simplified expression in the case of a fourth-order frac-
tional derivative model:

(2.16) F̄ (p) = 1/(1 + (τp)α).

2.4. Inverse Laplace–Carson transform of the fractional derivative equation

As demonstrated by Enelund and Olsson [17], the inverse Laplace trans-
form of the memory kernel (2.16) can be expressed as below:

(2.17) F (t) = −d[Eα(−t/τ)α]/dt

where Eα is the α-order Mittag–Leffler function defined by

Eα(t) =
∞∑

k=0

tk/Γ (1 + αk).

As a consequence, the estimation of the set of parameters α and τ gives a first
closed-form expression of the memory kernel in the time space. This direct in-
version method is easier and less time-consuming than the classical collocation
method described by Schapery [14], which requires the first Dirichlet approxi-
mation of the complex function F̄ (p) as:

(2.18) x(p) = a+ b/p+

N∑

k=1

fk[1/(1 + pτk)].

The order N is selected and the distribution of the retardation times τk allows
to determine the weights fk. The response in the time domain is estimated as:

(2.19) x(t) = a+ bt+

N∑

k=1

fk(1 − exp(−t/τk)).

Brenner et al. [13] suggested the direct inversion method based on a variable
change ω = log10(pt) in the vicinity of a frequency ω0, where the material creep



Self-consistent approach of the constitutive law 143

compliance presents a quasi-linear constitutive law. The response in the time
domain is estimated as:

(2.20) x(t) = a+ b10−ω0t +
N∑

k=1

fk(1 − 1/(1 + 10−ω0t/τk)).

The choice of a particular frequency ω0 for which a linear development is
driven, may be assimilated to the use of a relaxation time associated to the
phenomenon of relaxation governing the glass transition.

3. Self-consistent modelling of a biphasic visco-elastic material

3.1. Constitutive law for inhomogeneous visco-elastic materials

The equivalent resolution of an inhomogeneous visco-elastic problem in the
form of a symbolic elastic one was first dedicated as a ‘correspondence principle’
by Mandel [8]. Laws and MacLaughlin [9] gave the mathematical frame
with the use of Stieltjes convolution for the determination of equivalent creep
compliance. The self-consistent estimate of the overall visco-elastic moduli was
expressed after the Laplace–Carson transform.

A two-phase isotropic blend is considered where each phase denoted by i
(with i = 1, 2) is described by a fractional derivative model characterised by the
following set of parameters (αi, τ i, E0i, E∞i). The constitutive law of each phase
given by the fractional derivative Eq. (2.9) is then formulated in the Laplace-
Carson domain according to equations:

(3.1) σ̄(p) = Ēi(p)ε̄(p), i = 1, 2,

where the modulus Ēi has the generic form:

(3.2) Ēi(p) =
E0i + E∞i(τ ip)

αi

1 + (τ ip)αi
.

The two phases of the blend are considered to be separated at a mesoscopic
scale, which means that no particular requirements are imposed on interaction
parameters, miscibility or phase separation. The phases are only considered to
be rather disordered, allowing to consider that they play a similar morphologi-
cal role, i.e. no phase plays a matrix or inclusion role. The blends refer only to
basically different chain compositions and cannot be described by identical mod-
els. The self-consistent scheme first presented by Hersley [12] was extended by
Hill [23] to a two-phase isotropic composite, inducing a simplification of the set
of equations to a single quartic one. Owing to the correspondence principle, this
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single equation may be rewritten in the Laplace domain to express the effective
modulus of the two materials blending:

(3.3) X2 + 2

(
2 − 5c

6
X2 +

5c− 3

6
X1

)
X − 2

3
X1X2 = 0

where X, X1 and X2 represent respectively the modulus of the equivalent ma-
terial and both constituents. The volume fraction of the phase 2 is denoted c.

