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Relation between shakedown and shape memory
of metallic materials considering their mesoscale
and atomic scale substructures
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Shakedown (SD) and shape memory (SM) – generally looked upon as two dif-
ferent phenomena – are shown to have close relations from the point of view of their
mechanisms, if considering the respective mesoscale processes on the one hand and
the atomic scale processes on the other hand. With the use of the general mesome-
chanical concept of the first author, their constitutive equations are formulated using
the same basic formulae, but with different meanings of the symbols. Constitutive
equations are based on the description of internal stresses, in the case of SD on the
mesoscale, in the case of SM on the atomic scale. Whereas in the case of SD, plastic
deformation means shifting of atomic blocks and changing atomic neighbors, in the
case of a diffusionless SM the atomic neighbors are maintained, what simplifies the
analysis.
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Notations

cp limit value of s11p at the start of plastic deformation in a uniaxial elastic-
plastic process,

ēij , {eije, eijp} macroscopic {mesoscopic} deviatoric strain,
e′ije, {e′ijp} deviatoric parts of ε′ije, {ε′ijp},

E Young’s modulus,
i, j indices that can take on the values 1, 2, 3; their repetition means summation,

e{p} index that relates the respective value to the resistant e-substructure {to the
compliant p-substructure}; repetition does not mean summation,

p = veηe + vpηp,
q = p + ηeηp,

s̄ij , {sije, sijp} macroscopic {mesoscopic} deviatoric stress,
s′ije, { s′ijp} deviatoric parts of σ′ije {σ′ijp},

ve volume fraction of the resistant substructure with only elastic deformation,
vp (= 1− ve) volume fraction of the compliant substructure with dissipative deformation,
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Wel elastic energy of internal stresses comprised in a volume unit of the whole
material,

σ̄ij , {ε̄ij} macroscopic stress {strain} tensor,
εije, {εijp} mesoscopic strain in the resistant {compliant} substructure – averaged

values in the respective substructure,
σije, {σijp} mesoscopic stress in the resistant {compliant} substructure – averaged

values in the respective substructure,
δij Kronecker’s delta,

δij σ̄, {δijσe, δijσp} macroscopic {mesoscopic} isotropic part of the stress tensors,
δij ε̄, {δijεe, δijεp} macroscopic {mesoscopic} isotropic part of the strain tensor,

ε′ije = εije − ε̄ij , {ε′ijp = εijp − ε̄ij} definitions of quantities ε′ije, {ε′ije},
δijε

′
e, {δijε

′
p} isotropic parts of ε′ije, {ε′ijp},

σ′ije, {σ′ijp} stresses related to ε′ije, {ε′ijp} similarly as are σije, {σijp} related to εije,
{εijp},

δijσ
′
e, {δijσ

′
p} isotropic parts of σ′ije, {σ′ijp},

ηe, ηp structural parameters (non-negative by definition) that characterize the
structure of the material [ηe = ηp = 0 corresponds to Voigt’s homo-
geneous strain model, ηe = ηp = ∞ corresponds to Reuss’ homogeneous
stress model, 0 < ηe < ∞ and 0 < ηp < 0 characterize more general struc-
tures; an increase {decrease} of one of the parameters describes a decrease
{increase} of connectivity of the respective substructure; a more general
explanation is given in the text following Eq. (2.9)],

λp scalar measure of plastic deformation in the p-constituent,
Λp formal expression whose differential increment dΛp is defined by

Eq. (2.21), in an active dissipative process dΛp > 0 and dλp = dΛp;
otherwise dλp = 0,

µ = (1 + ν)/E deviatoric elastic compliance,
ρ = (1− 2ν)/E isotropic elastic compliances,

ν Poisson’s ratio.

1. Introduction

The term shakedown (SD) is used for a favorable effect of plastic deforma-
tions that extend the area of forthcoming cyclic elastic deformations. On the
macroscale, in structures, the classical works on SD (e.g. [1–3]) describe this
effect of plastic deformations with taking into account a heterogeneous redistri-
bution of the first order internal stresses, i.e. of macroscopic internal stresses.
This redistribution resulting from plastic deformation can lead – after one or
more loading cycles – to the sought effect in bodies of different shape and size.

