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On the thermoelastic problem of uniform heat flow disturbed
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A complete solution in elementary functions is given for the three-dimensional
thermoelastic field in an elastic space, containing an absolutely rigid circular inclusion
(anticrack) under a normally incident uniform heat flow. The inclusion is assumed
to be slightly conducting, with a certain thermal resistance. The analysis is based
on the potential theory method. The resulting boundary-value problems are reduced
to classical mixed problems of the potential theory. The temperature, fluxes, ther-
mal stresses and displacements in the inclusion plane are given in closed forms and
interpreted from the point of view of the failure theory.
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1. Introduction

Problems involving stress concentrations in deformable bodies con-
taining different kinds of imperfections have long been studied by researchers
from many fields, such as geomechanics, metallurgy, materials science. Cracks
(with traction-free surfaces) and rigid inclusions (with displacements-free sur-
faces) represent the two extreme cases of inhomogeneity that lead to the for-
mation of high stress concentrations. The safety of a structure containing these
defects can be determined basing on the knowledge of the magnitude and dis-
tribution of stresses following from all types of loads, including thermal loads.
Thus, it is essential to obtain the theoretical solutions of the realistic three-
dimensional thermoelastic fracture problems. The main advances in this field
dealing with cracks are discussed in monographs written by Kassir and Sih [1],
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Kit and Khay [2], Dell’erba [3]. The potential theory method proposed by
Fabrikant [4, 5] has provided the basis for obtaining the analytical solutions
to many thermoelastic crack problems of practical interest (see Kaczyński [6],
Kaczyński and Matysiak [7], Chen et al. [8]). However, although 3-D isother-
mal problems involving rigid sheet-like inclusions in homogeneous elastic mate-
rials have been considered in numerous papers (see e.g. Collins [9], Kassir
and Sih [10], Selvadurai [11, 12], Silovanyuk [13], Huang and Liu [14],
Rahman [15, 16], Kachanov et al. [17], Chaudhuri [18], and the funda-
mental monographs by Mura [19], Panasyuk et al. [20] and Alexandrov
et al. [21]), thermal effects have been investigated to a much smaller extent and
are concerned with two-dimensional formulations (see Sekine [22] and Chao
and Shen [23] and references cited therein). Only some inadequate results for
transversally isotropic bodies having rigid elliptic inclusions under thermal loads
can be found in Podil’chuk [24].

This contribution may be regarded as a companion paper to the publication
given by Kaczyński and Kozłowski [25] in which, as an illustration of the
general considerations, the complete elementary solution was presented for the
rigid penny-shaped inclusion in thermoelastic space subjected to uniform per-
pendicular heat flow at infinity under a classical assumption that the faces of
the inclusion are thermally insulated. The present work is concerned with an
extension of [25] for more general thermal conditions by taking into account
the conductivity of the inclusion. A two-stage method for obtaining the solu-
tion is used. The steady-state temperature field is determined first with regard
to the heat transfer through a rigid inclusion. Next, the associated induced
thermal stresses are sought by using the potential method previously devel-
oped by Kaczyński [6]. The resulting anti-symmetric problems are reduced to
classical mixed problems of the potential theory. The results obtained by Fab-
rikant [4, 5] are utilized to derive complete and exact expressions in terms
of elementary functions for the entire thermoelastic field. The properties and
singular behaviour of the thermal stresses near the inclusion border as well as
the influence of its thermal conductivity are examined.

2. Basic equations and general potential solution

Introduce a rectangular Cartesian coordinate system OX1X2X3, and de-
note at the point (x1, x2, x3) of the infinite thermoelastic homogeneous material,
the unknown quantities: the temperature (a small change from the stress-free
state) by T and the components of displacement, stress, heat flux by ui, σi j , qi,
respectively.