So, the Laplace transform of the effective modulus Ēeff satisfies the following
equation:

(3.4) Ēeff2
+ 2

(
2 − 5c

6
Ē2 +

5c− 3

6
Ē1

)
Ēeff − 2

3
Ē1Ē2 = 0

which may be rewritten into (3.6) by the following variable changes:

Ēeff(p) = E0Ȳ
eff(p),

Ē1(p) = E01Ȳ1(p) = E01
1 + d1(τ1p)

α1

1 + (τ1p)α1
,

Ē2(p) = E02Ȳ2(p) = E02
1 + d2(τ2p)

α2

1 + (τ2p)α2
,

(3.5)

E2
0 Ȳ

eff2
+ 2

(
2 − 5c

6
E02Ȳ2 +

5c− 3

6
E01Ȳ1

)
E0Ȳ

eff − 2

3
E01E02Ȳ1Ȳ2 = 0.(3.6)

The dispersion moduli d1and d2, are defined as the ratios of the instantaneous
and relaxed moduli relative to the two phases and their blending.

As the blending properties have to be retrieved for instantaneous or long-
time conditions, the relaxed and un-relaxed moduli are assumed to satisfy also
the relationship given by (3.3):

(3.7)

E2
0 + 2

(
2 − 5c

6
E02 +

5c− 3

6
E01

)
E0 −

2

3
E01E02 = 0,

E2
∞ + 2

(
2 − 5c

6
E∞2 +

5c− 3

6
E∞1

)
E∞ − 2

3
E∞1E∞2 = 0.

The modified effective modulus Ȳ eff satisfies the equation:

(3.8)

(
Ȳ eff2

Ȳ1Ȳ2
− 1

)
+ 2

(
a2

(
Ȳ eff

Ȳ1
− 1

)
+ a1

(
Ȳ eff

Ȳ2
− 1

))
= 0

where the constants a1 =
5c− 3

6

E01

E0
and a2 =

2 − 5c

6

E02

E0
are determined as

functions of the positive root E0 of the first Eq. 3.7).
The effective relaxation modulus Ȳ eff is the positive root of the equation:

(3.9) Ȳ eff = −(a1Ȳ1 + a2Ȳ2) +
√

(a1Ȳ1 + a2Ȳ2)2 + (2(a1 + a2) + 1)Ȳ1Ȳ2.
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3.2. Numerical estimation of the blend constitutive law

In order to further compare the response of the two phases and of their
blending via the Dynamic Mechanical Analysis, we have to express the storage
and dissipative moduli and the loss factor in the Fourier domain. The estimation
of the blend constitutive law consists of the numerical extraction of the real and
imaginary parts of the complex effective relaxation modulus Ȳ eff . The equivalent
storage and loss moduli Eeff′

and Eeff′′

are obtained after multiplication of Y eff′

and Y eff′′

by E0. The equivalent loss factor ηeff(ω) is defined as the ratio of Y eff′′

and Y eff′

.
A numerical parametric study is conducted in order to describe the influence

of the phases’ characteristics and their fraction ratio. The effect of the volume
fraction c is analysed throughout two particular cases of blending: (1) for two
materials whose glass transitions are close and (2) – for two materials whose
glass transition is decayed in temperature (equivalent to frequency decay). The
characteristics of each phases (Tables 1 and 2) are chosen as to have a simplified
mathematical correlation between couples of values (α1, α2), (τ1, τ2), (E01,, E02,)
and (E∞1, E∞2) and do not describe any real material behaviour. Coherent ma-
terial description will be conducted in the last section illustrated by PMMA-SAN
blending.

Table 1. Fourth-order parametric description
– case of identical relaxation times.

α E0 E∞ τ d

1 0.4 1 10 1 10

2 0.4 2 15 1 7.5

Table 2. Fourth-order parametric description
– case of different relaxation times.

α E0 E∞ τ d

1 0.4 1 10 100 10

2 0.4 2 15 0.1 7.5

3.2.1. Case of close glass transition. The equivalent relaxed and unrelaxed mod-
uli E0 and E∞ are calculated by using the formulas (3.7), allowing the first
approximation in a generalized simple linear regression Maple internal package
[24] used to determine the complete set of parameters (α, d, τ). The trial run of
(α, τ) is equal to one of the phase. The asymmetry factor β is taken close to α
at the first iteration.
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The numerical fitting of the equivalent loss factor conducts to the following
sets of parameters for a classical fourth-order fractional derivative model and for
the Havriliak–Negami description respectively summarized in Tables 3 and 5.

