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Mechanical effects coupled with calcium waves
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1. Introduction

This paper presents explicit travelling wave solutions to a system of equa-
tions, describing the evolution of the calcium propagation and the associated
mechanical phenomena in biological media (cells and tissues). This system of
equations has the following form:

∂c

∂t
= D∇2c+ f(c) + γθ,(1.1)

∇ · σ = 0,(1.2)

where θ = ∇ · u is the dilation and u is the displacement. The stress tensor
σ ≡ σij , where

(1.3) σij = θλδij + 2Gǫij + ν1θ,tδij + ν2ǫij,t + τij .

In Eq. (1.1), c denotes the free cytosolic calcium concentration, D is its effective
diffusion coefficient, f(c) is the function describing calcium transport into and
out of the cytosol. In Eq. (1.3), ǫij are the components of the deformation tensor
ǫ = 1/2(∇u + ∇u

T ), λ and G are the Lamé coefficients, whereas ν1 and ν2 are
the viscosity coefficients. τij are the components of the so-called active traction
tensor τ (resulting from the actin-myosin interaction). Below, we assume that τ
is a diagonal tensor of the form

τ = diag(τ11, τ22, τ33).

In Eq. (1.2), the inertial terms have been neglected, due to the fact that the
considered mechanical phenomena (connected with the wave of calcium concen-
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tration) induce relatively slow motion of the medium. Also, the divergence of
the stress tensor is assumed to be equal to zero. This means that there are no
external constraints for the expansion or contraction of different parts of the
medium. This assumption will be changed in the last section of the paper. For
the review of various aspects of calcium dynamics, see e.g. [2]. The linear form
of the mechanical term γθ in Eq. (1.1) is postulated in [7].

The dynamics of the local calcium concentration inside a cell or tissue coor-
dinates many physiological processes. It plays a key role in transferring signals
from the surrounding medium into the interior of the cell. It governs also the
process of bridging between actin and myosin fiber proteins. This process is es-
pecially important in myocyte long cells and leads to their contraction. On the
other hand, the local mechanical deformations of the medium influence the dy-
namics of calcium through the term γθ in Eq. (1.1). The explicit form for purely
chemical travelling waves, i.e. for γ = 0, are well-known (see e.g. [7]); however,
up to our knowledge, the explicit travelling wave solutions to system (1.1)–(1.2)
have not been studied.

In this paper we will find some explicit solutions of travelling wave type
for system (1.1)–(1.2). This provides some insight into the phenomenon of the
mechano-chemical coupling described by this system of equations. We confine
ourselves to three geometrical cases. These cases have been considered in [8] and
are depicted in Fig. 1. Thus in the paper we consider the calcium waves in an
unbounded bulk medium, in thin infinite layers which in their undeformed state
are planes [1], and infinitely long cylinders of sufficiently small radius. The last
situation can be physically realized e.g. in the case of long myocyte cells [6].

a) b) c)

Fig. 1. The geometrical cases considered in the paper. a) Bulk medium (large in every
direction), b) Infinite plane layer of sufficiently small width 2d, c) Long cylinder of

sufficiently small radius.

Remark 1. Calcium dynamics is a complex phenomenon, consisting of nu-
merous intracellular pathways and the exchange of calcium ions between ex-
tracellular matrix (ECM) and cell interior. However, in this paper we confine
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ourselves only to the processes related to the activated calcium, calcium re-
lease from endoplasmic reticulum vesicles into the cytoplasm. This simplify-
ing assumption allows us to use a description based on the reaction-diffusion
equation. 2

2. Analysis of the mechanical equation

For the Reader’s convenience we repeat here the analysis of the mechanical
equation, which can be found in [8] or [5]. As we have mentioned, we are inter-
ested in plane travelling waves solutions to the system (1.1)–(1.2), propagating
along the x-axis. As a result we may assume here that c = c(x, t).

Remark 2. The last assumption is in fact a kind of homogenization as-
sumption, by which we neglect the boundary effects or non-homogeneity of the
internal endoplasmic calcium vessels distribution. 2

Bulk medium

In the case of bulk medium it is natural to assume that all the components of
the deformation tensor ǫ depend only on x and t and that ǫij ≡ 0 except for ǫ11

(consequently, u2 ≡ 0 and u3 ≡ 0). We thus have θ = ǫ11 and the x-component
of Eq. (1.2) gives

(λθ + 2Gθ + (ν1 + ν2)θ,t + τ11),x = 0,

which, after integrating and putting the integration constant to zero (assuming
that there are no external forces), leads to the equation

λθ + 2Gθ + (ν1 + ν2)θ,t + τ = 0,

with τ = τ(c) = τ11(c).

