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Taxonomy of polar decompositions for singular second-order
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1. Introduction

The polar decomposition theorem is a basic theorem of tensor algebra
which is commonly employed to understand the kinematics of a continuous
medium at the differential level. In almost every book on Continuum Mechanics
(e.g., [1, 2, 3]), the polar decomposition theorem is used to split the deformation
gradient at each point of a body, revealing the principal stretches, the princi-
pal frame, and the local rotation of such a frame. It can be easily proven that
this decomposition always exists and it is unique if the deformation gradient has
a positive determinant, which is always the case due to physical reasons.

Other situations, apart from Continuum Mechanics kinematics, benefit from
polar decomposition theorems. In these cases, the tensor that requires to be split,
might have a negative or even zero determinant. In such circumstances it proves
to be useful to identify the rotational and stretching parts of an arbitrary tensor,
and to ascertain in what sense they are unique.

In Structural Mechanics, for example, there is a mapping that transforms the
two directors that span a rod section from its reference to its current configura-
tion [4, 5]. This map is of rank two, and when the cross-section changes due to
the motion, the polar decomposition serves to identify which deformation actu-
ally takes place, and what is the true section rotation. In a similar fashion, when
a directed shell model is employed [4, 6], the motion maps its mid-surface and
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its director from their reference to their current values. In the case of a director,
the polar decomposition of the mapping representing the director motion serves
to clearly identify which part of this motion corresponds to a rotation and which
one corresponds to a deformation. Even though in the latter one case, this can
be done without the use of a polar decomposition theorem, it provides a uni-
fied treatment of the three nontrivial possible situations: a map that transforms
three independent vectors (for continua), two vectors (for sections), and a single
vector (for shell directors).

Other applications might be also of interest. In computer graphics, for exam-
ple, given one body in two different positions related by an affine map, the polar
decomposition theorem identifies the rotation and the deformation of this map,
and can be employed to smoothly interpolate the two body positions [7, 8]. The
deformation can be applied along a path connecting the two centers of mass, pro-
portionally to the distance to one of the ends. In the case of rotation, a spherical
interpolation (Slerp) [9] can be done also along this connecting path. The re-
construction of deformation maps at every point from the rotation and the pure
deformation, result in the smoothest possible interpolation of the affine map.
Using the results of this article, this approach can be employed for interpolat-
ing either the bodies, plane surfaces, or one-dimensional-type bodies. Moreover,
since the approach presented herein can be done locally, the trajectory of trian-
gulated 1D, 2D, or 3D bodies adopting two different positions related by local
affine maps, can be smoothly interpolated.

The goal of this note is to study polar decompositions of second-order ten-
sors, with emphasis on the singular ones. We identify the form of the orthogonal
tensors that appear in the polar decompositions, studying their (possibly lack of)
uniqueness, and providing geometric interpretations for them. All these results
are provided in Section 2, making use of standard results following from differ-
ential geometry summarized in the Appendix.

2. The polar decomposition theorem for regular

and singular tensors

In this section we state and prove a generalized version of the polar decom-
position theorem for second-order tensors that describes in detail the form of the
polar split in terms of their kernel.

We start by stating a general form of the theorem that indicates the existence
of a polar decomposition for any second-order tensor. Its proof can be found, for
example, in [10].

Theorem 1. Let F be a second-order tensor. This tensor can be expressed

as the product F = RU of an orthogonal tensor R and a symmetric, positive
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semidefinite tensor U. Moreover, U is unique, defined as U =
√

FTF, hence of

the same rank as F.

In fact, the previous theorem defines the so-called “right” polar decomposi-
tion. In a similar fashion, there exists a “left” polar decomposition F = VR,
where V is a symmetric, positive semidefinite tensor and R is the orthogonal
tensor mentioned in the theorem. All the results presented in this article are valid
for both polar decompositions, but we will present them only for the “right” one.

In what follows, we specialize Theorem 1 to particular types of second-order
tensors, providing most of the details concerning the characteristics of R. The
first result, which we present for completeness, is the classical polar decompo-
sition theorem whose statement and proof can be found in most books dealing
with Continuum Mechanics for the case det(F) > 0. References [11, 12], for
example, state and prove the complete theorem.

Theorem 2. Let F be a second-order tensor with a positive determinant.

Then the polar decomposition of Theorem 1 is unique, U is invertible, and R

is a proper orthogonal tensor. If F is such that det(F) < 0, then the polar

decomposition is still unique, U is as before, and R is an improper orthogonal

tensor.

The singular cases will now be discussed. First we address the situation when
the rank of F is two, and later – the most degenerated case when the rank is
one. In each case we describe in what sense the rotation R is not unique.