Throughout the paper, the Latin subscripts run over 1, 2, 3, repeated indices
imply summation and a comma denotes partial differentiation.
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By neglecting the effects of both the inertia and coupling between tempera-
ture and strains, the general thermal-stress problem separates into two distinct
subproblems – determination of the temperature distribution and employing it
to find the induced stress field. The first thermal problem is governed by the
Fourier law of heat conduction and the three-dimensional Laplace equation for
the temperature field in absence of the heat sources (Nowacki [26])

qi = −kT,i,(2.1)

T,ii = 0,(2.2)

where k is the thermal conductivity. Knowing the temperature distribution, the
resulting displacements and stresses may be found, respectively, from the gener-
alized Lamé equations and the Duhamel–Neumann stress-displacement relations
(in absence of the body forces):

µui,jj + (λ + µ)uj,ji − βT,i = 0,(2.3)

σij = λuk,kδij + µ(ui,j + uj,i) − βTδij,(2.4)

in which λ and µ are the Lamé constants, β = α(3λ + 2µ) with α being the
linear coefficient of thermal expansion, and δij is Kronecker’s delta.

For problems connected with the discontinuities at x3 = 0±, a suitable general
solution to the above equations of thermoelastic equilibrium can be obtained
by four spatial harmonic functions (potentials): ω – the thermal potential and
ϕi, i ∈ {1, 2, 3} – the mechanical potentials such that the temperature and
displacements are represented in the form (Kaczyński [6])

T = ω,3,(2.5)

u1 =


ϕ1 + c

∞∫

x3

ωdx3 + x3F




,1

− ϕ3,2,(2.6)

u2 =


ϕ1 + c

∞∫

x3

ωdx3 + x3F




,2

+ ϕ3,1,(2.7)

u3 = ϕ1,3 −
λ + 3µ

λ + µ
ϕ2 + x3F,3,(2.8)

where

(2.9) F = ϕ2 + cω, c =
β

2(λ + 2µ)
.

Using Eqs. (2.5) and (2.1), the components of the fluxes are given by

(2.10) qi = −kω,3i.
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Making use of the constitutive relations (2.4) and bearing Eqs. (2.6)–(2.8) in
mind, the corresponding stresses are found to be

σ31 = 2µ

[
ϕ1,3 −

µ

λ + µ
ϕ2 + x3F,3

]

,1

− µϕ3,23,(2.11)

σ32 = 2µ

[
ϕ1,3 −

µ

λ + µ
ϕ2 + x3F,3

]

,2

+ µϕ3,13,(2.12)

σ33 = 2µ

[
ϕ1,33 −

λ + 2µ

λ + µ
ϕ2,3 − cT + x3F,33

]
,(2.13)

σ11 = 2µ





ϕ1 + c

∞∫

x3

ωdx3 + x3F




,11

− λ

λ + µ
ϕ2,3 + ϕ3,12 − 2cT


 ,(2.14)

σ22 = 2µ





ϕ1 + c

∞∫

x3

ωdx3 + x3F




,22

− λ

λ + µ
ϕ2,3 − ϕ3,12 − 2cT


 ,(2.15)

σ12 = 2µ


ϕ1 + c

∞∫

x3

ωdx3 + x3F




,12

.(2.16)

3. Thermal rigid inclusion problem and its solution

Suppose that a homogeneous isotropic material occupies the entire space
except the region

(3.1) S = {(x1 = r cos θ, x2 = r sin θ, x3 = 0) :

0 ≤ r =
√

x2
1 + x2

2 ≤ a, 0 ≤ θ < 2π},

where there is a rigid sheet-like inclusion (anticrack). The inclusion obstructs
the heat flow as shown in Fig. 1.

For the present thermal problem governed by the Laplace equation (2.2), we
have the boundary conditions at infinity

(3.2) q1 = q2 = 0, q3 = −kT,3 → −q0 as
√

x2
1 + x2

2 + x2
3 → ∞

and some conditions involving the thermal conducting properties of the rigid
inclusion.

Starting with the superposition principle, the total temperature field T can
be represented in the form

(3.3) T =
0
T +T̃ .
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Fig. 1. A rigid penny-shaped inclusion in an elastic space under thermal flow.

Here
0
T is the temperature field corresponding to a perpendicular homogeneous

flow of uniform heat at infinity with the positive constant gradient q0 (satisfying
Eqs. (3.2)) and T̃ is the disturbed temperature due to the presence of a rigid
inclusion.

