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Uniqueness in thermoelasticity of porous media
with microtemperatures
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The problem determined by thermoelastic deformations when the internal energy
is not positive definite, becomes ill-posed. We recall that this kind of situation happens
in the study of prestressed thermoelastic solids. Thus, it will be of interest to obtain
qualitative properties of solutions in this case. In this note we prove the uniqueness of
solutions for the linear thermo-poro-elasticity with microtemperatures theory, when
the internal energy is not to be assumed to be positive definite. We use the energy
arguments combined with the Lagrange identities.
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1. Introduction

The theory of elastic solids with voids is the simplest generalization of
the classical theory of elasticity; however, it is worth recalling that porous ma-
terials have applications in many fields of engineering such as petroleum indus-
try, material science, biology, etc. When elastic solids with voids are considered,
as in this paper, one should look into the theory of porous elastic materials. Here
we deal with the theory established by Cowin and Nunziato (see [3, 4, 14]). In
their approach, the bulk density is the product of two scalar fields: the matrix
material density and the volume fraction field. This was deeply discussed in the
book by Ieşan [6].

The study of the basic qualitative properties of solutions is the fundamental
work to develop for different thermomechanical situations. In this note we deal
with the system of equations which governs the thermo-poro-elasticity with mi-
crotemperatures. This system has attracted much attention in last years [19, 20].
We can recall that it was proposed by Ieşan [8] (see also [10]) and recently it
has been extended to a more general case, when the material points admit mi-
cropolar structure [9]. In these contributions, several existence and uniqueness
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results were obtained, however they were based on the assumption of positivity
of the internal energy. Further studies, such as exponential decay of solutions
or impossibility of localization of the solutions, have been also obtained recently
[2, 13, 17]. It is also worth recalling that in the reference [11], the equations of
the thermo-poro-elasticity with microtemperatures are also proposed, but in the
context of the thermomechanical theories proposed by Green and Naghdi. It is
worth noting that contributions concerning qualitative properties, for the theory
we deal, always assume that the internal energy is positive. However, it is known
that this assumption is not needed to prove the uniqueness of solutions in several
thermomechanical situations [18]. Moreover, there are many thermomechanical
situations where the internal energy is not positive definite. This happens in the
study of problems concerning solids with initial pre-stress [6, 7]. However, we
do not know any uniqueness result concerning thermomechanical theories with
microtemperatures, when internal energy is not assumed to be positive definite.
The loss of symmetry of this system introduces a new difficulty in the stud-
ies of this kind of problems (from the mathematical point of view). Thus, it is
necessary to introduce an alternative argument to avoid this difficulty.

We recall that in absence of the supply terms, the evolution equations which
govern the problem of the thermo-poro-elasticity with microtemperatures are
(see [9]):

ρüi = Sji,j , Jφ̈ = hi,i + g, ρT0ζ̇ = qj,j , ρη̇i = qji,j + qi −Qi,

where Sij is the stress tensor, hi is the equilibrated stress vector, g is the intrinsic
equilibrated body force, ζ is the entropy, qi is the heat flux vector, ηi is the first
moment energy vector, Qi is the microheat flux average, qji is the first heat
flux moment tensor, ρ is the mass density and J is the product of the mass
density and the equilibrated inertia. As usual, ui is the displacement, T0 is the
temperature at the reference configuration and φ is the volume fraction.

In this paper we restrict our attention to the case when the materials have
a center of symmetry. Then, the constitutive tensors of odd order must vanish
and the constitutive equations take the form

Sji = Cijklekl +Bijφ− aijθ,

hi = Aijφ,j −NijTj , g = −Bijeij − ηφ+ fθ,

ρηi = −Njiφ,j −MijTj , qij = −PijrsTs,r,

ρζ = aijeij + fφ+ aθ, Qi = (Hij − Λij)Tj + (kij −Kij)θ,j ,

qi = kijθ,j +HijTj .

It is worth recalling that Cijkl is the elasticity tensor, Aij , Bij , η are tensorial
functions which are typical in porous media theories and Λij , Mij , Nij ,Hij ,Kij



Uniqueness in thermoelasticity of porous media . . . 373

and Pijrs are tensors which are usual in the theories with microtemperatures,
kij is the thermal conductivity tensor, aij is the thermal dilatation tensor and a
is the heat capacity. As usual, θ means the relative temperature and Ti are the
microtemperatures.