Later a number of papers have been devoted also to the relation between
shakedown and shape memory (SM). Thus Wu et al. [4] presented a model for
the role of repeated stress-temperature cycling on selecting the microstructural
variants. Stress-temperature cycling eventually leads to a periodic limit cycle,
giving rise to a limiting periodic strain response. Feng and Sun [5] formulated
a three-dimensional phenomenological constitutive model for different regimes
of elastic-plastic deformation and phase transformation in SM materials. They
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found out that the phase transformation might either increase or decrease the
load-bearing capacity of a structure. Feng et al. [6] introduced the concept of
phase transformational shakedown to interpret the wear-resistantbehavior of the
NiTi shape memory alloy. On the scale of grains, the properties of SM materi-
als have been studied by Kockar et al. [7]. In their experimental study, they
observed the effect of grain size in NiTi alloy. In a material with ultrafine grains
they found a notable improvement in the thermal cyclic stability under relatively
high stresses.

Our approach attacks the problem with the use of our mesomechanical model
published in monograph [8]. It takes into consideration the SD effect in the case of
simple uniaxial loading of plastically deforming metallic materials, where the field
of the first order internal stresses is homogeneous. We use the term shakedown
in a bit unusual way for the processes in materials instead of structures, but in
principle, it models again a favorable effect of plastic deformations that extends
the area of forthcoming cyclic elastic deformations.

Instead of working with shakedown theorems as it is the case on the macro-
scale, we base our analysis on our mesomechanical concept. In our approach,
a metallic material is described as a heterogeneous medium with two substruc-
tures having different forms and mechanical properties. The physical nature of
these substructures can be different in different materials. For our way of model-
ing, it is sufficient to assume that such substructures exist. In metallic materials,
the compliant substructure can be attributed to the inner parts of grains with
easy glide, the resistant substructure to impurities, precipitates and boundary
regions between grains. In the macroscopically observed elastic segments of the
stress-strain diagram, the deformation of both the substructures is elastic. This
means that all the interatomic bonds remain conservative. In the macroscopically
observed inelastic segment, the compliant substructure deforms in an inelastic
way, meaning that some of its interatomic distances exceed the limits in which
their deformation is conservative, and the deformation starts to be dissipative.
In a number of our works, this mesoscale model has successfully been applied to
metallic materials, concrete and polymers.

The basic formulae of our model have been applied also to the description
of shape memory (SM) phenomena [8–12], where the respective variations of
interatomic forces and distances have been analyzed in detail. Of course there
are substantial differences between applications to SD or to SM. Whereas in
the applications to SD the basic formulae are working on the mesoscale, in the
applications to SM they are working on the atomic scale. In the current study,
we are going to show that in spite of the substantial differences, the principal
mechanisms are analogous and therefore, the form of the model can be similar.

In the following sections, the applications of our model to the SD and the
SM processes are juxtaposed.



448 V. Kafka, D. Vokoun

2. The basic model

The basic model used in the current study is a general model for a material
with two substructures, deduced in the above-mentioned monograph [8] of the
first author. In our previous studies [8, 11, 12], it has been shown that this model
can be used also for media with two substructures that have different mechan-
ical properties, but do not have the character of phases. In the applications to
SM phenomena, they have the character of two different atomic grids, one of
them resistant and remaining elastic, conservative, the other one compliant and
deforming in a dissipative way.

The basic set of equations in our model reads:

veσije + vpσijp = σ̄ij ,(2.1)

veεije + vpεijp = ε̄ij ,(2.2)

ėije = µṡije, εe = 0,(2.3)

ė′ije = ėije − ˙̄eij , ε̇′e = 0,(2.4)

ė′ije = µṡ′ije,(2.5)

ėijp = µṡijp + λ̇psijp, ε̄p = 0,(2.6)

ė′ijp = ėijp − ˙̄eij , ε′p = 0,(2.7)

ė′ijp = µṡ′ijp − λ̇ps
′
ijp,(2.8)

ṡije − ṡijp +
1
ηe

ṡ′ije −
1
ηp

ṡ′ijp = 0.(2.9)

For the determination of 9 tensorial variables σije, σijp, σ′ije, σ′ijp, εije, εijp,
ε′ije, ε′ijp, ε̄ij there are 9 tensorial equations (2.1) to (2.9) available (if the evolu-
tion of σ̄ij is prescribed).