Table 3. Fourth-order approximation of the equivalent loss factor
– case of close glass transition.

α d τ

c = 0.3 0.3992 9.1311 1.001

c = 0.5 0.3992 8.5969 1.0006

c = 0.7 0.3994 8.1082 1.0007

Table 4. Fifth-order approximation of the equivalent loss factor
– case of close glass transition.

α β d τ

c = 0.3 0.3991 0.3993 17.276 0.1755

c = 0.5 0.3990 0.3993 16.208 0.1753

c = 0.7 0.3993 0.3995 15.225 0.1784

Figures 2 to 4 describe the equivalent constitutive law in comparison with
the respective constitutive laws of both phases in the case (1) of close glass
transitions. When the two phases mixed together present quite similar relaxation
times, the equivalent constitutive response of the blend appears as a combination

0

1

2

3

4

5

6

7

8

9

10

0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000 10000

1

2

Blend 30% 

Blend 50%

Blend 70%

ω

Conservative modulus

E' (ω)/E 0

Fig. 2. Influence of the volume fraction c on the storage modulus E′ – case of close glass
transitions.
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Fig. 3. Influence of the volume fraction c on the dissipative modulus E′′ – case of close glass
transitions.

Fig. 4. Influence of the volume fraction c on the loss factor η – case of close glass transitions.

between the two phases constitutive law: the slope of the loss factor is between
the values of the parameter α1 and α2 relative to each phases. No surprisingly, the
curves corresponding to the fraction c = 0.3 are close to that of the phase 1 (and
similarly, the curves relative to the fraction c = 0.7 are close to the phase 2).
Under the hypothesis of presenting a symmetrical shape, the equivalent loss
factor may be approached by the similar description as the one used for the two
mixed phases. Because the loss factor is symmetric with respect to the frequency,
the parameter β is close to α. As a consequence, when the phases present glass
transition in the same range of temperature or frequency, it appears that the
material constitutive description of the blending may be achieved by a fourth-
order fractional derivative model. The relaxation time τ appears close to the
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common value of the two phases, the slight difference (0.1%) may be attributed
to the interpolation procedure that is conducted on curves described by 20 points.

3.2.2. Case of separated glass transition. The set of Fig. 5 to 7 illustrates the
equivalent storage dissipative moduli and the equivalent loss factor for two ma-
terials of separated glass transition. As seen previously, the dominant phase
(typically c = 0.3 and c = 0.7) imposes widely their characteristics. The loss
factor peak of the resulting blend is less pronounced and the slopes are differ-
ent from either side, leading to a non-symmetrical loss factor plots. For equal

Fig. 5. Influence of the volume fraction c on the storage modulus E′ – case of separated
glass transitions.

Fig. 6. Influence of the volume fraction c on the dissipative modulus E′′ – case of separated
glass transitions.



Self-consistent approach of the constitutive law 149

Fig. 7. Influence of the volume fraction c on the loss factor η – case of separated glass
transitions.

contribution of each phase, the equivalent loss factor seems to average the loss
factors of both phases and consecutively, presents a single extremum associated
to a unique glass transition. However, the real blending material of far separated
glass transitions gives frequently a non-miscibility of two phases, experimentally
described by two distinct extrema of the loss factor. It is important that the mis-
cibility criterion considered here corresponds to the glass transition valuation by
differential scanning calorimetry or differential mechanical analysis (DMTA). As
miscibility in polymer blends may be studied by various techniques (IR absorp-
tion, light scattering . . . ), many definitions may be proposed implying up to the
molecular structure. Similar fitting approximations are conducted for the case of
separated loss factor peaks. A first attempt of identification was conducted under
the hypothesis of quasi-symmetrical loss factor leading to a fourth-order frac-
tional derivative description (Table 5). A fifth-order fractional derivative model
appears more appropriate to describe the asymmetrical loss factor (Table 6, see
also Fig. 8). However, the real blending material of far separated glass transition
exhibits frequently a non-miscibility, experimentally identified by two distinct ex-
trema of the loss factor. Similar fitting approximations are conducted for the case
of separated loss factor peaks in the case of the volume fraction c = 0.5 in Fig. 9.