It is readily found that

(3.4)
0
T (x1, x2, x3) =

q0

k
x3.

It suffices to consider only the perturbed thermal problem, for which we have
to formulate the appropriate boundary conditions. At this stage, the general
model relations for thin heat-conducting elastic inclusions, devised by Kit and
Khai [2], are utilized:

∆〈T̃ 〉+ k

h(x1, x2)kin

[
(T̃,3)

+−(T̃,3)
−
]

= − k−kin

h(x1, x2)kin

[
(

0
T,3)

+−(
0

T,3)
−

]
,

∆[T̃ ]− 3

h2(x1, x2)
[T̃ ]+

3k

h(x1, x2)kin

[
(T̃,3)

+−(T̃,3)
−
]
−Λ(T̃ )(3.5)

= − 3(k−kin)

h(x1, x2)kin

[
(

0
T,3)

+ +(
0

T,3)
−

]
,
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in which ∆ and Λ stand for the differential operators given by

(3.6)

∆(·) = (·),11 + (·),22,

Λ(·) =
2h,1

h(x1, x2)
(·),1 +

2h,2

h(x1, x2)
(·),2 +

h∆(h) + (h,1)
2 + (h,2)

2

h2(x1, x2)

and kin is the thermal conductivity of the inclusion material, 2h(x1, x2) is the
thickness of the inclusion. Moreover, (f)± are the values of function f for x3 =
±h(x1, x2) and 〈T̃ 〉 = T̃+ + T̃−, [T̃ ] = T̃+ − T̃−.

For the present problem, consider a special case regarding the inclusion
of negligibly small thickness and with a low heat conductivity. By using in
Eqs. (3.5) the limits kin → 0 and h0 → 0 (where h(x1, x2) = h0χ(x1, x2)) such
that kin/h0 → const (> 0), we arrive at the following boundary conditions re-
lated to the anticrack S:

T̃,3(x1, x2, x3 = 0+) − T̃,3(x1, x2, x3 = 0−) = 0,(3.7)
[
T̃ (x1, x2, 0

+) − T̃ (x1, x2, 0
−)
]
− kR(x1, x2)T̃,3(x1, x2, 0

+) = q0R(x1, x2)(3.8)

with

(3.9) R(x1, x2) ≡
2h(x1, x2)

kin
=

2h0χ(x1, x2)

kin
,

interpreted as the thermal resistance of the inclusion. In addition, the disturbed
temperature at a sufficiently large distance away from the inclusion must vanish,
i.e.

(3.10) T̃ (r, x3) → 0 as
√

r2 + x2
3 → ∞.

The conditions (3.7) and (3.10) suggest to assume the sought harmonic func-
tion T̃ as a Newtonian potential of a double layer of intensity γ(x1, x2), dis-
tributed over the inclusion region S (Kellogg [27]). In view of Eq. (2.5), this
function may be written as

(3.11) T̃ = ω̃,3, ω̃(x1, x2, x3) = − 1

2π

∫∫

S

γ(ξ1, ξ2)dξ1dξ2√
(x1 − ξ1)2 + (x2 − ξ2)2 + x2

3

and the remaining condition (3.8) yields the integro-differential singular equation
of Newton’s potential type for the unknown density γ

(3.12) 2γ(x1, x2) −
kR(x1, x2)

2π
∆

∫∫

S

γ(ξ1, ξ2)dξ1dξ2√
(x1 − ξ1)2 + (x2 − ξ2)2

= q0R(x1, x2).
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The solution of this equation involves serious mathematical difficulties (see
Khai [28] for a full account). However, assuming next that

(3.13) R(x1, x2) = R(r) = R0

√
a2 − r2, R0 > 0,

we obtain an analytical solution to Eq. (3.12) in the form

(3.14) γ(x1, x2) = γ(r) =
2qres

πk

√
a2 − r2,

provided

(3.15) qres = δresq0 ≤ q0, δres =
1

1 + 4/πkR0
≤ 1,

remembering that [2]

(3.16) ∆

∫∫

S

√
a2 − ξ2

1 − ξ2
2 dξ1dξ2√

(x1 − ξ1)2 + (x2 − ξ2)2
= −π2, (x1, x2) ∈ S.