If we introduce the constitutive equations into the evolution equations, we ob-
tain the system of field equations for the thermo-poro-elasticity with microtem-
peratures:

ρüi = (Cijkluk,l +Bijφ+ aijθ),j ,(1.1)

Jφ̈ = (Aijφ,i −NijTi),j −Bijui,j − ηφ+ fθ,(1.2)

aθ̇ = −fφ̇− aij ėij +
1

T0
(kijθ,i +HijTi),j ,(1.3)

MijṪj = (PjirsTs,r),j − ΛijTj −Njiφ̇,j −Kijθ,j .(1.4)

In this situation it is usual to assume that the inequality:

(1.5) kijθ,iθ,j + (Hij + T0Kij)θ,jTi + T0ΛijTiTj + T0PjirsTi,jTs,r ≥ 0

is satisfied. The last inequality is a consequence of the Clausius-Duhem inequality
in the context of the theories with microtemperatures (see [9]).

In the case of isotropic and homogeneous materials, the constitutive equations
become

Sji = λekkδij + 2µeij + bφδij − βθδij ,

hi = γφ,i − dTi, g = −berr − ηφ+ fθ,

ρηi = dφ,i − αTi, qij = −κ4Tr,rδij − κ5Ti,j − κ6Tj,i,

ρζ = βerr + fφ+ aθ, Qi = (κ1 − κ2)Ti + (k − κ3)θ,i,

qi = kθ,i + κ1Ti,

where λ, µ, b, β, γ, ζ, f, a, α, d, k, κi, (i = 1, . . . , 6) are given constants. For the
three-dimensional case, condition (1.5) becomes (see [5]):

k ≥ 0, 3κ4 + κ5 + κ6 ≥ 0, κ5 + κ6 ≥ 0, κ6 − κ5 ≥ 0, (κ1 + T0κ3)
2 ≤ 4T0kκ2.

Substituting our constitutive equations into the evolution equations, we ob-
tain the system of the field equations in the case of isotropic and homogeneous
materials:

ρüi = µui,jj + (λ+ µ)uj,ji + bφ,i − βθ,i,

Jφ̈ = γφ,jj − bui,i − ηφ− dTi,i + fθ − τ φ̇,

aθ̇ = kθ,jj − βT0u̇i,i − fT0φ̇+ κ1Ti,i,

αṪi = κ6Ti,jj + (κ4 + κ5)Tj,ji − dφ̇,i − κ3θ,i − κ2Ti.
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It is worth noting that after a non-dimensionalizing procedure, we can assume
that the tensor and variables used here are non-dimensional.

Our approach is strongly based on the Lagrange identities and on energy
arguments. However, it is worth noting that in the case of thermoelasticity with
microtemperatures, the existence of the tensors Hij and Kij introduces new
mathematical difficulties. Thus, our approach must be different from the one
used in classical thermoelasticity or type III thermoelasticity [18]. In fact, we
need to work with an inequality of the type (4.11) which relates a measure
(on the solutions) at the moment “t” to the integral of this measure until the
moment “2t”. Nevertheless, this kind of inequality can be treated as in the case
of the usual thermoelasticity for exterior domains [16].

The plan of this note is the following: in section two, we present the as-
sumptions concerning the constitutive tensors for the thermo-poro-elasticity with
microtemperatures we are going to work with. In Section 3 we obtain two equal-
ities which will be used in Sec. 4. One of them is the conservation law of the
energy and the second one is a Lagrange type identity. In Section 4 we state
our main theorem, and in Sec. 5 we recall the main conclusion of this short
note.

2. Assumptions and restrictions

The aim of this section is to determine the assumptions on the constitutive
tensors for the thermomechanical theory we are going to work with. To clarify
the situation, we present the assumptions concerning the constitutive tensors.
First, we recall that the tensors Cijkl and Aij are symmetric. That is,

(2.1) Cijkl = Cklij, Aij = Aji.

In general, the tensors Pijrs,Mij and Λij are not symmetric. However, we assume
that we can substitute them for symmetric tensors P ∗

ijrs,M
∗
ij and Λ∗

ij in the
field equations (of course, this is not possible in treatment of the constitutive
equations). This assumption is not odd, in the sense that it happens at least in
two relevant and different cases: for one-dimensional materials and in the case
of isotropic and homogeneous materials, as it can be seen in the corresponding
system of equations. In this case we can write:

M∗
ij = αδij, Λ

∗
ij = κ2δij, P

∗
ijrs = k6δisδjr + (k4 + k5)δijδrs,

where δij is the Kronecker delta.
Thus, from now on, we omit the stars and assume that

(2.2) Pijkl = Pklij, Mij = Mji, Λij = Λji.



Uniqueness in thermoelasticity of porous media . . . 375

We impose conditions (2.2) because of technical arguments. To be precise,
we note that these conditions are needed to obtain the relation (3.8) which plays
a relevant role in our proof.

