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An algorithm for the Large Eddy Simulation, with subgrid modelling based on
the spectral Chebyshev–Fourier approximation, is developed for the investigation of
3D turbulent and transitional non-isothermal flows within a rotor/stator cavity. In
LES we use a version of the dynamic Smagorinsky eddy viscosity model in which the
Smagorinsky coefficient at a given position x depends on the history of the flow along
the fluid particle pathline. Computations are based on the efficient pseudo-spectral
Chebyshev–Fourier method (S. Hugues, A. Randriamampianina, An improved pro-
jection scheme applied to pseudospectral methods for the incompressible Navier–Stokes
equations, Int. J. Numer. Methods Fluids, 28, 501, 1998). To demonstrate the effec-
tiveness of the proposed algorithm, computations were performed for the cavity of
aspect ratio L = 5 and results were compared favorably with the experimental data
taken from literature.
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1. Introduction

The instability structures of the flow in the rotor/stator and rotor/rotor
cavity were investigated since the sixties of the last centaury, mostly in reference
to applications in turbomachinery. Additionally, the flow between rotating disks
is one of the simplest 3D flows, highly suitable for investigating the effect of mean
flow parameters on the turbulence and transitional structures [1, 4–10]. The
non-isothermal flow conditions were also considered [2, 3, 11–14] showing that
the thermal effects and the rotation-induced buoyancy, influence the stability
characteristics and the critical conditions.

Daily and Nece [15] investigated experimentally the flow in sealed ro-
tor/stator cavity and identified four regimes depending on the combination of the

*)The paper was presented at XVIII Polish Conference of Fluid Mechanics (KKMP),
Jastrz ↪ebia Góra, 21–25 September, 2008.
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rotational Reynolds number Re = Ω∗R∗2
1 /ν∗ and the aspect ratio L = (R∗

1)/2h∗,
where R∗

1 is the radius of the outer cylinder, 2h∗ is the axial distance between
disks and Ω∗ is the rotational speed of rotor. Two comprehensive books on
the flows over a single rotating disk and on the flows through open and confined
rotor/stator cavities, were published by Owen and Rogers [16, 17]. The transi-
tional flows around rotating geometries were studied experimentally by Schou-
veiler et al. [18], Gauthier et al. [19], Moisy et al. [20] and Poncet et al. [21].
The turbulent flows around the single rotating disk or inside the rotating cav-
ity were investigated experimentally, among others, by Daily and Nece [15],
Cheah et al. [22], Séverac et al. [5] and Itoh et al. [23, 24]. Séverac et al. [5]
performed experimental investigations of the flow in an enclosed rotor/stator
cavity of aspect ratio L = 5 and curvature parameter Rm = 1.8, using the LDV
technique. Their paper provided detailed information on the mean flows as well
as on the turbulence statistics. Séverac et al. [5] compared experimental re-
sults with the numerical results obtained using the Spectral Vanishing Viscosity
method (SVV).

The transitional flows in the rotor/stator and rotor/rotor cavity were in-
vestigated using the DNS method by many authors: Lopez et al. [25], Moisy
et al. [20], Serre et al. [4, 26, 27], Healey [28], Raspo et al. [3], Randria-
mampianina et al. [29, 30], Tuliszka-Sznitko et al. [31–33], Crespo et al. [34]
and Czarny et al. [35]. Numerical computations are particularly challenging for
the cases with turbulent flow. The basic numerical difficulty in the rotor/stator
computations for higher Re comes from the fact that in the cavity simultane-
ously exist areas of laminar, transitional and turbulent flows, completely differ-
ent in terms of flow properties. Lygren and Anderson [36] performed com-
putations up to Re = 400000 using the Direct Numerical Simulation (DNS)
method and provided detailed information about coherent structures in the near-
disk areas. There were some attempts to use the RANS method (Eléna and
Schiestel [14], Jacques et al. [37]) to investigate the turbulent rotor/stator
flows, however, modelling of these flows is very difficult due to the already men-
tioned flow variety. Potentially, Large Eddy Simulation (LES) can give access
to large-scale vortex dynamics, provided that the physical modelling of the un-
resolved small-scales and the numerical approach used for the resolved scales
are sufficiently accurate. The first LES computations of the flow around sin-
gle rotating disk were performed by Wu and Squires [38]. Anderson and
Lygren [39], Lygren and Anderson [40] performed LES of the flow in the
open rotor/stator cavity using three different models and compared the results
with those obtained by DNS. Séverac et al. [5], Séverac and Serre [1] per-
formed numerical computations for the enclosed cavity up to Re = 1000000
(L = 5, Rm = 1.8) using the SVV method and compared the results with
their LDV experimental data. The SVV technique, developed among others by
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Pasquetti [42], turned out to be a very effective numerical tool, which allows
for stable discretization without sacrificing the accuracy of the spectral approx-
imation.

In the paper, we investigate the flow in the rotor/stator cavity of the aspect
ratio L = 5 and curvature parameter Rm = 1.8 and 3, using LES based on the
subgrid turbulence modelling and on the spectral Chebyshev–Fourier approxi-
mation. The cavities (L = 5, Rm = 1.8) and (L = 5, Rm = 3) were chosen as
the flow test cases to verify the proposed SGM LES algorithm. This LES algo-
rithm is based on a version of the dynamic Smagorinsky eddy viscosity model
proposed by Meneveau [41], in which the averaging is performed over the fluid
particle pathline. In this approach, the Smagorinsky coefficient at a given posi-
tion x depends on the history of the flow. The comparison of our results with the
experimental data and SVV data (Séverac et al. [5]) shows a good agreement.