Inserting Eq. (3.14) into Eq. (3.11) and using the exact results expressed
in terms of elementary functions for the thermal potential ω̃ and its partial
derivatives obtained by Fabrikant [5], it is found that for x3 ≥ 0

ω̃(x1, x2, x3) = ω̃(r, x3)(3.17)

= − qres

2πk

[
(2a2 + 2x2

3 − r2) sin−1 a

l2
− 2a2 − 3l21

a

√
l22 − a2

]
,

so the complete solution to the perturbed heat conduction problem, independent
of the angular coordinate θ, takes the form:

(3.18) T̃ (x1, x2, x3) = ω̃,3 =





−2qres

πk

(
x3 sin−1 a

l2
−
√

a2 − l21

)
, x3 ≥ 0,

−2qres

πk

(
x3 sin−1 a

l2
+
√

a2 − l21

)
, x3 < 0,

and

(3.19) q̃i(x1, x2, x3) = −kT̃,i = −kω̃,3i

=





2qresa
2

π

xi

√
a2 − l21

l22(l
2
2 − l21)

, i = 1, 2,

2qres

π

(
sin−1 a

l2
− a

√
l22 − a2

l22 − l21

)
, i = 3,
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with Fabrikant’s notations

(3.20)
l1 ≡ l1(a, r, x3) =

1

2

[√
(r + a)2 + x2

3 −
√

(r − a)2 + x2
3

]
,

l2 ≡ l2(a, r, x3) =
1

2

[√
(r + a)2 + x2

3 +
√

(r − a)2 + x2
3

]

and their relevant properties

(3.21) l1|x3=0 = min(a, r), l2|x3=0 = max(a, r).

In particular, from the above expressions and in view of Eqs. (3.3) and (3.4),
we find on the inclusion plane

(3.22) T (r, 0±) =





±2qres

πk

√
a2 − r2, 0 ≤ r ≤ a,

0, r > a,

which is in agreement with the property of the single layer potential ω̃ [27], and

qr(r, 0
±) = −k

∂T (r, 0±)

∂r
=





±2qres

π

r√
a2 − r2

, 0 ≤ r < a,

0, r > a,

(3.23) q3(r, 0
±) = −kT,3(r, 0

±)

=





qres − q0 = −(1 − δres)q0, 0 ≤ r < a,

2qres

π

(
sin−1 a

r
− a√

r2 − a2

)
− q0, r > a.

A glance at these formulas shows that the rigid inclusion acts as an obstruc-
tion to the heat flow, producing thermal local disturbances such as a jump of
the temperature and an infinite increase of heat flux q3 in the vicinity of the
inclusion contour. Moreover, from Eq. (3.15) it follows that the heat transfer
ratio δres = qres/q0 as a function of R0 ≥ 0 increases from 0 to 1, and by letting
R0 → ∞ we get δres → 1, so qres → q0, obtaining the solution corresponding to
the limit case of thermally insulated rigid circular disc-inclusion (cf. [25]).

4. Thermal stress problem and its solution

Now we pass to the associated thermoelastic rigid inclusion problem. It is
divided into two parts: the first one corresponding to the simple flow of heat with

the temperature distribution
0
T given by Eq. (3.4) and the second, non-trivial

part connected with determining of the induced state of stress and deformation
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resulting from the disturbed temperature T̃ . Consequently (see (3.3)), we can
write

(4.1) ui =
0
ui +ũi, σij =

0
σij + σ̃ij ,

where the components attributed to zero describe the principal state of inclusion-
free space, and the components having tilde represent the perturbations due to
the anticrack. The global mechanical boundary conditions resulting from the
fact that the inclusion is perfectly rigid and due to the given thermal loading,
may experience only a small vertical rigid-body translation ε along the X3-axis
(Podil’chuk [24]), are

(4.2) u1 = u2 = 0, u3 = ε, (x1, x2, x3 = 0±) ∈ S,

where the parameter ε must be determined from the equilibrium condition that
the net resultant force acting on the rigid inclusion vanishes, i.e.,

(4.3)
∫∫

S

[
σ33(x1, x2, 0

+) − σ33(x1, x2, 0
−)
]
dx1dx2 = 0.