In addition to the assumptions that the constitutive coefficients are bounded
from above, we also need to impose the positivity of several functions and tensors.
So we also assume that:

(i) ρ(X) ≥ ρ0 > 0, a(X) ≥ J0 > 0, a(X) ≥ a0 > 0, Mijξiξj ≥ m0ξiξi, where
m0 is a positive constant.

(ii) kijξiξj +(Hij +T0Kij)ξjζi +T0Λijζiζj ≥ C0(ξiξi + ζiζi), where C0 is a pos-
itive constant, for every (ξj) and (ζi).

(iii) Pjirsξijξsr ≥ C1ξijξij , where C1 is a positive constant, for every (ξij).

The above assumptions are in agreement with the physical experience. The ther-
momechanical interpretation of conditions (i) is obvious. Conditions (ii) and (iii)
follow from the Clausius–Duhem conditions recalled in Eq. (1.5). However, we
note that the assumptions were imposed previously on the symmetrized ten-
sors, which can be different from the ones given by (1.5). For this reason, we
believe that it is necessary to clarify what happens in the case of isotropic and
homogeneous materials. In this sense we note that condition (ii) holds because
in this case the tensors Mij, Λij are symmetric. The condition (iii) is not the
same. This condition is satisfied at least when κ6 > 0 and −κ6 < κ4 + κ5. We
note that this is more suitable than the corresponding inequalities proposed by
Clausius–Duhem condition.

3. Some basic relations

The aim of this section is to set down two relations which will be useful to
prove our main theorem. Since we want to prove the uniqueness of solutions,
we must show that the only solution of the problem determined by null initial
conditions and null boundary conditions, is the null solution. We assume that we
study our system in a bounded domain B with a boundary ∂B, which is smooth
enough to apply the divergence theorem.

We assume the null initial conditions:

(3.1) ui(X, 0)= u̇i(X, 0)=φ(X, 0)= φ̇(X, 0)=θ(X, 0)=Ti(X, 0)=0, X∈B

and the null boundary conditions:

(3.2) ui(X, t) = φ(X, t) = θ(X, t) = Ti(X, t) = 0, X ∈ ∂B, t ≥ 0.

Now, we determine the basic relations. The first one is the energy relation.
After integration and use of the boundary conditions and the initial conditions,
we obtain:
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(3.3)
1

2

∫

B

(ρu̇iu̇i + J |φ̇|2 + Cijklui,juk,l + 2Bijui,jφ

+ ηφ2 +Aijφ,iφ,j + aθ2 +MijTiTj)dV

= −
t∫

0

∫

B

(
1

T0
(kijθ,iθ,j + (Hij + T0Kij)θ,jTi

+ T0ΛijTiTj + T0PjirsTi,jTs,r)

)
dV ds.

The second identity we need follows from the Lagrange identities method
and it can be derived as in [1, 12, 15, 18]. For a fixed t ∈ (0, T ), we use the
identities:

∂

∂s
[ρu̇i(s)u̇i(2t− s)] = ρüi(s)u̇i(2t− s) − ρu̇i(s)üi(2t− s),(3.4)

∂

∂s
[Jφ̇(s)φ̇(2t− s)] = Jφ̈(s)φ̇(2t− s) − Jφ̇(s)φ̈(2t− s),(3.5)

∂

∂s
[aθ(s)θ(2t− s)] = aθ̇(s)θ(2t− s) − aθ(s)θ̇(2t− s),(3.6)

∂

∂s
[MijTi(s)Tj(2t− s)] = MijṪi(s)Tj(2t− s) −MijTi(s)Ṫj(2t− s),(3.7)

the basic equations (1.1) to (1.4), the initial conditions (3.1) and the boundary
conditions (3.2), to obtain

(3.8)
∫

B

(ρu̇iu̇i + J |φ̇|2 − aθ2 −MijTiTj)dV

=

∫

B

(Cijkluk,lui,j + 2Bijui,jφ+ ηφ2 +Aijφ,iφ,j)dV +Ω(t),

where

(3.9) Ω(t) =
1

T0

t∫

0

∫

B

(
(Hij + T0Kij)(θ,j(s)Ti(2t− s))

+ ((Hij + T0Kij)Ti(s)),jθ(2t− s)
)
dV ds.



Uniqueness in thermoelasticity of porous media . . . 377

From (3.3) and (3.8) we obtain

E1(t) =

∫

B

(ρu̇iu̇i + J |φ̇|2)dV(3.10)

= −
t∫

0

∫

B

(
1

T0
(kijθ,iθ,j + (Hij + T0Kij)θ,jTi

+ T0ΛijTiTj + T0PjirsTi,jTs,r)

)
dV ds+

Ω(t)

2
.