In Section 2 the mathematical and geometrical models are presented. The
SGM algorithm is described in Section 3. Implementation of SGM and the nu-
merical details are shown in Section 4 and 5. In Sections 6 and 7 the mean
flow and turbulence statistics are discussed respectively. Conclusions are given
in Section 8.

2. Mathematical and numerical approach

2.1. Mathematical modelling

We investigate the non-isothermal flows in the cavity between stationary and
rotating disks of the inner and outer radii R∗

0 and R∗

1, respectively. The outer
cylinder is attached to the stator and the inner one is attached to the rotor,
Fig. 1. The interdisk spacing is denoted by 2h∗. The rotor rotates at uniform

Fig. 1. Schematic picture of rotating cavity.
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angular velocity Ω∗ = Ω∗ez, ez being the unit vector on the axis. The flow
is described by the following Navier–Stokes, continuity and energy equations,
written in a cylindrical coordinate system (r∗, ϕ, z∗) with respect to a rotating
frame of reference (asterisk denotes a dimensional value):

(2.1)

ρ∗
∂V∗

∂ t∗
+ ρ∗(V∗ · ∇)V∗ + ρ∗Ω∗ × (Ω∗ × r∗) + 2ρ∗Ω∗ ×V∗

= −∇P ∗ + µ∗∆V∗,

∇ ·V∗ = 0,

∂T ∗

∂ t∗
+ (V∗ · ∇)T ∗ = a∗∆T ∗,

where t∗ is time, r∗ is radius, P ∗ is pressure, ρ∗ is density, V∗ is the velocity
vector of the components in radial, azimuthal and axial directions (u∗, v∗, w∗),
a∗ is the thermal diffusivity, ρ∗ is the density and µ∗ is the dynamic viscosity.
To take into account the buoyancy effects induced by the involved body forces,
the Boussinesq approximation is used, i.e. the density associated with the terms
of centrifugal and Coriolis forces due to the disk rotation and the curvilinear
motion of fluids, are all considered to be variable

(2.2) ρ∗ = ρ∗r [1− β∗(T ∗ − T ∗

1 )],

where β∗ = −1/ρ∗r(∂ρ∗/∂T ∗)p. The gravity force is neglected, for its magnitude
is small in comparison with the centrifugal force.

The no-slip boundary conditions are applied to all rigid walls, u∗ = w∗ = 0.
For the azimuthal velocity component, the boundary conditions are as follows:
v∗ = 0 on the rotating disk and inner cylinder, and v∗ = −r∗Ω∗ on the stator and
outer cylinder. The Dirichlet boundary conditions for temperature are applied
(the stator and the outer cylinder are heated). The Eqs. (2.1) are completed by
the initial conditions for velocity and temperature: V ∗ = V ∗0 (with ∇·V ∗0 = 0)
and T ∗ = T ∗0 in the whole domain.

The time, length and velocity are normalized as follows: (Ω∗)−1, h∗ and
Ω∗R∗

1. The dimensionless time is denoted by t = t∗Ω∗. The dimensionless tem-
perature is defined in the following manner: Θ = (T ∗ − T ∗

1 )/(T ∗

2 − T ∗

1 ), where
T ∗

1 is temperature of the rotor and inner cylinder, and T ∗

2 is temperature of
the stator and outer cylinder. For the non-isothermal conditions, the thermal
Rossby number was introduced, B = β∗(T ∗

2 − T ∗

1 ). The dimensionless axial and
radial coordinates are: z = z∗/h∗; z ∈ [−1, 1], r = (2r∗− (R∗

1 + R∗

0))/(R∗

1−R∗

0);
r ∈ [−1, 1]. The dimensionless components of the velocity vector in radial, az-
imuthal and axial directions are denoted by u, v, w, and dimensionless pressure
is denoted by p.
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2.2. Projection scheme for time discretization and space approximation

The temporal approximation adopted in the paper is a projection scheme,
based on backward differentiation in time. The numerical code prepared in the
present research for LES of the non-isothermal flow in the annular cavity, is an
extended version of the DNS code developed in prof. P. Bontoux group (Vanel
et al. [45], Randriamampianina et al. [29], Raspo et al. [3], Serre and Puli-
cani [4]). In the algorithm, at each time step a pressure predictor is computed
by solving the pressure Poisson equation with the pressure Neumann boundary
condition.

The Navier–Stokes, continuity and energy equations (2.1) are approximated
in time using a second-order semi-implicit scheme, which combines an implicit
treatment of the diffusive term and an explicit Adams–Bashforth extrapolation
for the non-linear convective terms.

The numerical solution is based on a pseudo-spectral collocation Chebyshev–
Fourier–Galerkin approximation. In the non-homogeneous radial and azimuthal
directions, Chebyshev polynomials are used with the Gauss-Lobatto distribu-
tions of the collocation points (ri = cos(πi/N) for 0 ≤ i ≤ N , zi = cos(πi/M)
for 0 ≤ i ≤ M), to ensure high accuracy of the solution inside the very narrow
boundary layers at the disks. The uniform mesh has been used in the statisti-
cally homogeneous azimuthal direction. The approximation of the flow variables
Ψ = (u,w, v, p,Θ) is given by a development in truncated series (Serre and
Pulicani [4]):

(2.3) ΨNMK (r, z, ϕ, t) =

K/2−1∑
p=−K/2

N∑
n=0

M∑
m=0

Ψ̂nmp(t)Tn(r)Tm(z)eipϕ,

− 1 ≤ r, z ≤ 1; 0 ≤ ϕ ≤ 2π,

where Tn(r) and Tm(z) are the Chebyshev polynomials of degrees n and m,
respectively, and N , K and M are the numbers of collocation points in the
radial, azimuthal and axial directions.