Table 5. Fourth-order approximation of the equivalent loss factor
– case of separated glass transition.

α d τ

c = 0.3 0.31287 9.5177 11.3466

c = 0.5 0.27934 9.5025 1.20784

c = 0.7 0.2973 8.6142 0.23410



150 F. Dinzart, P. Lipiński

Table 6. Fifth-order approximation of the equivalent loss factor
– case of separated glass transition.

α β d τ

c = 0.3 0.33155 0.3099 16.21 2.634

c = 0.5 0.27097 0.2834 19.05 0.0623

c = 0.7 0.27610 0.3128 18.53 0.0075

Fig. 8. Approximation of the loss factor – c = 0.3.

Fig. 9. Approximation of the loss factor – c = 0.5.



Self-consistent approach of the constitutive law 151

4. Experiments

4.1. Experimental device

The polymers tested within the framework of the validation of the homogeni-
sation model are the poly(methyl-methacrymate) (PMMA) , the poly(styrene-co-
acrylonitrile) (SAN) and blend of these two grades at a 50% volume percentage.
The blend was obtained by a conventional solution casting method. They were
purchased from SORECO and injected so as to obtain a classical bending sample
of rectangular section of 4 mm width and 10 mm long. The level of interaction of
SAN with PMMA has not been investigated as it corresponds to a lower level of
description, required by the self-consistent scheme which only specifies randomly
distributed phases.

The experiments were conducted on a Dynamic Mechanical Analyser from
Netzsch. Dynamic three-points cyclic bending tests were performed under a tem-
perature range from room temperature (300 K) to 413 K and under the tempera-
ture rate 3 K/min. The frequency may be singly imposed or under a multiplexing
way.

4.2. Results and discussion

The experimental results reported are the storage and dissipative moduli and
the loss factor ratio as functions of the time and temperature.

As the loss factor modulus η(ω) is the most sensitive property to small
changes in behaviour, the parameters identification was brought onto its plots.
The experimental results are reported as functions of the time and tempera-
ture and have consequently to be treated to describe the material evolution in
function of the frequency or the normalized frequency (ωτ) instead of the tem-
perature. The first identification is conducted via the Cole–Cole plot giving the
dissipative modulus as a function of the storage modulus. The slope at the origin
of the Cole–Cole plot may be approximated by απ/2 which allows the estimation
of this fractional derivative order (see Fig. 10). For a material constitutive law
described by (2.9), the extremum of the loss factor η(ω) which occurs at the
normalized frequency

(4.1) (ωτ)max = (1/d)(1/2α)

takes the value:

(4.2) ηmax =

d−1√
d

sin(απ/2)

2 + d+1√
d

cos(απ/2)
.

Providing that the parameter α has already been approached, the loss fac-
tor extremum allows the estimation of the ratio d = E∞/E0 and consecutively,



152 F. Dinzart, P. Lipiński

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800 1000 1200 1400 1600 1800 2000

E' [MPa]

E'' [MPa]

1Hz

απ/2 α = 0.65

Fig. 10. Determination of the fractional derivative order – case of the PMMA.

Fig. 11. Experimental results for the loss factor versus the normalized frequency ωτ .

the normalized frequency associated to the peak by formula (4.1). Knowing the
couple (α, d), the normalized frequency (ωτ) appears as a solution of the equa-
tion resulting from expression (2.9), where the loss factor η(ωτ) is successively
replaced by the experimental values. This leads to the set of curves shown in
Fig. 11 where the loss factor η(ωτ) is plotted versus the normalized frequency ωτ .
The figure shows that the loss factor of every pure polymer presents a symmet-
rical shape versus the normalized frequency in logarithmic scale. It should be
noted that the glass transition and the correlated extrema of the loss factor are
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close together. The blending of the two polymers presents a loss factor which
fits perfectly between those of the two pure phases. It appears also symmetrical
according to the normalized frequency and can be described consequently by the
same fourth-order fractional derivative model.