This equality will be used in the next section.

4. The main result

In this section we prove the uniqueness of solutions in the case of thermo-
poro-elasticity with microtemperatures. It is worth noting that in this case, the
proof presents several similarities to the case of poro-elasticity with the usual
heat conduction, however the tensors Hij and Kij need a special treatment which
enables us to obtain an inequality of type (4.11) which is different of Gronwall’s-
type inequality. This is the main point of the proof.

Lemma 1. Let us assume that the conditions (i), (ii), (iii), (2.1) and (2.2)
hold. Let (ui, φ, θ, Ti) be a solution of the problem determined by the system

(1.1)–(1.4), the initial conditions (3.1) and the boundary conditions (3.2). Then

ui = φ = θ = Ti = 0.

P r o o f. If we multiply (1.3) by θ and (1.4) by Ti, after integration and using
the divergence theorem and the boundary conditions, we obtain the equality:

E2(t) =
1

2

∫

B

(aθ2 +MijTiTj)dV(4.1)

= −
t∫

0

∫

B

(
1

T0
(kijθ,iθ,j + (Hij + T0Kij)θ,jTi

+ T0ΛijTiTj + T0PjirsTi,jTs,r)

)
dV ds

−
t∫

0

∫

B

(Njiφ̇,jTi + aij u̇i,jθ + fθφ̇)dV ds.

Let ǫ be a small, but positive constant. Let us consider E(t) = E1(t)+ǫE2(t).
We note that the function:
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(4.2) E(t) =

∫

B

(
ρu̇iu̇i + J |φ̇|2 +

aǫ

2
θ2 +

ǫ

2
MijTiTj

)
dV

is a positive function that defines a measure on the solutions. We have

(4.3) E(t) = −(1 + ǫ)

t∫

0

∫

B

1

T0
(kijθ,iθ,j + (Hij + T0Kij)θ,jTi

+ T0ΛijTiTj + T0PjirsTi,jTs,r)dV ds

− ǫ

t∫

0

∫

B

(
Njiφ̇,jTi + aij u̇i,jθ + fθφ̇

)
dV ds+

Ω(t)

2
.

Application of the A-G inequality and the divergence theorem enables us to
obtain estimates of the type

∣∣∣∣∣∣

t∫

0

∫

B

aij u̇i,jθdV ds

∣∣∣∣∣∣
≤M1

t∫

0

∫

B

ρu̇iu̇idV ds+ ǫ1

t∫

0

∫

B

kijθ,iθ,jdV ds,(4.4)

∣∣∣∣∣∣

t∫

0

∫

B

Njiφ̇,jTidV ds

∣∣∣∣∣∣
≤M∗

1

t∫

0

∫

B

J |φ̇|2dV ds+ ǫ∗1

t∫

0

∫

B

PjirsTi,jTs,rdV ds,(4.5)

∣∣∣∣∣∣

t∫

0

∫

B

fφ̇θdV ds

∣∣∣∣∣∣
≤M∗∗

1

t∫

0

∫

B

J |φ̇|2dV ds+ ǫ∗∗1

t∫

0

∫

B

aθ2dV ds,(4.6)

where ǫ1, ǫ∗1 and ǫ∗∗1 are positive constants which can be selected as small as we
want and M1,M

∗
1 and M∗∗

1 are positive constants. They can be expressed in
terms of the constitutive parameters, ǫ1, ǫ∗1 and ǫ∗∗1 .

It will be suitable to pay attention to Ω(t). We can obtain

|Ω(t)|
2

≤M2

2t∫

0

∫

B

MijTi(s)Tj(s)dV ds+ ǫ2

t∫

0

∫

B

kijθ,i(s)θ,j(s)dV ds

+M3

2t∫

0

∫

B

aθ2(s)dV ds+ ǫ3

t∫

0

∫

B

(PjirsTi,j(s)Ts,r(s)

+MijTi(s)Tj(s))dV ds,

where ǫ2 and ǫ3 are positive, but as small as we want. Due to relation (3.3), we
have
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(4.7) E(t) ≤ ǫ(M1

t∫

0

∫

B

ρu̇iu̇idV ds+ (M∗
1 +M∗∗

1 )

t∫

0

∫

B

J |φ̇|2dV ds

+ ǫ∗∗1

t∫

0

∫

B

aθ2dV ds) + (ǫǫ1 + ǫ2)

t∫

0

∫

B

kijθ,iθ,jdV ds

+ (ǫǫ∗1 + ǫ3)

t∫

0

∫

B

(PjirsTi,jTs,r +MijTi(s)Tj(s))dV ds

+M2

2t∫

0

∫

B

MijTi(s)Tj(s)dV ds+M3

2t∫

0

∫

B

aθ2(s)dV ds

− (1 + ǫ)

t∫

0

∫

B

1

T0
(kijθ,iθ,j + (Hij + T0Kij)θ,jTi

+T0ΛijTiTj + T0PjirsTi,jTs,r)dV ds.