The symbols are defined in the Section ‘Notations’, but it seems that the
above set of equations deserves a more detailed explanation:

Equations (2.1) and (2.2) are the commonly used equations for a two-phase
composite material. Equations (2.3) and (2.6) are constitutive equations of the
two material constituents, written for deviatoric and isotropic parts separately.
Symbol λp = 0 represents a scalar measure of plastic deformation in the case of
SD analysis, and a scalar measure of the inelastic deformation of the dissipative
atomic substructure in the case of SM analysis.

Equations (2.4) and (2.7) define variables e′ije and e′ijp as the differences
between average strains in the material constituents and the macroscopic strains.
In our model, these variables have been introduced for modeling the effect of
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fluctuations (space deviations), as it has been found that working with only
average values of stress and strain in the material constituents is not sufficient.

Equations (2.5), (2.8) and (2.9) have been derived in our above-quoted mono-
graph. The derivation of the whole scheme (based among others on the expression
for specific stress power formulated on the mesoscale) is not simple and short
enough to include it in this short communication, but the following comments
try to make the basic features of the model understandable.

The symbols ηe, ηp are called structural parameters. They have been derived
as integral forms in the distribution functions of stresses and strains in a repre-
sentative volume element (RVE). In a RVE, the response to a macroscopic stress
σ̄ij or strain ε̄ij is described not only by average values of stress and strain in
the two substructures of the two material constituents (σije, σijp, εije, εijp), but
also by distribution functions that describe their fluctuations. The distribution
functions depend on the configurations of the two substructures, and they are
functions of space and time. It was not realizable to work with such complicated
distribution functions, and therefore, the model was simplified by assuming that
the distribution function can approximately be described as a product of function
of space and function of time. Then it was possible – with the use of a variation
procedure – to derive their relatively simple characteristics – their integral forms
– called structural parameters. This variation procedure leads to Eq. (2.9), by
which the stress values are bound to the structural parameters, but it gives also
substantiation for Eqs. (2.5) and (2.8).

The distribution functions and the integral forms, by which the structural
parameters have been defined, appeared only in the derivation of the model.
They do not appear in the final form of the model itself. The user of the model
works only with the structural parameters without finding the distribution func-
tions themselves. For the user, the structural parameters are free parameters
that are to be determined from simple macroscopic experiments – from stress-
strain diagrams or flow-curves by their mathematical analysis. The way of their
determination is not shown in the current study as it is relatively complicated,
and its presentation is not important for the objective of this study. We can only
refer the Reader to our above-quoted monograph.

From Eq. (2.9), we see that ηe = ηp = ∞ ⇒ sije = sijp = s̄ij , which means
a homogeneous microscopic stress field in the RVE. On the other hand, strains
can be different in the two substructures (due to inelastic deformation in the
p-substructure), but homogeneous in either substructure. This is Reuss’ model.

Similarly, it can be concluded from Eqs. (2.9), (2.4), (2.5), (2.7), (2.8) that
ηe = ηp = ∞ ⇒ s′ije = s′ijp = 0 ⇒ eije = eijp = ēij , which means homogeneous
microscopic strain field in the RVE. On the other hand, stresses can be different
in these two substructures (due to inelastic strains in the p-constituent), but
homogeneous in either material constituent. This is Voigt’s model.
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For ηe, ηp neither infinite nor vanishing, the corresponding microscopic stress-
and strain-fields are not homogeneous in either material constituent. Different
finite values of ηe, ηp (non-negative by definition) correspond to different shapes
of the two substructures. The integral forms, by which the structural parameters
have been defined, imply that the higher is the value of ηe {ηp}, the lower is the
connectivity of the e-substructure {p-substructure}. For an infinite value of ηe

and a finite value of ηp, the e-substructure forms discontinuous inclusions in the
matrix of the p-substructure (and vice versa). It is an important feature of our
model that with its use, the degree of connectivity of the two substructures can
easily be characterized.

Based on this concept, the expression for elastic energy comprised in a unit
volume RVE of the material reads:

(2.10) Wel =
1
2

{
µ

[
ve

(
sijesije+

1
ηe

s′ijes
′
ije

)
+vp

(
sijpsijp+

1
ηp

s′ijps
′
ijp

)]
+3ρσ̄2

}
.