Infinite layer

Now, let us consider the case of an infinite thin layer. We fix the system of
coordinates in such a way that the x-axis is parallel to the layer and the z-axis
is perpendicular to it (as shown in Fig. 1). As before, we assume that all the

components of the tensors σ and ǫ depend only on x and t, but do not depend

on y and z. According to the translational symmetry with respect to y, we can
suppose that u2 ≡ 0, hence ǫ22 ≡ 0. We also demand the plane stress conditions
on the boundary planes {(x, y, z) : z = ±d} (see [3]). That is to say, we suppose
that for z = ±d
(2.1) σi3 = 0, i = 1, 2, 3.

Thus, in this case we obtain:
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1. From the balance of mechanical forces:

(2.2) (λθ + 2Gǫ11 + ν1θ,t + ν2ǫ11,t + τ11),x = 0.

2. From the boundary conditions on the boundary planes (by taking i = 3):

(2.3) λθ + 2Gǫ33 + ν1θ,t + ν2ǫ33,t + τ33 = 0.

Though referring only to the boundary conditions at z = ±d, Eq. (2.3) is valid
in the whole thin layer, as we assume that the components of the tensor σ do
not depend on the variable z. Integrating Eq. (2.2) and assuming the integration
constant to be zero, we obtain

(2.4) σ11 = θλ+ 2Gǫ11 + ν1θ,t + ν2ǫ11,t + τ11 = 0,

hence by adding it to Eq. (2.3), we obtain the first-order differential equation
for the dilation θ

(2.5) 2 (λ+G) θ + (2ν1 + ν2)θ,t + τ11 + τ33 = 0.

Fibers

In the case of waves propagating in fibers (e.g. long cells as myocytes) we
assume cylindrical symmetry of the problem and that τ22 = τ33. In this case we
have ǫ22 = ǫ33, so θ = ǫ11 + 2ǫ33. Formally, the boundary conditions and the
balance of forces have the same form as in the case of thin layers, then

(λθ + 2Gǫ11 + ν1θ,t + ν2ǫ11,t + τ11),x = 0,

λθ + 2Gǫ22 + ν1θ,t + ν2ǫ22,t + τ22 = 0,

λθ + 2Gǫ33 + ν1θ,t + ν2ǫ33,t + τ33 = 0,

(we use the Cartesian system of coordinates, keeping in mind however the radial
symmetry). Summing up these equations, after the integration of the first one
we obtain again a first-order equation for the dilation θ:

(3λ+ 2G)θ + (3ν1 + ν2)θ,t + τ11 + 2τ33 = 0.

Thus in all three cases we arrive at the same type of first-order ODE. This
equation has the form:

(2.6) Kθ + µθ,t + τ = 0.

The coefficientsK, µ and τ depend on the case considered and τ is an appropriate
function of the components of the tensor τ and they are given explicitly in

Table 1.
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Table 1. The coefficients K, µ and τ in Eq. (2.6).

K(λ,G) K(E, ν) µ τ

bulk medium λ+ 2G
E(1 − ν)

(1 + ν)(1 − 2ν)
ν1 + ν2 τ11

thin layer 2λ+ 2G
E

(1 + ν)(1 − 2ν)
2ν1 + ν2 τ11 + τ33

fiber 3λ+ 2G
E

1 − 2ν
3ν1 + ν2 τ11 + 2τ33

Finally, let us recall that the Young modulus E and Poisson’s ratio ν are
related to the Lamé coefficients by the relations:

λ =
Eν

(1 + ν)(1 − 2ν)
, G =

E

2(1 + ν)

and

E =
G(2G+ 3λ)

λ+G
, ν =

λ

2(λ+G)
.

3. Travelling wave solutions

Solutions of travelling wave type describe many important phenomena in biol-
ogy [7], chemistry [10] and physics (e.g. different models of phase transitions [9]).
Looking for travelling wave solutions we assume that

(3.1) c(x, y, z, t) = c(x− vt), θ(x, y, z, t) = θ(x− vt),

where v is the speed of the wave. Moreover, we assume that the displacement
have also the form of a travelling wave in the x-direction, i.e.

(3.2) u(x, y, z, t) = u(x− vt, y, z).