3. Incorporation of the SGM model into governing equations

In Large Eddy Simulation, each variable of the flow f is split into a large-
scale anisotropic component indicated by overbar (f̄), which is computed, and
a small-scale component f ′, called subgrid scale, which are more isotropic and
more universal and have to be modelled. This separation is obtained by applying
a filter operation to the Navier–Stokes, continuity and energy equations. In the
present work, Gaussian filter with a filter width equal to the grid spacing in the
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azimuthal direction has been applied to the governing equations. After the filter
operation, we obtain the filtered equations of motion:

(3.1)1
1

L

∂ū

∂r
+

ū

L(Rm + r)
+

1

L(Rm + r)

∂v̄

∂ϕ
+

∂w̄

∂z
= 0,

(3.1)2
∂ū

∂t
+ L(Rm + 1)A(ū)

= −(Rm + 1)
∂p̄

∂r
+

L2(Rm + 1)2

Re

[
∆ū− ū

L2(Rm + r)2
− 2

L2(Rm + r)2
∂v̄

∂ϕ

]

+ L(Rm + 1)ASGS (ū),

(3.1)3
∂v̄

∂t
+ L(Rm + 1)A(v̄)

= −(Rm + 1)

(Rm + r)

∂p̄

∂ϕ
+

L2(Rm + 1)2

Re

[
∆v̄ − v̄

L2(Rm + r)2
+

2

L2(Rm + r)2
∂ū

∂ϕ

]

+ L(Rm + 1)ASGS (v̄),

(3.1)4
∂w̄

∂t
+ L(Rm + 1)A(w̄)

= −L(Rm + 1)
∂p̄

∂z
+

L2(Rm + 1)2

Re
[∆w̄] + L(Rm + 1)ASGS (w̄),

(3.1)5
∂Θ̄

∂t
+ L(Rm + 1)A(Θ̄) =

L2(Rm + 1)2

Pr Re
[∆Θ̄] + L(Rm + 1)ASGS (Θ̄),

where

(3.2)1 A(V̄ ) = [A(ū), A(v̄), A(w̄)]T ,

(3.2)2 A(ū) =
1

L
ū

∂ū

∂r
+

1

L (Rm + r)
v̄

∂ū

∂ϕ
+ w̄

∂ū

∂z

− (
1−BΘ̄

) ·( v̄2

L (Rm + r)
+

2v̄

L (Rm + 1)
+

(Rm + r)

L (Rm + 1)2

)
,

(3.2)3 A(v̄) =
1

L
ū

∂v̄

∂r
+

1

L (Rm + r)
v̄

∂v̄

∂ϕ
+ w̄

∂v̄

∂z

+
(
1−BΘ̄

) ·( ū v̄

L (Rm + r)
+

2ū

L (Rm + 1)

)
,

(3.2)4 A(w̄) =
1

L
ū

∂w̄

∂r
+

1

L (Rm + r)
v̄
∂w̄

∂ϕ
+ w̄

∂w̄

∂z
,
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(3.3) A(Θ̄) =
1

L
ū

∂Θ̄

∂r
+

1

L (Rm + r)
v̄
∂Θ̄

∂ϕ
+ w̄

∂Θ̄

∂z
,

(3.4)1 ASGS (ū) = −
[

1

L

∂(u′u′ − ū′ū′)

∂r
+

1

L (Rm + r)

∂(v′u′ − v̄′ū′)

∂ϕ

+
∂(w′u′ − w̄′ ū′)

∂z
− (

1−BΘ̄
) · v′v′ − v̄′ v̄′

L (Rm + r)

]
,

(3.4)2 ASGS (v̄) = −
[

1

L

∂(u′v′ − ū′ v̄′)

∂r
+

1

L (Rm + r)

∂(v′v′ − v̄′ v̄′)

∂ϕ

+
∂(w′v′ − w̄′ v̄′)

∂z
+

(
1−BΘ̄

) · u′v′ − ū′ v̄′

L (Rm + r)

]
,

(3.4)3 ASGS (w̄) = −
[

1

L

∂(u′w′ − ū′ w̄′)

∂r
+

1

L (Rm + r)

∂(v′w′ − v̄′ w̄′)

∂ϕ

+
∂(w′w′ − w̄′ w̄′)

∂z

]
,

(3.5) ASGS (Θ̄) = −
[

1

L

∂(u′Θ′ − ū′ Θ̄′)

∂r
+

1

L (Rm + r)

∂(v′Θ′ − v̄′ Θ̄′)

∂ϕ

+
∂(w′Θ

′ − w̄′ Θ̄′)

∂z

]
,

(3.6) ∆ =
∂2

L2∂r2
+

1

L2(Rm + r)

∂

∂r
+

1

L2(Rm + r)2
∂2

∂ϕ2
+

∂2

∂z2
.