2.1. Rank two tensors

Theorem 3. Let F be a singular second-order tensor with rank(F) = 2. This

tensor has exactly two polar decompositions:

(2.1) F = R+U = R−U,

where R+,R− are, respectively, a proper and an improper orthogonal tensor,

and U is a rank-two, symmetric, positive semidefinite tensor. Moreover, the two

orthogonal tensors are related as follows:

(2.2) R− = R+ (1− 2w ⊗w) ,

where w is the unit vector spanning Ker(F).

To prove Theorem 3, two preliminary results will be needed.

Lemma 1. Let {v1,v2} denote two linearly independent vectors in R3 and

R,S – two orthogonal tensors with determinants of the same sign. If

(2.3) Rvα = Svα

for α = 1, 2, then R ≡ S.
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P r o o f. In what follows, the usual notation for repeated indices will be
employed unless otherwise stated. Let v3 = v1 ×v2, where “×” denote the cross
product in R3. Let J denote the sign of either det(R) or det(S), assumed to
be the same. Then, if (2.3) holds, it follows from the properties of orthogonal
tensors that:

Rv3 = R(v1 × v2) = J(Rv1) × (Rv2) = J(Sv1) × (Sv2)(2.4)

= J2S(v1 × v2) = Sv3.

Hence, for any vector a ∈ R3 expressed in the set {v1,v2,v3} as a = aivi we
have

(2.5) Ra = Raivi = aiRvi = aiSvi = Sa,

and we conclude that R ≡ S.

Lemma 2. Let v1,v2, be two linearly independent vectors in R3, and R be

a proper orthogonal tensor, and S – an improper orthogonal tensor such that

(2.6) Rvα = Svα

for α = 1, 2. Then

(2.7) S = R(1− 2w ⊗ w),

where w = (v1 × v2)/|v1 × v2|.
P r o o f. If (2.6) holds and w = (v1 ×v2)/|v1 ×v2|, then S defined in (2.7)

is an orthogonal tensor, satisfies (2.6) and is improper, because

(2.8) Sw = S(v1 × v2) = −(Sv1) × (Sv2) = −(Rv1) × (Rv2) = −Rw.

Moreover, according to Lemma 1, the improper rotation S must be the unique
tensor that satisfies (2.6).

P r o o f (of Theorem 3). The existence of at least one polar decomposition
of F is guaranteed by Theorem 1. To prove that there are only two possible
polar decompositions of the type described in the theorem, let us proceed by
contradiction. Let R and S be two proper orthogonal tensors that satisfy:

(2.9) F = RU = SU.

The ranks of F and U are identical and thus U, which is symmetric, must have
two real (not necessarily distinct) nonzero eigenvalues λ1, λ2 with associated
orthonormal eigenvectors v1,v2. For α = 1, 2,

(2.10) 0 = (RU − SU)vα = λα (Rvα − Svα) ⇔ Rvα = Svα,
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where summation is not implied. Applying Lemma 1 to the last identity we
conclude that R ≡ S.

Repeating the same argument, but with R and S being improper orthogonal
tensors, one concludes again that they must be identical.

Finally, if R and S satisfy (2.9) and have determinants of opposite signs,
they must still satisfy (2.10). Thus, Lemma 2 applies and R,S must be related
as indicated in (2.7).

A possible geometric interpretation of Theorem 3 is as follows. If F is
a rank-two tensor with a given polar decomposition F = RU, then the two
orthonormal eigenvectors v1,v2 of U associated with nonzero eigenvalues
λ1, λ2 span the orthogonal complement to Ker(F). By applying F to each of
them, two orthogonal vectors w1,w2 are obtained whose lengths are |w1| = λ1,
|w2| = λ2.

The contents of the polar decomposition theorem is that these transforma-
tions can be decomposed in two steps. First, a stretch of the vectors vα by
a factor λα, and then an isometry taking λαvα (no sum) to wα. This step
can be achieved by means of a (unique) rigid rotation R+, taking the triad
{λ1v1, λ2v2, λ1λ2v1 × v2} onto the triad {w1,w2,w1 × w2}. The same isome-
try, however, could be achieved if, before applying of R+, a reflection from the
plane spanned by {v1,v2} is performed. The combined effect of this reflection
plus the rigid rotation R+ is what corresponds to the improper rotation R−

defined in the theorem, and the underlying reason for non-uniqueness of the
decomposition.

There is a third way of obtaining the previous isometry. If the rigid rotation
R+ is applied first, and then a reflection from the plane spanned by {w1,w2} is
performed, the same result is obtained. It turns out, however, that the compo-
sition of R+ and this second type of reflection gives the same orthogonal tensor
R− as before.