System (1.1)–(2.6) changes then to a system of ordinary diffrential equations of
the form:

Dc′′ + vc′ + f(c) + γθ = 0,(3.3)

−vµθ′ +Kθ + τ = 0.(3.4)

Here ′ denotes the derivative with respect to ξ = x−vt. Thus, we are looking for
heteroclinic solutions to system (3.3)–(3.4), that is to say the C2(R1) functions
c and θ such that limξ→−∞ c(ξ) = c1, limξ→∞ c(ξ) = c3 and lim|ξ|→∞ θ(ξ) = 0.
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Here c1 and c3 > c1 denote the two stable equilibrium concentrations of the
cytosolic calcium. When considering the system (1.1)–(1.2), we also assume that

(3.5) τ(c1) = τ(c3) = 0, and τ(c) ≥ 0.

The function f(·) is often modelled in the form f(c) = A(c−c1)(c−a)(c3−c) with
appropriately chosen constants A, c1, c3 and a. For considerations concerning the
physical values of A and the effective diffusion coefficient D, see e.g. [5] or [6].
Obviously, due the possibility of appropriate scaling, we can assume without
losing generality that c1 = 0 and c3 = 1.

In the whole paper we will take the following assumptions:

Assumption 1. f(c) = Ac(c− a)(1 − c) and (1 − 2a) > 0. 2

Assumption 2. The coefficients γ, λ, G, ν1, ν2 are constants, whereas
τ = τ(c). 2

Remark 3. The condition demanding that λ, G, ν1, ν2 are constants can be
relaxed to the condition that λ, G, ν1, ν2 are appropriate functions of c. However,
for clarity of exposition, we will not consider this generalization here. 2

Remark concerning the form of τ(c). As we are not able to find explicit
solutions in general, the form of τ = τ(c) will be somehow adjusted to the form
of the function θ. The precise form of τ = τ(c) can depend on the kind of the
tissue. It should be however positive for all c and must vanish for large c. In the
paper, for sufficiently small relative values of the viscosity coefficient µ, τ = τ(c)
behaves approximately as c(1− c), so it vanishes for c = 0 (as shown in Fig. 2a).
Only in the last section τ(0) > 0 (as in Fig. 2b). This agrees with the qualitative
characterization of the traction terms, e.g. in [7]. 2

a) b)

Fig. 2. a) The qualitative shape of τ as a function of c ∈ [0, 1] considered in Sec. 3; b) The
shape of the function τ considered in Sec. 4.

It is known that for θ = 0, Eq. (3.3) has a heteroclinic solution connecting
its constant steady states c = 0 and c = 1 for one and only one value of the
parameter v equal to

v = −(AD/2)1/2(1 − 2a).
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The solution is of the form:

c(ξ) =
1

1 + exp(−(A/2D)1/2ξ)
.

We prove that under some assumption concerning the form of τ , a similar func-
tion satisfies the considered system. Let us make an assumption:

(3.6) c =
1

1 + exp(−sξ) ,

with s ≥ 0. This function satisfies the identity:

(3.7) c′ = sc(1 − c)

and c(0) = 1/2. Next, let us suppose that

(3.8) θ(ξ) = −qc(ξ)(1 − c(ξ))

for some positive q ∈ R
1. Then

(3.9) θ′ = −sqc(1 − c)(1 − 2c).

Putting (3.8) into Eq. (3.3) and determining the profile of the wave, we obtain

Dc′′ + vc′ +Ac(c− a)(1 − c) − γqc(1 − c) = 0

or equivalently:

Dc′′ + vc′ +Ac(c− a+ γqA−1)(1 − c) = 0.

This equation has a heteroclinic solution

(3.10) c(ξ) =
1

1 + exp(−(A/2D)1/2ξ)

satisfying the condition c(0) = 1/2 iff

(3.11) v = −(AD/2)1/2
(
1 − 2(a+ γqA−1)

)
.

This means in particular that s =
√
A/2D. According to (3.6), (3.10) and (3.11),

(3.12) vs = −A
2

(
1 − 2(a+ γqA−1)

)
.

Assumption 3. Let for τ defined in Table 1, τ = τ(c) be such that the
identity

(3.13) qc(1 − c)

[
K +

A

2

(
1 − 2(a+ γqA−1)

)
µ(1 − 2c)

]
= τ(c)

is satisfied (with µ given in Table 1). 2

According to (3.12), the left-hand side of (3.13) can be written as
qc(1 − c) [K − vsµ(1 − 2c)], so Eq. (3.4) is fulfilled.
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Displacements

Bulk medium. In this case we have u ≡ (u1, 0, 0) and u1(x, y, z, t) =
∫ ξ
−∞ θ(h)dh,

so demanding that u1 → 0 for x− vt→ −∞, we have according to (3.9):

u1 = −qc(x, y, z, t)
√

2D

A
.