We introduce additional notations:

(3.7) F (V̄ ) = [F (ū), F (v̄), F (w̄)]T

where

(3.8)

F (ū) = ∆ū− 1

L2(Rm + r)2

(
ū + 2

∂v̄

∂ϕ

)
,

F (v̄) = ∆v̄ − 1

L2(Rm + r)2

(
v̄ − 2

∂ū

∂ϕ

)
,

F (w̄) = ∆w̄.

In the Smagorisky dynamic model, the subgrid scale, the stresses σij =

u′

iu
′

j − ū′

iū
′

j and energy flux αi = u′

iΘ
′ − ū′

iΘ̄
′ are connected with the eddy
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viscosity by the following expression:

(3.9)1 σij = −2νSGS S̄ij , αj =
νSGS

PrSGS

∂ζk

∂xj

∂Θ̄

∂ζk
,

where

(3.9)2 νSGS = C2
S∆2

√
2S̄ijS̄ij , S̄ij =

1

2

(
∂ζk

∂xj

∂ūi

∂ζk
+

∂ζk

∂xi

∂ūj

∂ζk

)
.

In the above equations (x1, x2, x3) = (x, y, z) and (ς1, ς2, ς3) = (r, ϕ, z). In mod-
elling of the energy flux αj , we introduced the turbulent Prandtl number [43]
denoted by PrSGS , whose definition will be given in further part of this section.
In order to compute the dynamic Smagorinsky coefficient C2

S , the filter opera-

tion is repeated with a filter width ∆̂ = 2∆; this filter operation is denoted by
a hat. The foundation of the dynamic model is the Germano identity [44]:

(3.10)1 Lij = Tij − σ̂ij ,

where

(3.10)2 Lij = ̂̄u′

iū
′

j − ˆ̄u′

i
ˆ̄u′

j , Tij = û′

iu
′

j − ˆ̄u′

i
ˆ̄u′

j , σ̂ij = û′

iu
′

j − ̂̄u′

iū
′

j ,

which relates subgrid-scale stresses computed at two different filter widths:
∆(σij) and ∆̂(Tij). Finally, the dynamic constant (if C2

S is constrained to have
no variation over homogeneous direction) is calculated from the expression:

(3.11)1 C2
S =

〈LmnMmn〉
〈MpqMpq〉 ,

where

(3.11)2 Mij = 2∆2
[
|̂S̄|S̄ij − 4| ˆ̄S| ˆ̄Sij

]
and 〈 〉 denotes averaging over the homogeneous direction. The resulting coef-
ficient field in the Smagorinsky dynamic model is highly variable and contains
a large percentage of negative values, what leads to numerical instability. In most
applications, the model is stabilized by averaging over the direction of statistical
homogeneity. The dynamic Smagorinsky model was tested in the present paper
with averaging performed over the azimuthal direction (the only homegoneous
direction in the rotating cavity). However, due to difficulties with the numerical
stability this model was rejected. To overcome this problem we have used the
version of the dynamic Smagorinsky model proposed by Meneveau et al. [41].
Meneveau et al. proposed to perform averaging rather over the fluid particle
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pathline, instead of averaging over the direction of statistical homogeneity, which
makes this approach applicable for more complicated non-homogeneous flows.
In this model, coefficient C2

S is derived by minimization of the total error:

(3.12)1 E =

t∫
−∞

eij(x1, t1)eij(x1, t1)W (t−t1)dt,

thought as an accumulation of the square of local error:

(3.12)2 eij = Lij(x1, t1)− C2
S(x, t)Mij(x1, t1)

over the trajectory of the fluid particle. In Eqs. (3.12) x is the position of the
particle at the considered time t, x1 is the position of particle at the previous
time section t1, W (t−t1) is the weighting function which controls the importance
of events in different time sections. After minimization of error (∂E/∂(C2

s ) = 0),
we obtain the value of the dynamic Smagorinsky coefficient [41]:

(3.13) C2
S =

LLM

LMM

=

∫ t
−∞

Lij(x1, t1)Mij(x1, t1)W (t− t1)dt∫ t
−∞

Mij(x1, t1)Mij(x1, t1)W (t− t1)dt
.

We use exponential weighting function of the form W (t − t1) = τ−1e−(t−t1)/τ ,
for which we can obtain LLM and LMM from the following equations [41]:

(3.14)

DLLM

dt
=

1

τ
(LijMij − LLM ),

DLMM

dt
=

1

τ
(MijMij − LMM ).

These equations can be solved by using simple approximation formula:

(3.15)
Ln+1

LM (x)− Ln
LM (x− ūn)

∆t
=

1

τ

[
(Lij(x)Mij(x))n+1 − Ln+1

LM (x)
]
,

where (x− ūn) is the location of the particle in the previous time section t1 and
value Ln

LM at this point must be found by interpolation. In Eqs. (3.14) τ is the
time scale over which averaging is performed. In the present paper we performed
computations for τ = a∆(MijLij)

−1/4 (we chose the time scale proportional to
the filter width ∆ because averaging over the time scale of the smallest resolved
turbulent motion eliminates the unwanted numerical noise [41]). Coefficient “a”
was chosen based on the numerical experiment.

From (3.15) we obtain:

(3.16)
Ln+1

LM (x) = H(ε(LijMij)
n+1(x) + (1− ε)Ln

LM (x− ū∆t)),

Ln+1
MM

(x) = (ε(MijMij)
n+1(x) + (1− ε)Ln

MM (x− ū∆t)).