In view of condition (ii) we can always select ǫ1, ǫ∗1, ǫ2 and ǫ3 in such a way that
the inequality

(4.8) − (1 + ǫ)

t∫

0

∫

B

1

T0
(kijθ,iθ,j + (Hij + T0Kij)θ,jTi

+ T0ΛijTiTj + T0PjirsTi,jTs,r)dV ds+ (ǫǫ1 + ǫ2)

t∫

0

∫

B

kijθ,iθ,jdV ds

+ (ǫǫ∗1 + ǫ3)

t∫

0

∫

B

(PjirsTi,jTs,r +MijTi(s)Tj(s))dV ds ≤ 0,

is satisfied. It then follows that the inequality

(4.9) E(t) ≤ ǫ


M1

t∫

0

∫

B

ρu̇iu̇idV ds

+ (M∗
1 +M∗∗

1 )

t∫

0

∫

B

J |φ̇|2dV ds+ ǫ∗∗1

t∫

0

∫

B

aθ2dV ds




+M2

2t∫

0

∫

B

MijTi(s)Tj(s)dV ds+M3

2t∫

0

∫

B

aθ2(s)dV ds,
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holds true. Thus we can obtain a positive constant C such that

(4.10) E(t) ≤ C

2t∫

0

∫

B

(ρu̇iu̇i + J |φ̇|2 + aθ2 +MijTiTj)dV ds.

In view of the definition of the function E(t) in (4.2), we can find a positive
constant C∗ such that the estimate:

(4.11) E(t) ≤ C∗

2t∫

0

E(s)ds

is satisfied for every t ≥ 0. After integration we obtain that

2t∫

0

E(s)ds ≤ C∗

2t∫

0

2s∫

0

E(η)dηds = C∗

2t∫

0

2(t− s)E(s)ds(4.12)

≤ 2C∗t

2t∫

0

E(s)ds.

It then follows that

(4.13) (1 − 2C∗t)

2t∫

0

E(s)ds ≤ 0.

If we assume t0 = (2C∗)−1, we obtain that E(t) vanishes in the interval (0, t0).
If we take into account the definition of E(t), it follows that θ ≡ 0, φ̇ ≡ 0, Ti ≡ 0
and u̇i ≡ 0 for every t ≤ t0. Thus, we have proved that the problem determined
by our system of equations with the boundary conditions (3.2) and the initial
condition (3.1), has only one solution in the interval [0, t0]. If we apply the same
approach to the problem determined by our system, the boundary conditions
(3.1) and initial conditions

(4.14) ui(X, t0) = u̇i(X, t0) = φ(X, t0) = φ̇(X, t0)

= θ(X, t0) = Ti(X, t0) = 0, X ∈ B,

we can conclude that θ ≡ 0 , φ ≡ 0 , Ti ≡ 0 and ui ≡ 0 for every t ≤ 2t0. This
approach can be repeated successively and we will conclude that for arbitrary
positive time, the solution vanishes. It follows that the only solution to our
problem is the null solution and the lemma is proved.

Thus, if we consider the problem determined by the system (1.1)–(1.4) with
arbitrary initial and Dirichlet boundary conditions, we have proved:
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Theorem 1. Let us assume that the conditions (i), (ii), (iii), (2.1) and (2.2)
hold. Let (u1

i , φ
1, θ1, T 1

i ) and (u2
i , φ

2, θ2, T 2
i ) be two solutions of the problem de-

termined by the system (1.1)–(1.4), with the same initial and Dirichlet boundary

conditions. Then the two solutions agree, that is u1
i = u2

i , φ
1 = φ2, θ1 = θ2,

T 1
i = T 2

i .

Remark. Our arguments could be adapted to prove the Holder continuous
dependence results if we assume a priori bounds on the solutions. Also, it is
possible to adapt the arguments to the case of unbounded domains, and in the
general case when polar effects are also considered [9].

5. Conclusions

The aim of this note was to study the uniqueness of solutions for the lin-
ear thermo-poro-elasticity with microtemperatures when internal energy is not
positive definite. This situation happens in case of prestressed thermoelastic bod-
ies. We have established the uniqueness of solutions. We have used the energy
arguments combined with the Lagrange identities.
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