Infinite layer. This case is described by Eq. (2.5). For simplicity, we also assume
that

τ11 = τ33.

Then by (2.5)

(3.14) (λ+G)θ + (ν1 + ν2/2)θ,t + τ11 = 0,

whereas from (2.4)

(3.15) σ11 = θλ+ 2Gǫ11 + ν1θ,t + ν2ǫ11,t + τ11 = 0.

From (3.15) we obtain:

σ11 = θ(λ+G) + 2Gǫ11 +

(
ν1 +

ν2

2

)
θ,t +

[
−Gθ − ν2

2
θ,t

]
+ ν2ǫ11,t + τ11 = 0

and finally, by subtracting (3.14) we get

(3.16) 2Gǫ11 +

[
−Gθ − ν2

2
θ,t

]
+ ν2ǫ11,t = 0.

Similarly, using (2.5) and (2.3) one obtains

(3.17) 2Gǫ33 +

[
−Gθ − ν2

2
θ,t

]
+ ν2ǫ33,t = 0.

Neglecting the viscosity coefficient at the time derivative of ǫ11 in Eq. (3.16), we
obtain:

2Gǫ11 = Gθ +
ν2

2
θ,t.

By assumption,

Gθ +
ν2

2
θ,t = −Gqc(1 − c) − v

ν2

2
θ′ =

(
−Gq

s
c− v

ν2

2
θ
)′
.

Using (3.2), we thus have

2Gu1(x, y, z, t) =

ξ∫

−∞

ǫ11(h)dh = −Gq
s
c(ξ) − v

ν2

2
θ(ξ)

= −Gq
s
c(ξ) − vq

ν2

2
c(ξ)(1 − c(ξ)),
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hence

u1(x, y, z, t) = −qc(ξ)
√

D

2A

[
1 −A

ν2

2G
(1 − 2(a+ γqA−1))(1 − c(ξ))

]
.

The integration constant has been assumed to be equal to zero to assure that
u1(−∞) = 0.

Now, let us analyze Eq. (3.17). By means of (3.9) we have

Gθ +
ν2

2
θ,t = −Gqc(1 − c) − v

ν2

2
θ′

= −Gqc(1 − c) + vs
ν2

2
qc(1 − c)(1 − 2c),

so neglecting the viscosity coefficient by the time derivative of ǫ33 and using
the fact that, by assumption, ǫ33 does not depend on z, we obtain by means
of (3.12)

(3.18) u3(x, y, z, t)

= −qc(ξ)(1 − c(ξ))

[
1

2
+

A

2G
(1 − 2(a+ γq))

ν2

2
(1 − 2c(ξ))

]
z.

Similar calculations can be made for fibers and the bulk medium (with respect to
the displacements in the x-direction). In the case of fibers (infinite cylinders) we
use the fact of the radial symmetry, from which it follows that the dependence of
the radial displacement on the radius r is the same as the dependence of u3 on
z at the z-axis. That is why the displacement along the radius is equal to ǫ33r.
The qualitative behaviour of the displacements u1 and u3 (in the case of thin
layers and fibers) is shown in Fig. 3 and Fig. 4, respectively.

Fig. 3. Displacements in the x-directions. The displacement vectors u1(x, t) are directed to
the left. u1(x, t) → 0 as x→ −∞ and u1(x, t) → u10 < 0 as x→ ∞.
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a)

b)

Fig. 4. Displacements in the z-direction; a) thin layer; b) long cylinder.

Remarks

1. Eq. (3.16) can be solved explicitly also with ν2 6= 0. However, the solution
obtained would have a much more complicated form. It is proved in [5] that
for ν2 → 0, this solution tends in C1(R)-norm to the solution of Eq. (3.16) with
ν2 = 0. This reasoning is justified by the fact that in most of the biological tissues,
the viscosity effects for displacements propagating with the speeds characteristic
for cytosolic calcium waves (10–100 µm/s) are small with respect to the elastic
effects [4, 7].

2. As it follows from (3.18), ǫ13 6= 0 with ǫ13 = O(d). However, since the
displacement vector is expressed up to linear terms in z, it is reasonable to take
into account the strain tensor up to the zero-order terms in z since differentiation
lowers the order of approximation by 1 (see [5]). In this sense, the assumed
condition that the components of σ and ǫ depend only on x is satisfied. Thus
asymptotically as d → 0, we have u3 ≡ 0, whereas the expression (3.18) can be
viewed as a first-order perturbation. 2

We have thus shown the validity of the following theorem.