104 E. Tuliszka-Sznitko, A. Zielinski, W. Majchrowski

In the above equations, H is the ramp function (H(b) = b if b > 0 and zero
otherwise) and ε = ∆t/(τn(1+∆t/τn)) is the weighting function. In the present
paper we additionally averaged the final Smagorinsky coefficient field in the
azimuthal direction.

For the energy equation we adopted Lilly’s [43] approach to the Meneveau
model by introducing the turbulent Prandtl number PrSGS :

(3.17)
1

PrSGS

=
Ln+1

PRMM

Ln+1
RRML

,

where

Ln+1
PRMM

(x) = H(ε(PjRjM
2
ij)

n+1(x) + (1− ε)Ln
PRMM (x− ūn∆t̄)),

Ln+1
RRML

(x) = ε(R2
jMijLij)

n+1(x) + (1− ε)Ln
RRML(x− ūn∆t̄),

(3.18)

Pj = ̂̄ujΘ̄ − ˆ̄uj
ˆ̄Θ,

Rj = 2∆2

( ̂
|S̄| ∂Θ̄

∂xj
− 4| ˆ̄S|

ˆ̄Θ

∂xj

)
.

(3.19)

In the present paper we computed PrSGS in every time step.

4. SGM model implementation

In every time step the computations are started with the pressure predictor;
pp is computed by solving the pressure Poisson equation:

(4.1)1 ∆p̄p,n+1 = div[−2A(V̄ )n + A(V̄ )n−1 + (2ASGS (V̄ )n −ASGS (V̄ )n−1)].

The boundary Neumann condition is obtained by projecting Eq. (2.1)1 on the
vector normal (denoted by n) to the border of domain:

(4.1)2
∂p̄p

∂n
=

L(Rm + 1)

Re
(2F (V̄ )n−F (V̄ )n−1)+(2ASGS (V̄ )n−ASGS (V̄ )n−1)

− (2A(V̄ )n −A(V̄ )n−1).

The predictor step is completed by solving the Helmholtz equation with the
appropriate boundary conditions to obtain the velocity predictor:
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(4.2)1

(
∆− 1

L2(Rm + r)2
− 1

L2(Rm + 1)2
3Re

2δt

)
ūp

=
Re

L2(Rm + 1)2

[−4ūn + ūn+1

2δt

+ L(Rm + 1)

(
2A(ū)n −A(ū)n−1 − (2ASGS (ū)n −ASGS (ū)n−1) +

1

L

∂p̄p

∂r

)]

+
2

L2(Rm + r)2

(
2
∂v̄n

∂ϕ
− ∂v̄n−1

∂ϕ

)
,

(4.2)2

(
∆− 1

L2(Rm + r)2
− 1

L2(Rm + 1)2
3Re

2δt

)
v̄p

=
Re

L2(Rm + 1)2

[−4v̄n + v̄n+1

2δt

+L(Rm+1)

(
2A(v̄)n−A(v̄)n−1−(2ASGS (v̄)n−ASGS (v̄)n−1)+

1

L(Rm + r)

∂p̄p

∂ϕ

)]

− 2

L2(Rm + r)2

(
2
∂ūn

∂ϕ
− ∂ūn−1

∂ϕ

)
,

(4.2)3

(
∆− 1

L2(Rm + 1)2
3Re

2δt

)
w̄p =

Re

L2(Rm + 1)2

[−4w̄n + w̄n+1

2δt

+ L(Rm + 1)

(
2A(w̄)n −A(w̄)n−1 − (2ASGS (w̄)n −ASGS (w̄)n−1) +

∂p̄p

∂z

)]
.

The predicted velocity field is corrected by taking into account the pressure
gradient at time tn+1, so that the final velocity field satisfies the incompressibi-
lity constraint

(4.3)1
1

L(Rm + 1)

3

2δt

[
V̄ n+1 − V̄ p

]
= − [∇p̄n+1 −∇p̄p

]
,

(4.3)2 ∇ · V̄ n+1 = 0

with the boundary condition:

(4.3)3 vn+1 · n = vp · n.

Correction of the velocity field is done by computation of the new variable

φ =
2δt

3
(p̄n+1 − p̄p) from the elliptic Poisson equation:

(4.4)1 ∆φ =
1

L(Rm + 1)
div(V̄ p)
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with the boundary condition

(4.4)2 ∇(φ) · n = 0.

After solving Eqs. (4.4)1 and (4.4)2 we obtain corrected values of three compo-
nents of velocity and pressure. In the last step we compute the temperature field
from the energy Helmholtz equation

(4.5)1

(
∆− 1

L2(Rm + 1)2
3PrRe

2δt

)
Θ̄n+1 =

Pr Re

L2(Rm + 1)2

[−4Θ̄n + Θ̄n+1

2δt

]

+
PrRe

L(Rm + 1)

[(
2A(Θ̄)n −A(Θ̄)n−1 − (2ASGS (Θ̄)n −ASGS (Θ̄)n−1)

)]
with the boundary conditions:

(4.5)2 Θ̄ = 1 for z = −1, −1 ≤ r ≤ 1 and for r = 1, −1 ≤ z ≤ 1,

(4.5)3 Θ̄ = 0 for z = 1, −1 ≤ r < 1 and for r = −1, −1 < z ≤ 1.