Solution of the basic Equations (2.3)–(2.4) with the given temperature
0
T and

the stress-free conditions at infinity, yields the results:

0
u1(x1, x2, x3) =

q0α

k
x1x3,

0
u2(x1, x2, x3) =

q0α

k
x2x3,

0
u3(x1, x2, x3) =

q0α

2k
(x2

3 − x2
1 − x2

2),(4.4)

0
σij(x1, x2, x3) = 0.

Next, our attention is focused on the thermoelastic perturbed problem
marked by tilde, its solution tending to zero at infinity and satisfying, in view
of Eqs. (4.4), (4.1) and (4.2), the corrective displacement conditions related to
the anticrack S

(4.5) ũ1(r, 0
±) = ũ2(r, 0

±) = 0, ũ3(r, 0
±) =

q0α

2k
r2 + ε, 0 ≤ r ≤ a.

Proceeding as in the case of 3-D rigid inclusions problems involving exter-
nal loadings (see [10, 16]), we shall seek the solution in a potential form tak-
ing into account the anti-symmetry of the temperature and of the deformation
state. As a result, the problem can be posed as a mixed boundary-value problem
related to the upper half-space x3 ≥ 0 subjected to the following mixed boundary
conditions:
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ũ1(r, 0
+) = ũ2(r, 0

+) = 0, 0 ≤ r ≤ a,(4.6)

ũ3(r, 0
+) =

q0α

2k
r2 + ε, 0 ≤ r ≤ a,(4.7)

σ̃33(r, 0
+) = 0, r > a,(4.8)

ũi = O

(
1√

r2 + x2
3

)
as

√
r2 + x2

3 → ∞.(4.9)

Moreover, having obtained the distribution of the normal stress in the re-
gion S, the unknown rigid translation ε can be calculated from Eq. (4.3).

We now proceed to construct the potentials in the general solution (2.6)–(2.9)
with the knowledge of the thermal potential ω̃ (see Eq. (3.17)) well suited to the
above boundary conditions. It is expedient to make the assumptions:

(4.10) ϕ1 = −c

∞∫

x3

ω̃dx3, ϕ2 = −f, ϕ3 = 0,

which are substituted in Eqs. (2.6)–(2.16) to give the following displacement and
stress expressions containing the harmonic function f :

ũ1 = x3(−f,1 + cω̃,1), ũ2 = x3(−f,2 + c ω̃,2),(4.11)

ũ3 =
λ + 3µ

λ + µ
f + cω̃ + x3(−f,3 + T̃ ),(4.12)

σ̃31 = 2µ

[
µ

λ + µ
f,1 + c ω̃,1 + x3(−f,31 + T̃,1)

]
,(4.13)

σ̃32 = 2µ

[
µ

λ + µ
f,2 + c ω̃,2 + x3(−f,32 + T̃,2)

]
,(4.14)

σ̃33 = 2µ

[
λ + 2µ

λ + µ
f,3 + x3(−f,33 + T̃,3)

]
,(4.15)

σ̃11 = 2µ

[
λ

λ + µ
f,3 − 2cT̃ + x3(−f,11 + c ω̃,11)

]
,(4.16)

σ̃22 = 2µ

[
λ

λ + µ
f,3 − 2cT̃ + x3(−f,22 + c ω̃,22)

]
,(4.17)

σ̃12 = 2µx3(−f,12 + c ω̃,12).(4.18)

Note that on the boundary x3 = 0+, this representation automatically satis-
fies the condition (4.6). The remaining conditions (4.7) and (4.8), when expressed
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in terms of the potential function f by using Eqs. (4.12) and (4.15), become

f(r, x3 = 0+) =
λ + µ

λ + 3µ
f0(r), 0 ≤ r ≤ a,(4.19)

f,3(r, x3 = 0+) = 0, r > a,(4.20)

where the right-hand side in Eq. (4.19) is given by

(4.21) f0(r) =
q0α

2k
r2 + ε − c ω̃(r, 0+).