From the above-presented set of Eqs. (2.1)–(2.9), the macroscale constitutive
equation can be derived in a straightforward way to give:

dε̄ij = dēij + δijdε̄ = µds̄ij + vpsijpdλp + δijρdσ̄,(2.11)

dsijp = ds̄ij − ve

µq
(psijp − ηes

′
ijp)dλp,(2.12)

dsije = ds̄ij − vp

µq
(psijp − ηes

′
ijp)dλp,(2.13)

ds′ijp =
ηp

µq
[veηesijp − (vp + ηe)s′ijp]dλp,(2.14)

ds′ije =
vpηe

µq
(ηpsijp + s′ijp)dλp,(2.15)

where

(2.16) p = veηe + vpηp, q = p + ηeηp.

The newly introduced expressions p and q have no special physical meaning,
their formal use only simplifies the equations.

The differential of the scalar measure of plastic deformation dλp must be
determined from a yield criterion. It has been shown in our previous works that
the best results – even for complicated loading paths – have been received if the
yield criterion was proposed in the form:

(2.17) sijpsijp ≤ 3
2
c2
p +

1
ηn

s′ijps
′
ijp.
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This is a generalized Mises’ criterion, where the second addend on the right-
hand side represents the effect of stress fluctuations.

In an active plastic process, the two sides of the criterion are equal, and in a
differential form it gives:

(2.18) sijpdsijp − 1
ηp

s′ijpds′ijp = 0.

From this equation, the differential dλp can easily be expressed with the use
of Eqs. (2.12) and (2.14):

dλp = 0 for sijpsijp <
3
2
c2
p +

1
ηp

s′ijps
′
ijp,(2.19)

dλp = (dΛp + |dΛp|)/2 for sijpsijp =
3
2
c2
p +

1
ηp

s′ijps
′
ijp,(2.20)

where

(2.21) dΛp = µ
qsijpds̄ijp

vepsijpsijp − (vp + ηe)s′ijps
′
ijp

.

The evolution equations (2.12) to (2.15) of the internal variables are not
independent; sije and sijp are bound by Eq. (2.1), s′ije and s′ijp by Eq. (2.9).
Hence, it is possible to reduce the above presented set of five equations to only
three equations, which is shown in what follows.

In our monograph [8], it has been demonstrated that our model leads to
a good agreement with experimental data even for very complicated loading
paths applied to aluminum alloy and steel samples.

3. Model of material shakedown in the case of uniaxial tension and
twisting

Let us apply the general model to uniaxial tension of a metallic bar and
torsion of a thin-walled tube. For a tensile loading in the x1-direction, the con-
stitutive equation (Eqs. (2.11)–(2.15)) can be simplified to:

dε̄11 = dē11 + dε̄ = µds̄11 + vps11pdλp + ρdσ̄,(3.1)

ds11p = ds̄11 − ve

ps11p − ηes
′
11p

µq
dλp,(3.2)

ds′11p = ηp

veηes11p − (vp + ηe)s′11p

µq
dλp,(3.3)

with only two internal variables s11p, s′11p and their evolution equations.
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For a demonstration of the material shakedown, we are going to use the
material parameters of an aluminum alloy (Al with Mg) studied in detail in [13]
and discussed from other points of view in our monograph. They read:

µ = 2.28 · 10−5 MPa−1, ρ = 5.4 · 10−6 MPa−1, cp = 63.66 MPa,

ve = 0.056, vp = 0.944, ηe = 2.7433125, ηp = 0.011429242.

In the following sections, the effect of different kinds of prestrain on the SD
phenomenon is analyzed.

3.1. No prestrain

The stress-strain diagram of this material with no prestrain, subjected to uni-
axial tension, is shown in Fig. 1. The diagram was calculated and plotted with
the use of the differential equations (3.1), (3.2) and (3.3), where the differentials
were replaced by very small finite differences and the plot proceeded step by step.
After reaching the elastic limit (σ̄11)el

(
= 3

2cp

)
, the process became elastic-plastic

due to plastic deformation of the p-constituent. Up to certain limit values of stress
and strain – that can be calculated from the known material parameters – the
extent of possible elastic unloading and reloading increases. The limit is marked
SD0, since it can be interpreted as a limit of possible shakedown in the material.

Fig. 1. Stress-strain diagram of the virgin material without any prestrain, with represented
limit of elastic unloading SD0.