Ultimately, the solution of the Navier–Stokes, continuity and energy equations
is reduced to the solutions of uncoupled Poisson or Helmholtz equations. Each
variable Ψ =

[
ūp, v̄p, w̄p, p̄p, Θ̄, φ

]
is the solution of a 3D equation of the form

(4.6) [∆− λI] Ψ = S,

which can be solved effectively by the diagonalization technique (Serre and
Pulicani [4]). In the SGM model the diagonalization technique is the same as
in DNS: however, evaluation of the S matrix in SGM is more time-consuming.
We estimate that the ratio of CPU time needed for SGM and DNS is equal to
about 1.3.

5. Numerical details

In the paper we performed computations using DNS as long as the differences
between DNS and LES were negligible; for the higher Re we switched to LES.
Figure 2 shows the instability characteristics of the azimuthal velocity compo-
nent obtained in the middle section of the stator boundary layer for Re = 35000
and 45000, using LES and DLS (L = 5, Rm = 3, B = 0.1). Up to Reynolds
number Re = 35000, the differences between DNS and LES are not visible in
the instability characteristics. Differences have been observed for Re = 45000
and t > 20 (Fig. 2b).

The accuracy of the mathematical description of the flow near the disks has
been checked by analysing the distribution of the axial wall coordinate (z+)m =
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a)

b)

Fig. 2. Instability characteristics obtained in the middle section of the stator boundary layer,
L = 5, Rm = 3, B = 0.1, r = 0, a) Re = 35000, b) Re = 45000, comparison of DNS and LES.

z∗mv∗τ/ν∗ along the radius, where z∗m is the smallest cell in the axial direction,
and v∗τ is the total friction velocity v∗τ = [ν∗2((∂u∗/∂z∗)2 + (∂v∗/∂z∗)2)1/4. Dis-
tributions presented in Fig. 3 were obtained for (L = 5, Rm = 3, Re = 150000,
B = 0.1) and for number of collocation points in the axial directions equal 81
(zm = z∗/h∗ = 7.7 · 10−4). Séverac et al. [5] used the value (z+)m < 1 as a
criterion for precise description in the near-wall area. We can see from Fig. 3
that condition (z+)m < 1 is satisfied even near the outer cylinder.

The spatial accuracy of the algorithm was analyzed by evaluating the max-
imum divergence (div(V ))max in the inner domain. Results of the simulations
performed for different meshes, (32× 32× 32); (48× 48× 48), (64× 64× 64) are
presented in Table 1 (L = 5, Rm = 3, Re = 15000, B = 0.1). We can see that the
exponential convergence property of the pseudo-spectral method is preserved in
SGM. Additionally, the SGM model does not reduce the accuracy of the solution
in comparison to the DNS solution, even for higher Reynolds numbers.
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Fig. 3. Distributions of (z+)m along the disks obtained for (Re = 150000, L = 5, Rm = 3,
B = 0.1).

Table 1. The accuracy of the SGM method.

32 × 32 × 32 48 × 8 × 48 64 × 64 × 64

(div(V ))max

L = 5, Rm = 3, Re = 15000, B = 0.1
2.5 · 10−5 2.9 · 10−6 1.2 · 10−7

6. Basic flow

Let us consider the mean flow obtained for (L = 5, Rm = 3, B = 0.1) and
(L = 5, Rm = 1.8, B = 0.0), and for different Reynolds numbers. Computa-
tions were performed for the mesh (125× 125× 81) and for the time increment
δt = 0.001.

For all the considered Reynolds numbers 25000 ≤ Re ≤ 150000 the flow
exhibits typical Bachelor behaviour, i.e. the flow consists of two disjoint bound-
ary layers on each disk and of a central inviscid core flow. The flow is pumped
radially outwards along the rotor and circulates along the stator, Fig. 4.

Fig. 4. Flow in the meridian section obtained for cavity (L = 5, Rm = 3, Re = 100000,
B = 0.1). SGM.
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Fig. 5. Axial profiles of the azimuthal velocity component obtained in the middle section
(r = 0) of cavity (L = 5, Rm = 3, B = 0.1).

Figure 5 shows the mean axial profiles of the azimuthal velocity component
obtained in the middle section of cavity (L = 5, Rm = 3, B = 0.1) for different
Reynolds numbers. From Fig. 5 we can see that the azimuthal velocity compo-
nent profiles obtained for Re = 25000 and 45000 are laminar (S-shaped profiles),
whereas profiles obtained for Re = 100000 and 150000 are turbulent. We can
see that the thickness of the rotor boundary layer decreased by factor 2 between
Reynolds number Re = 25000 and 150000.

To verify our LES results, we performed computations for the cavity (L = 5,
Rm = 1.8, B = 0) and compared the results with the experimental and numer-
ical results obtained by Séverac et al. [5] for the same parameters (Fig. 6).
In Fig. 6 we compared the azimuthal and radial velocity profiles normalized by
Ω∗r∗(ūs = u(Rm + 1)/(Rm + r), v̄s = v(Rm + 1)/(Rm + r)). From Fig. 6 we
can see that agreement between the results is very good. The central inviscid
core is characterized by very small radial velocity component, u ∼ 0, and the
almost constant azimuthal one (Figs. 5 and 6). The entrainment coefficients of
the rotating fluid (K), defined as the ratio of the tangential velocity in the core
divided by the tangential velocity of the disk at the same radius, were computed
and the results were compared with results obtained by Séverac et al. [5]. For
(L = 5, Rm = 1.8, Re = 100000, B = 0.0) in the middle section (r = 0) we
obtained K = 0.36, whereas Séverac et al. [5] in the middle section for the
same parameters obtained K = 0.35 from both the numerical (SVV) and ex-
perimental investigations. For (L = 5, Rm = 3, Re = 100000, B = 0.1) in the
middle section (r = 0) we received K = 0.362. The differences in the value of K
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a)

b)

Fig. 6. Meridian velocity profiles obtained at middle section r = 0 of cavity (L = 5,
Rm = 1.8, B = 0) by SGM (present paper), SVV and in experiment (Séverac et al. [5]);

a) radial velocity component, b) azimuthal velocity component.

obtained by using DNS and LES are negligible. Analysis of parameter K along
the disk shows that K increases towards the outer end-wall.