It is noteworthy here that only the values of ω̃(r, 0+) from the perturbed temper-
ature problem are required. Making use of Eqs. (3.11), (3.14), (3.15) and (3.17),
it is found that

(4.22) ω̃(r, 0+) = − qres

π2k

∫∫

S

√
a2 − ξ2

1 − ξ2
2 dξ1dξ2√

(x1 − ξ1)2 + (x2 − ξ2)2
=

qres

4k
(2a2 − r2).

Thus, the inclusion-perturbed problem reduces to the classical problem of the
potential theory (Sneddon [29]) of determining the harmonic function f in the
half-space x3 ≥ 0, which vanishes at infinity and satisfies the mixed boundary
conditions:

(4.23)
f(r, x3 = 0+) =

λ + µ

λ + 3µ
f0(r), 0 ≤ r ≤ a,

f,3(r, x3 = 0+) = 0, r > a,

with (see Eqs. (4.21) and (4.22))

(4.24) f0(x1, x2) = f0(r) =
q0α

2k
r2 + ε +

qresβ

8k(λ + 2µ)
(2a2 − r2).

Comparing this relation with the corresponding relation (59) in [25] obtained
for the case of non-conducting penny-shaped rigid inclusion, we conclude that
they differ solely by the factor qres. In what follows, the results of the paper [25]
will be utilized.

The solution to Eqs. (4.23) in the potential theory is represented by the
Newton potential of a simple layer distributed over the region S as

(4.25) f(x1, x2, x3) = − 1

4π

λ + µ

µ(λ + 2µ)

∫∫

S

σ(ξ1, ξ2)dξ1dξ2√
(x1 − ξ1)2 + (x2 − ξ2)2 + x2

3

,

where the unknown layer density σ can be identified as the normal stress, namely

(4.26) σ(x1, x2) = σ̃33(x1, x2, x3 = 0+), (x1, x2) ∈ S.
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From the well-known properties of this potential, the second condition in
Eqs. (4.23) is satisfied, and satisfaction of the first one yields the governing
two-dimensional singular integral equation (similar to that arising in classical
contact mechanics, see [4, 5])

(4.27) H

∫∫

S

σ(ξ1, ξ2)dξ1dξ2√
(x1 − ξ1)2 + (x2 − ξ2)2

= −f0(x1, x2), (x1, x2) ∈ S,

with f0 given by Eq. (4.24), and a constant H is defined as

(4.28) H =
λ + 3µ

4πµ(λ + 2µ)
.

A closed-form solution to the above integral equation is obtained by using
the theorems of Dyson and Galin (full details are given in Rahman [16]). It is
of the following form:

(4.29) σ(r) =
c0 − c2r

2

Hπ2
√

a2 − r2
, 0 ≤ r < a,

where c0 and c2 are the unknown constants to be determined.
Substituting Eq. (4.29) into Eq. (4.27) with the right-hand side of (4.24) and

equating the terms of the left and right-hand sides, we obtain a set of linear
algebraic equations solving them we obtain the following expressions for the
unknown coefficients (see [25] for more details):

c0 =
c2a

2

2
− βqresa

2

4k(λ + 2µ)
− ε,(4.30)

c2 =
2q0α − qresc

k
=

q0δresα

k

[
λ + 6µ

2(λ + 2µ)
+

8

πkR0

]
.(4.31)

Additionally, Eqs. (4.3) with (4.26) and (4.29) yield

(4.32) c0 =
2

3
a2c2

and from Eq. (4.30), the rigid vertical displacement ε is found to be

(4.33) ε = −q0αa2

3k
− qresβa2

6k(λ + 2µ)
= −a2(q0α + qresc)

3k
.