For deformation exceeding this limit, unloading is not completely elastic,
the end of the unloading segment is elastic-plastic. If the material is looked
upon as homogeneous, this fact could seem to contradict the second theorem of
thermodynamics, as the macroscopic differential of plastic work in a unit volume
RVE is dWpl = 3

2 s̄11(dē11)pl. This should correspond to the dissipation of energy,
but it is negative at the end of unloading. However, if the material is modeled on
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the mesoscale, such contradiction does not appear, as the plastic work proceeds
only in the p-constituent and is expressed as follows (from Eq. (2.10)):

dWpl =
3
2
vp

[
(s11p)2dλp +

1
ηp

(s′11p)
2dλp

]
,

which is unambiguously positive, in loading as well as unloading.
The energy supplied for this plastic work is the energy stored in the material

[14–16].

3.2. Tension prestrain

Let us now model the process, in which the body is outstretched in the x1-
direction up to some plastic prestrain (ε̄11)ps, and then unloaded. Due to this
prestrain, there will remain in the material residual internal stresses (s11p)r =
− ve

vp
(s11e)r, (s′11p)r, (s′11e)r that can be calculated with the use of our model. The

internal variables, with which our model works, are (s11p)r, which is negative,
and (s′11p)r, which is positive (cf. Table 1).

After this prestrain, a new tension process follows that starts from zero
macroscopic stress and strain. It is seen from Fig. 2 that the tensile prestrain
causes an increase of the elastic limit (σ̄11)el (point T4), and decrease of the
limit values of stress as well as strain of the point SD (compared with SD0),
where the unloading and reloading is elastic. This phenomenon has practical
importance in many cases, where the increase of elastic range is desirable.

Fig. 2. Stress-strain diagram of the material with tension prestrain.

3.3. Compression prestrain

Furthermore, a similar process is modeled with compressive prestrain. Due
to this kind of prestrain, the residual value of (s11p)r will be positive and that
of (s′11p)r – negative (cf. Table 1).
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The material with these residual internal stresses is then again loaded by
tension. The resulting stress-strain diagram is shown in Fig. 3 in comparison with
the no-prestrain diagram. It can be seen that the elastic limit (σ̄11)el (Point T1)
is lower, the whole diagram is lower, the maximum extent of stress with elastic
shakedown is lower (SD compared with SD0), and the limit strain with elastic
unloading is higher. In some cases, the higher value of the limit strain with elastic
unloading and reloading can be of practical importance.

Fig. 3. Stress-strain diagram of the material with compression prestrain.

3.4. Shear prestrain

The third case under consideration is tension of a thin-walled tube that was
twisted and unloaded prior to tensile loading. The response to this shear pre-
strain (ε̄12)ps (assumed to be positive) and to the subsequent tensile loading is
shown in Fig. 4.

Fig. 4. Stress-strain diagram of the material with shear prestrain.

This time, at the beginning of tensile loading, there are residual internal
stresses (s12p)r = − ve

vp
(s12e)r, (s′12p)r, (s′12e)r. The value of (s12p)r is negative,
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the value of (s′12p)r is positive (cf. Table 1). In Fig. 4, the corresponding tensile
stress-strain diagram is shown – again in comparison with the no-prestrain dia-
gram. The elastic limit (σ̄11)el (point T1) is lower, the whole diagram is lower,
the maximum extent of stress with elastic shakedown is lower (SD compared
with SD0), and the limit strain with elastic unloading is lower (cf. Table 1).

It seems that from the practical point of view the effect of shear prestrain is
mostly negative.

Table 1. Characteristic values of stress and strain for different values of
prestrain.

No Tension Compression Shear
prestrain prestrain prestrain prestrain

(ε̄11)ps {(ε̄12)ps} 0 0.02 −0.02 {0.02}

(s11p)r {(s12p)r} (MPa) 0 −21.31 21.31 {−20.62}
(s′11p)r {(s′12p)r} (MPa) 0 2.606 −2.606 {2.335}

(σ̄11)el (MPa) 95.5 127.5 63.52 88.54

(ε̄11)SD 0.0916 0.0668 0.102 0.0770

(σ̄11)SD (MPa) 207.4 191.5 191.5 174.5

3.5. Discussion

In the above presented examples, our model is shown to be able to describe
the essential character of shakedown in materials. With its use, it is possible to
determine the limit of increasing deformation, up to which the unloading and
possible reloading and cycling is elastic. This is important information generally,
but specifically for the use of overstressing, it is used for improving the resistance
of materials to subsequent operational loadings [17].