More information about the mean flow can be obtained from polar plots of
the mean radial and azimuthal velocity components. Figures 7a, b and c show
the polar plots obtained in three radial sections r∗/h∗ = 10.6, 15.0, 19.4 of the
cavity (L = 5, Rm = 3, Re = 25000, 100000, 150000, B = 0.1). The polar
profiles in the rotor boundary layer obtained for considered Re are typical for
the laminar flows; LES results obtained for Re = 100000 and 150000 are very
close to the DNS solution obtained for Re = 25000. In the stator boundary layer
there are larger differences between the results obtained for different Reynolds
numbers. The polar plot obtained for Re = 150000 is more triangular, which is
typical for the turbulent boundary layer (Lygren and Anderson [36]). From
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a)

b)

c)

Fig. 7. Polar plots of the mean radial and azimuthal velocity components obtained in
different radial sections of the cavity for different Reynolds numbers; a) r∗/h∗ = 10.6,

b) 15.0, c) 19.4 (L = 5, Rm = 5, B = 0.1). SGM.
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Fig. 7 we can see that the stator boundary layer is weakly turbulent, with the
maximum turbulence at the junction between stator and outer cylinder (Fig. 7c).

Fig. 8. Polar plots of the mean radial and azimuthal velocity components obtained in the
middle section of cavity (L = 5, Rm = 1.8, B = 0). Comparison between SGM (present

paper) and experimental data (Séverac et al. [5]).

To verify the SGM results, polar plots obtained in the middle section of
the cavity (L = 5, Rm = 1.8, Re = 100000, 150000, B = 0) are compared to
the experimental data of Séverac et al. [5] obtained for (L = 5, Rm = 1.8,
Re = 100000, B = 0), (Fig. 8). The radial and azimuthal velocity components
in Fig. 8 were normalized with Ω∗r∗. From Fig. 8 we can see that agreement
between the SGM results and experimental data obtained by Séverac et al. [5]
is very good.

7. Turbulence field

To verify our transitional results, we compared the instability structures
obtained for the Reynolds numbers close to the critical Reynolds number of
transition to unsteadiness, with the experimental results of Schouveiler et
al. [18] and Gauthier et al. [19]. This detailed analysis of comparison can
be found in Tuliszka-Sznitko et al. [32]. In the transitional stator boundary
layer, the axisymmetric propagating vortices interpreted as the type II instability
and positive spiral vortices interpreted as the type I instability were observed.
For higher Re structures in the stator, the boundary layers evolve from spiral
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a) b)

Fig. 9. Iso-lines of the disturbances of azimuthal velocity component in the azimuthal
sections of the stator and rotor boundary layer and the iso-lines of the axial velocity

component in the meridian section obtained for Re = 100000; a) (L = 5, Rm = 1.8, B = 0.0),
b) (L = 5, Rm = 3, B = 0.1). SGM.

vortices to more annular vortices. Figure 9 shows the iso-lines of the azimuthal
velocity component disturbances in the azimuthal sections of the stator and
rotor boundary layer, and the iso-lines of the axial velocity component in the
meridian sections of the cavities (L = 5, Rm = 1.8, Re = 100000, B = 0)
and (L = 5, Rm = 3, Re = 100000, B = 0.1). Computations have shown
that the turbulence is mostly concentrated in the stator boundary layer, with
a maximum at the junction between the stator and outer cylinder. It is also
visible in Fig. 10, where the iso-lines of the instantaneous turbulence kinetic

a)

b)

Fig. 10. The iso-lines of the instantaneous turbulence kinetic energy obtained for
a) Re = 100000, b) Re = 150000, B = 0.1, L = 5, Rm = 3. SGM.
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energy obtained for Re = 100000 and 150000 (L = 5, Rm = 3, B = 0.1) are
displayed. From these figures we can see that the turbulence is mostly confined to
the stator and the shroud areas, although weak turbulent areas are also observed
on the rotating inner cylinder, where disturbances coming from the stator are
transported towards the rotor.

Within the frame of this work we monitored the ratio of eddy viscosity to
molecular viscosity, ν∗

SGS
/ν∗. The axial profiles ν∗

SGS
/ν∗ = f(z) obtained for

r = 0 and for Re = 100000, 150000 (L = 5, Rm = 3, B = 0.1) are presented
in Fig. 11. We can see that the subgrid viscosity is accumulated in the stator
boundary layer where the turbulence is mostly confined.

Fig. 11. Distributions of ν∗SGS/ν∗ versus z. Re = 100000 and 150000, (L = 5, Rm = 3,
B = 0.1, r = 0). SGM.