Theorem 1. Let Assumptions 1, 2 and 3 be satisfied. Then for all q > 0,
system (3.3), (3.4) has a heteroclinic solution (v, c, θ) with v given by (3.11), c(ξ)
by (3.10) and θ(ξ) by (3.8). The solution is unique up to a translation in ξ. 2

The functions c(x − vt) and θ(x − vt), together with the corresponding dis-
placement functions u (which were found above), satisfy the initial PDE system
(1.1)–(1.3) exactly in the case of bulk unbounded medium. In the case of thin
infinite layer and fibers, under the assumption of plane stress conditions on the
boundary, system (1.1)–(1.3) is satisfied up to the terms of order O(d) as d→ 0.
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4. Mechanochemical travelling waves with mechanical constraints

In this section we consider the travelling wave solutions of the system

∂c

∂t
= Dc∇2c+ f(c) + γθ,(4.1)

∇ · σ = ku,(4.2)

where k = const > 0. That is to say, we take into account the possibility of
mechanical constraints which can counteract the displacements of the medium.
The specific form of this constraint given by the right-hand side of Eq. (4.2)
is called the Winkler model. We use the same methodology as in the previous
sections. To be more precise, we exploit the explicit solution of the form (3.6)
by appropriate choice of the function τ(c). For definiteness, we confine ourselves
to the case of bulk medium. By the considerations of Sec. 2, in the case a plane
travelling wave propagating along the x-axis in the bulk medium, we can assume
that θ = ǫ11 and u = (u1, 0, 0) =: (u, 0, 0). It follows that

θ = u,x = u′,

where ′ denotes the differentiation with respect to ξ = x−vt. Unlike the previous
section, we demand that u(ξ) → 0 for ξ → ±∞ by assuming

u(ξ) = −ζc′(ξ).

It follows that θ(ξ) = u′(ξ) = −ζc′′(ξ). If we suppose that c(ξ) is given by (3.6),
then

(4.3) θ = −sζc(1 − c)(1 − 2c)

and θ′ is a fourth-order polynomial in c, vanishing for c = 0 and c = 1. Eq. (4.2)
can thus be written as

(4.4) vµθ′ +Ksζc(1 − c)(1 − 2c) − kζc+ η = τ(c),

where η is an integration constant. Obviously, for η>0 sufficiently large, τ(c)≥0
for c ∈ [0, 1] and τ(1) = 0. Moreover, it follows from the implicit function theorem
that for k sufficiently large with respect to K and µ sufficiently small, we can
choose the constant η > 0 so large that τ(c) ≥ 0 for c ∈ [0, 1] and τ(1) = 0.
An example of such a graph is depicted in Fig. 2b). Putting the form of θ into
Eq. (3.14) we arrive, by using (4.3), at the equation

Dc′′ + vc′ +Ac(c− a)(1 − c) − γsζc(1 − c)(1 − 2c) = 0.
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Hence, for ζ̃ = ζ/A,

Dc′′ + vc′ +A(1 + 2γζs)c(1 − c)(c− (a+ γζ̃s)(1 + 2γζ̃s)−1) = 0.

To calculate s we have to solve the equation

s =

(
A(1 + 2γζ̃s)

2D

)1/2

which implies

s =
Aγζ̃ +

√
A(2D +Aγ2ζ̃2)

2D
=
γζ

2D
+

√
A

2D
+
γ2ζ2

4D2
.

Having the parameter s, we can calculate the speed of the wave. Thus

v = −
√

(A+ 2γζs)D

2

(
1 − (a+ γζ̃s)(1 + 2γζ̃s)−1

)
,

which can be written as

v = −Ds
(

1 − 2a+ 2γζs/A

1 + 2γζs/A

)
.

This expression in its unfolded form is rather complicated. Asymptotically, for
very large k, we have η ∼= τ(0) and ζ ∼= τ(0)/k, and the influence of mechanics
on the speed of the wave is very small.

The graphs of displacement (u1 – smooth line) and the dilation (θ – circled
line) versus the coordinate x are given in Fig. 5.

Fig. 5. Displacement u1 (smooth line) and the dilation θ (circled line) for system (4.1)–(4.2).
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5. Conclusions

In the paper we have presented explicit formulae for the travelling wave pro-
files as well as their speeds in a model describing the dynamics of cytosolic cal-
cium and the accompanying mechanical effects, under some simplifying assump-
tions concerning the form of the traction τ(c) and the cubic-like source term f(c).
The meaning of this result is twofold: firstly, the explicit solution can provide us
with some insight into the phenomena of mechano-chemical coupling; secondly,
they can serve as a starting point for the analysis of more general problems.
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