4. Model of shape memory

In the recently published paper of the first author [11], an overview of ap-
plications of our concept to the binary NiTi SM alloy has been presented and
discussed. In the current study, we are going to show the relation of these SM
applications to material shakedown.

In both cases, the form of the basic set of Eqs. (2.1)–(2.9) is similar, but
the meaning of the symbols is different and in the case of SM the processes are
temperature-dependent. Whereas in the case of SD the two substructures have
the character of phases, in the case of SM of binary alloys the two substructures
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have the character of two atomic grids. These two grids differ in their interatomic
bonds. In the extent of a one-way SM process, one of the grids remains conser-
vative, i.e. without any energy dissipation of the respective interatomic forces.
This conservative grid is analogous to the elastic substructure in the model of SD
and is represented similarly in the basic equations. The other grid is dissipative,
meaning that the distances between the respective atomic pairs extend beyond
some limit behind which the elastic energy is dissipated ([8–12]). This dissipative
grid is analogous to the plastically deforming substructure in the model of SD
and is represented similarly.

The conservative grid must be strong enough (i) to overpower the resistance
of the dissipative grid, and (ii) – to preserve the medium in a diffusionless state.

Very often, the models of internal mechanism of SM are based on the descrip-
tion of evolution of dislocations and of internal microstresses, or backstresses [18].
It is common to describe the effect of one dislocation by a microscopic stress field
– characterizing the respective field of interatomic forces generated by the dis-
location. In the case of a plastic deformation, the shift of atomic blocks makes
it impossible to use similarly a microscopic stress field for the representation of
a field of dislocations. However, if the deformation process is diffusionless – as it
is in the case of the SM processes – such possibility exists, as all the dislocations
in a RVE are bound in one closely interactive field. Therefore, in a SM process
the changes in the material can be described by internal microstresses, which is
the case in our model.

In the case of the one-way SM, the dissipative process in the dissipative grid
is analogous to the plastic dissipative process in the plastically deforming phase
in the SD process. Accordingly, the part 0-SD0 of the macroscopically observed
stress-strain diagram shown in Fig. 1 is quite similar to what is observed in
the loading segment in the one-way SM process. The conservative grid is not
violated in this extent – similarly to the elastic substructure in the case of SD
is not violated. After elastic unloading there remain self-equilibrated residual
microstresses in the two grids. If a stress-free increase of temperature follows
after unloading, there proceeds softening of the dissipative grid and due to the
residual microstresses in the conservative grid, the residual macroscopic strain
decreases with increasing temperature, and finally it vanishes. In this process
the residual microstresses vanish as well.

However, if the originally increasing macroscopic deformation exceeds some
limit, the interatomic distances between the atomic pairs in some parts of the
conservative grid extend beyond a certain limit behind which the elastic en-
ergy is dissipated (similarly as in the dissipative grid). This means a violation
of the basic conservative character of this grid and due to it, the unloading
is not fully elastic. After unloading, an increase of temperature causes again
softening of the dissipative grid, but the preceding violation of the conservative
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grid causes that the residual macroscopic deformation is reduced only partly, it
does not vanish completely. Accordingly, neither the residual microstresses van-
ish completely. There remain some microstresses even after the heating. These
remaining microstresses represent the basis for the two-way SM. A number of
different methods called training have been proposed [19–21] seeking the best
way of creation this remaining microstress state. In the case when unloading and
heating is followed by a decrease of temperature, the interatomic distances in
the conservative grid are shortened, which leads to ‘healing’ of this grid, to its
backward strengthening, and to an increase of macroscopic strain. If this is fol-
lowed by a new heating, it leads to a decrease of macroscopic strain analogously
to the one-way process. Thus, cycles of increase and decrease of temperature
lead to cycles of decrease and increase of the macroscopic strain, which is called
the two-way SM (for details see [11]).

5. Conclusion

The general model of the first author [8], originally called and used as me-
somechanical, can be used for the description of the material SD processes as
well as of the SM processes.

If used for the description of the SD processes, the model works on the
mesoscale.

If used for the description of the SM processes, the model works on the atomic
scale, where the interatomic forces and the changes of interatomic distances in
two atomic grids are described and handled as microstresses and microstrains,
respectively.

Hence, the background of both these phenomena consists in an interaction of
two substructures; their physical nature is different, but the essential mechanical
processes are analogous.
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