The main harmonic function (4.25) giving a complete solution of the problem
expressed by elementary functions is (see the appendices in Fabrikant [4, 5]
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for details and his notations (3.20))

(4.34) f(r, x3) = − c2(λ + µ)

3π(λ + 3µ)

[(
a2 + 3x2

3 −
3

2
r2

)
sin−1 a

l2

−3(2a2 − 3l21)

2a

√
l22 − a2

]
,

where use has been made of Eqs. (4.26), (4.29) and (4.32), together with (4.31).
The full-space stress-displacement field can then be obtained by superim-

posing the two parts, as given in Eq. (4.1). All the derivatives of the governing
potentials ω̃ and f that enter the formulas in Eqs. (4.11)–(4.18) are derived
by using Fabrikant’s results (see Appendix A in [25]). To save the space of the
present paper, the results are omitted. In order to investigate the singular be-
havior of the stress field near the inclusion edge, however, the axially symmetric
solution on the inclusion plane x3 = 0± is presented below:

u1(r, 0
±) = u2(r, 0

±) = 0, 0 ≤ r < ∞,

(4.35)

u3(r, 0
±) =





ε, 0 ≤ r ≤ a,

2

π

(
ε+

q0α

2k
r2
)

sin−1 a

r

− q0aα

πk

√
r2−a2− q0α

2k
r2, r > a,

σ33(r, 0
±) =





±β3q0

π

2a2−3r2

√
a2−r2

, 0 ≤ r < a,

0, r > a,

(4.36)

σ3r(r, 0
±) =





β̃q0r, 0 ≤ r ≤ a,

2q0

π

(
β̃r sin−1 a

r
− µ

4(λ+2µ)

β3a
3

r
√

r2−a2

− β̃a
√

r2−a2

r

)
, r > a,

(4.37)

σ12(r, 0
±) = σrθ(r, 0

±) = σ3θ(r, 0
±) = 0, 0 ≤ r < ∞,(4.38)

σ11(r, 0
±) = σ22(r, 0

±) = σrr(r, 0
±) = σθθ(r, 0

±)(4.39)

=





∓2q0

π

[
λβ3a

2

2(λ+2µ)
· 1√

a2−r2
+β∗

√
a2−r2

]
, 0 ≤ r < a,

0, r > a,

where the following notations are used:
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β3 =
4µαδres(λ + 2µ)

3k(λ + 3µ)

[
λ + 6µ

2(λ + 2µ)
+

8

πkR0

]
,(4.40)

β̃ =
αµ

2k(λ + 3µ)
[4µ + δres(3λ + 2µ)],(4.41)

β∗ =
2αµ

k(λ + 3µ)

[
3δres(3λ + 2µ)

2
− 2λ

]
.(4.42)

One can readily observe from the above solution that:
1. All components of the stress tensor (excluding σ12) are singular near the

inclusion front r = a (strictly, singularities in σ33, σ11, σ22 occur at the
points on the edge of the disc where r = a−, and in σ3r – at the points
exterior to the disc where r = a+), with the familiar inverse square-root
singularity in classical fracture mechanics;

2. The normal thermal stress σ33 suffers a jump across the anticrack surfaces
and changes the sign at r =

√
2/3a;

3. The results for the limiting case of thermally insulated rigid inclusion are
obtained by letting R0 → ∞, δres → 1 in Eqs. (4.40)–(4.42); they are
precisely the same as those obtained in the companion paper [25].

In view of the linear fracture mechanics, it indicates that there are two major
mechanisms controlling the material cracking around the inclusion front:

• Mode II (edge-sliding) deformation characterized by the stress intensity
factor

(4.43) KII = lim
r→a+

√
2π(r − a)σ3r(r, 0) = − q0µβ3a

√
a

2(λ + 2µ)
√

π
,

• separation of the material from the inclusion described by the stress sin-
gularity coefficients

(4.44) S±
I = lim

r→a−

√
2π(a − r)σ33(r, 0

±) = ∓β3q0a
√

a√
π

.

These parameters may be used in a suitable criterion for initiating the fractures
near the edge of the rigid inclusion (see Rahman [16]).

Finally, by comparison with the thermally insulated rigid inclusion, we see
that the consideration of certain conductivity leads to quantitative changes in
the thermomechanical behavior characterized by the factor δres (see (3.15)).
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