To verify our algorithm, the axial profiles of Reynolds stress tensor compo-
nents obtained by SGM in the present paper were compared with the experi-
mental (LDV) and numerical (SVV) data of Séverac et al. [5]. In Figs. 12a
and b we analyzed the axial profiles of two main Reynolds stress tensor com-
ponents

√
v′v′(Rm + 1)/(Rm + r) and

√
u′u′(Rm + 1)/(Rm + r) obtained in

different radial sections of the cavity (L = 5, Rm = 1.8, Re = 100000, B = 0.0).

In Figs. 13a and b the axial distributions of
√

v′v′(Rm + 1)/(Rm + r) and√
u′u′(Rm + 1)/(Rm + r), obtained in the middle section of the cavity are

compared to the experimental and numerical results of Séverac et al. [5].
Additionally, in Fig. 13 the results obtained for Re = 150000, B = 0.0 and
Re = 100000, B = 0.2 are presented. From Fig. 13 we can see that agreement
of all results is good. SGM predicts very well the radial Reynolds stress ten-
sor components in the stator and rotor boundary layers. The values of radial
Reynolds stress tensor components in the central core obtained experimentally
are slightly higher than those obtained by applying the SGM and SVV meth-
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a)

b)

Fig. 12. Axial distributions of the Reynolds stress tensor components:
a)

√
v′v′(Rm + 1)/(Rm + r), b)

√
u′u′(Rm + 1)/(Rm + r) obtained in different sections of

cavity L = 5, Rm = 1.8, B = 0.0, Re = 100000. SGM.

ods. From Fig. 13 we can see that the turbulence anisotrophy, resulting from
our computations and also from SVV results, is larger than that resulting from
experimental data of Séverac et al. [5]. Comparison of computations obtained
for B = 0.0 and B = 0.2 shows that with increasing B (heated stator), both
the analyzed Reynolds stress tensor components increase in the central core but
decrease in the vicinity of the rotor. From Figs. 12a and b we can see that the
largest values of the Reynolds stress tensor components were obtained in the ra-
dial section r∗/h∗ = 13.5 very close to the outer end-wall, where the maximum
of turbulence was observed.
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a)

b)

Fig. 13. Axial distributions of the Reynolds stress tensor components:
a)

√
v′v′(Rm + 1)/(Rm + r), b)

√
u′u′(Rm + 1)/(Rm + r)obtained in the middle sections of

cavity (L = 5, Rm = 1.8). Comparison of SGM results with exp. data and SVV solutions of
Séverac et al. [5].

The shear stresses are smaller by one order than the main stress tensor com-
ponents. Figure 14 presents examples of axial variations of the magnitude of

shear stress vector in the plane parallel to the disks

√
(v∗′w∗

′
2
+ u∗

′w∗
′
2
) and

the magnitude of total shear stress vector (ν∗
∂v∗

∂z∗
− v∗′w∗′ , ν∗

∂u∗

∂z∗
− u∗′w∗′),

normalized by the total friction velocity v∗τ . We can see from Fig. 14 that af-

ter reaching maximum,

√
(v∗′w∗

′
2
+ u∗

′w∗
′
2
)/v∗2τ decreases to the value charac-
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Fig. 14. The variations of the magnitude of the shear stress vector and magnitude of the
total shear stress vector normalized by the total friction v∗τ velocity, (L = 5, Rm = 3,

Re = 100000, B = 0.1, r = 0). SGM.

teristic for the central core, whereas

(
ν∗

∂v∗

∂z∗
− v∗′w∗

′ , ν∗
∂u∗

∂z∗
− u∗

′w∗
′

)
/v∗2τ is

constantly decreasing from its maximum value of 1.

8. Conclusions

The transitional flows in the sealed rotor/stator cavity have been investigated
up to the Reynolds number 150000. The cavity was enclosed by the inner cylinder
attached to the rotor and the outer one attached to the stator; the confinement
effect was taken into account.

In the paper LES (with a high-order resolution method based on the spectral
Chebyshev-Fourier approximation) of the transitional flow was performed. LES
has been performed using the proposed SGM algorithm based on the version
of dynamic Smagorinsky eddy viscosity model presented by Meneveau [41],
in which the stabilizing averaging is performed over the fluid particle pathline.
In this approach, the Smagorinsky coefficient at a given position of particle x
depends on the history of the flow, which was ignored in the classical Smagorin-
sky approach. Averaging along the particle trajectories has a distinct advantage
that it is applicable also to inhomegeneous flows. The SGM model allowed us to
perform computations for higher Reynolds numbers in the rotating flows, which
are strongly inhomogeneous and anisotropic due to the combined effects of ro-
tation and confinement. Meneveau [1] approach was extended in the present
research to the non-isothermal flow using the Boussinesq model.
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To demonstrate effectiveness of the proposed algorithm and to verify it, com-
putations were performed for the cavity of aspect ratio L = 5 and curvature
parameters Rm = 1.8 and 3.0, and for the Reynolds numbers up to 150000.
The structure of this kind of flows is highly complicated due to the existence
simultaneously laminar, transitional and turbulent areas; the flow consists of
two disjoint boundary layers on each disk, and of a central inviscid core. Addi-
tionally, the stator boundary layer is far more unstable than the rotor boundary
layer. The axial mean velocity components profiles and the Reynolds stress ten-
sor components profiles obtained for the cavity (L = 5, Rm = 1.8, B = 0,
Re = 100000) were compared favorably with the experimental and SVV data of
Séverac et al. [5].
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