2.2. Rank-one tensors

We conclude with a study of the most degenerate (nontrivial) situation.
A rank one second-order tensor will be shown to have infinitely many polar
decompositions. But, among all the possible orthogonal tensors, the following
theorem will identify exactly one proper orthogonal tensor that in some sense
will be the smallest one.

Theorem 4. Let F be a singular second-order tensor with rank(F) = 1, and

let v be orthogonal to Ker(F). This tensor has infinite polar decompositions of

the type described in Theorem 1, where now U is of rank one. However, there is

only one polar decomposition
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(2.11) F = RoU,

where Ro is a proper orthogonal that rotates v without drill.

P r o o f. Existence is guaranteed by Theorem 1. If λ is the unique positive
eigenvalue of U, the tensor F maps v onto λw, where w is also a unit vector.
Then

(2.12) Fv = RUv = λRv,

and thus the rotation R is any rotation that maps v onto w. Since these two
vectors are both in S2, according to (A.6), we can find a particular rotation

(2.13) Ro = exp[v̂ × w]

that performs this transformation without drill.
To verify that indeed there are infinite rotations that satisfy the polar de-

composition of F, it suffices to consider rotations of the form

(2.14) Rα = Roexp[αv̂],

for any α ∈ R. Using the property of the exponential map

(2.15) exp[θ̂]θ = θ,

for any θ ∈ R3, it is easy to observe that all rotations of the form (2.14) satisfy
the polar decomposition. Moreover, if S is a reflection that leaves v unchanged,
any orthogonal tensor of the form

(2.16) Sα = RαS,

is also an orthogonal tensor that satisfies Sαv = w, and thus it is valid for the
polar decomposition of F.

3. Summary

In this note, we have reviewed the application of the polar decomposition
theorem to second-order tensors, and identified (coordinate-free) expressions for
the split appearing in the decomposition of regular and singular tensors. Since
the regular case is well-known, we have concentrated on the rank-two and rank-
one problems, providing explicit expressions of the non-unique orthogonal tensors
appearing in the decompositions in terms of the kernel of the tensor, or its orthog-
onal complement. The results obtained are useful for the study of deformations
in structural members and in computer graphics.
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Appendix A. Properties of SO(3) and S2

The set of proper orthogonal tensors, known as SO(3), is a Lie group with
algebra so(3), the set of skew-symmetric tensors. Every θ̂ ∈ so(3) has an eigen-
vector θ ∈ R3 that lies in its kernel. This vector is called the axial vector of θ̂.
The exponential map exp : so(3) → SO(3) is given in a closed form by Rodrigues’
formula:

(A.1) exp[θ̂] = 1 +
sin(|θ|)

|θ| θ̂ +
1

2

(
sin(|θ|/2)

|θ|/2

)
θ̂

2
,

where θ is the axial vector of θ̂. See, for example, [13]. For nonzero vectors θ, the
tensor exp[θ̂] corresponds to a rotation about the axis θ/|θ| of magnitude |θ|.
It is then straightforward to verify that exp[θ̂]θ = θ.

We also recall the definition of the unit sphere S2

(A.2) S2 = {v ∈ R
3, v · v = 1}.

This set is a two-dimensional Lie group, and the tangent space at a point d ∈ S2

is the linear space

(A.3) TdS2 = {w ∈ R
3, w · d = 0}.

The exponential map: expS2 : TS2 → S2 at a point d ∈ S2 is the function
mapping the tangent space TdS2 to the geodesic on the unit sphere passing
through d. The explicit expression of this mapping is, for any w ∈ TdS2,

(A.4) expS2 [d,w] = cos(|w|)d +
sin(|w|)

|w| w.

The function G : [0, 1] × S2 × TS2 → S2 given by

(A.5) G(t,d,w) = expS2 [d, tw],

defines the unique geodesic on S2 connecting the pair of unit vectors d and e =
expS2 [d,w].

The crucial geometric property that relates SO(3) to S2 is that, for every
pair d, e ∈ S2 as before, there exists a unique proper rotation R which rotates
d onto e and whose axis of rotation is perpendicular to both d and e ([6]). This
map is said to rotate d to e without drill and its given by:

(A.6) R = exp[d̂ ×w].

A closed-form expression for this rotation is:

(A.7) R =
1

sin2 φ
(cosφ(d⊗ d + w ⊗ w)+(1−2 cos2 φ)w ⊗ d−d⊗ w+p⊗ p),

with p = d ×w and cosφ = d · w.
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