In order to compare it with the loss factor predicted by the model, a relax-
ation time τ is chosen for each phase to change the previous plot of the loss
factor in order to consider the frequency dependence ω. The chosen values for
the variable change are optimised in view to have close peaks. These values cor-
responds, for each phase, to the relaxation time at the loss factor for a frequency
equal to f = 1 Hz. The following table [7] summarizes the identified parameters
according to the fourth-order fractional derivative model on which is based the
homogenisation scheme for the two considered phases (pure PMMA and SAN)
and for a 50-50 blend. The estimation of the relaxation time τ is also given for
the experimental frequency f = 1 Hz.

As shown in Fig. 9, the fourth-order parameter fractional derivative allows
a complete description of the loss factor master curve as a function of the nor-
malized frequency in logarithmic scale. The symmetrical shape reinforces the
choice of this constitutive law description also for the resulting 50-50 blend of
the two phases. Different experimental loss factor curves were studied at various
frequencies (5 Hz and 10 Hz) and the dispersion did not exceed 5% of the plotted
master curves given in Fig. 12.

The blend constitutive law is predicted by the model by considering the es-
timated sets of parameters (αi, τ i, di) for the PMMA and the SAN given in
Table 7. The numerical equivalent loss factor provided by the model is com-
pared in Fig. 12 with the loss factor curve obtained from the experiences. The
equivalent constitutive law predicted is in a quite good agreement with the ex-
perimental results when a 5% dispersion percentage of the experimental results
is considered.

Table 7. Identification of the characteristic parameters
of the tested polymers and blend.

α d τ

PMMA 0.65 24.18 0.137

SAN 0.73 125 0.00583

PMMA-SAN 50-50 0.70 50.9 0.01068

The numerical equivalent constitutive law may be approached also be
a fourth-order fractional derivative model and the estimation of this numerical
set appears in great accordance with the estimation obtained from the experi-
mental results (see Table 8).
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Fig. 12. Comparison between model predictions and experimental results conducted on
PMMA-SAN blend.

Table 8. Comparison between the experimental and the model estimations of
the set of characteristic parameters.

α d τ

PMMA-SAN 50-50 – experimental estimation 0.70 50.9 0.01068

PMMA-SAN 50-50 – model approximation 0.678 51.566 0.00834
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5. Conclusion

This work combines an already well-known formalism articulated around the
classical self-consistent scheme to a sophisticated description of the polymer
constitutive law in the glass transition. Self-consistent approach of the equiv-
alent constitutive law of a two-phase visco-elastic material was developed by
using the mathematical peculiarities of the constitutive equations written with
fractional order derivation of strain and stress. The method is based on the
Laplace–Carson transform of the visco-elastic problem into a symbolic elastic
one, whose solutions are known according to the classical self-consistent proce-
dure. The parametric analysis showed a high flexibility of the constitutive law in
description of blending of the given volume fraction for two visco-elastic materi-
als, described each by a set of four parameters (relaxed and un-relaxed moduli,
time relaxation and fractional order parameter). However, it seemed that for
materials presenting separated glass transition in temperature or in frequency,
the constitutive behaviour may not be described accurately by the fourth-order
fractional derivative model used to identify each of the phases, the shape of the
loss factor becoming in that case asymmetrical enough in logarithmic scale to
present eventually two separated extrema. The polymers chosen for the sake of
validation of the proposed model (the polymethyl methacrylate -PMMA- and
the styrene acrylonytrile copolymer -SAN-) present close glass transitions when
expressed as a function of the frequency. The DMTA analysis of the blend shows
that the blend constitutive law can also be described by the four parameter
model as that used for each of the phases. The loss factor of the blend calcu-
lated by the homogenisation technique is in good agreement with the loss factor
determined with the DMTA devices. The set of four parameters identified on
the calculated curve is close to that obtained experimentally. Finally, a direct
inversion of the expression of the memory kernel associated to the fourth-order
fractional derivative model gives the material constitutive law in the time space.
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