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1. Introduction

This paper is concerned with the deformation of thin cylindrical shells made
from an elastic, anisotropic and inhomogeneous material.

We employ the theory of Cosserat surfaces to describe the mechanics of thin
elastic shells. The Reader is referred to the paper of Naghdi [1] for the founda-
tions of this theory and to the monograph of Rubin [2] for a modern presentation
of the Cosserat theories, together with several applications. A Cosserat shell is
a two-dimensional continuum, endowed with a single deformable vector (called
director) assigned to each of its points. Thus, the two-dimensional continuum can
describe the deformation of the middle surface of a three-dimensional shell, while
the variations of the director field give information about the three-dimensional
effects that occur in the mechanics of thin shells.

The problem of Saint–Venant has been investigated in many articles within
the classical theories of shells (see e.g. [3–5]). In the context of the Cosserat
theory, this problem has been discussed by Ericksen [6]. We mention that, for
isotropic and homogeneous Cosserat shells, the torsion problem has been solved
previously by Wenner [7], while the solution of the relaxed Saint–Venant’s
problem has been presented in [8].
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In this work, we consider anisotropic and inhomogeneous Cosserat shells.
The constitutive coefficients are assumed to be independent of the axial coor-
dinate. We study the static deformation of cylindrical surfaces with arbitrary
(open or closed) cross-sections, under the action of assigned body loads and
external forces and couples distributed over the edges. On the end edges, the
resultant forces and resultant moments are given. Along the lateral edges (for
open cylindrical shells), we consider some tractions and couples, which are pre-
scribed pointwise. We give a solution to this general problem in the case when
the assigned body loads and the lateral loading are polynomials in the axial co-
ordinate. To this aim, we employ the method established by Ieşan [9] for the
treatment of Almansi’s problem in three-dimensional elasticity.

We begin this paper by presenting a summary of the basic equations for the
linear theory of Cosserat shells. Then, we confine our attention to cylindrical
shells and formulate the problems of Almansi and Michell. We mention that
these problems have been extensively studied in the three-dimensional elasticity,
for anisotropic materials (see e.g., [10, 11]). The solution of Almansi’s problem
is based on some results concerning Saint–Venant’s problem established in [12],
which are summarized in Sec. 2.3 and in the Appendix. In Sec. 3 we present
a method to construct the solutions to the problems of Almansi and Michell for
anisotropic Cosserat shells. These results are applicable for any specific geome-
try of the cross-section and for various types of material symmetry, to determine
the static deformation of loaded cylindrical shells. We investigate in Sec. 4 the
deformation of an orthotropic and homogeneous circular cylindrical tube subject
to a hydrostatic pressure applied to its major surfaces, which depends linearly
on the axial coordinate. Finally, we solve in Sec. 5 the Almansi–Michell prob-
lem for Cosserat plates. The results are in very good agreement with the ex-
act solutions for three-dimensional plates made of orthotropic and homogeneous
materials.

2. Preliminaries

2.1. Basic equations for the linear theory

In this section we summarize the basic equations of equilibrium for the lin-
ear theory of Cosserat shells. We denote by S the reference configuration of
a Cosserat surface and by θα (α = 1, 2) – a curvilinear material coordinate sys-
tem on S. The static deformation of the Cosserat shell is defined by the position
vector r(θ1, θ2) and the deformable director d(θ1, θ2), assigned to every point of
the surface.

The reference configuration S, which is assumed to coincide with the ini-
tial configuration, is characterized by the the position vector R(θ1, θ2) and the
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director field D(θ1, θ2). We introduce the following fields:

(2.1) Aα =
∂R

∂θα
, A3 =

A1 ×A2

|A1 ×A2|
, Aαβ = Aα · Aβ , Bαβ = A3 · Aα,β ,

which represent the covariant base vectors along the θα-curves, the unit normal
to S and the first and second fundamental forms of the surface S, respectively.
Throughout this paper, a subscript comma stands for partial differentiation
with respect to the coordinates (θα), while a subscript vertical bar denotes the
covariant differentiation with respect to the metric tensor Aαβ . Also, we make
use of the summation convention over repeated indices and assume that the
Latin indices take the values {1, 2, 3}, while the Greek indices are confined to
the range {1, 2}.

In the linear theory, we introduce the infinitesimal displacement u and direc-
tor displacement δ by

(2.2) u = r − R, δ = d −D.

The strain measures eαβ , γi and ρiα are defined by

(2.3)
eαβ =

1

2
(ûα|β + ûβ|α) − Bαβû3, γα = δ̂α + û3,α + Bβ

αûβ ,

γ3 = δ̂3, ρβα = δ̂β|α − Bγ
αûγ|β + Bγ

αBβγ û3, ρ3α = δ̂3,α,

where ûi = u · Ai and δ̂i = δ · Ai. We consider the case of shells with constant
thickness in the reference configuration, which is characterized by the relation
D = A3 (cf. [1], page 447).

For an arbitrary curve c on S (which may also be the boundary ∂S) we denote
by ν the (outward) unit normal to c, tangent to the surface S. Let N and M

denote the force vector and the director force vector (also called director couple)
acting per unit length of c, and να = ν ·Aα. Then, we have the decompositions
of Cauchy type

(2.4) N = (NαβAβ + V αA3)να, M = (MαiAi)να.

Let us introduce the surface tensor defined by N ′αβ = Nαβ + Bβ
γ Mγα. For

anisotropic and inhomogeneous shells, the constitutive equations have the form

(2.5)

W =
1

2
Cαβγδ

(1) eαβeγδ +
1

2
Ciαjβ

(2) ρiαρjβ + Cαβiγ
(3) eαβρiγ + Cαβi

(1) eαβγi

+ Cijα
(2) γiρjα +

1

2
Cij

(1)γiγj ,

N ′αβ =
1

2

(
∂W
∂eαβ

+
∂W
∂eβα

)
, V i =

∂W
∂γi

, Mαi =
∂W
∂ρiα

,
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where W represents the strain energy density per unit area of S. The function
W = W(eαβ , γi, ρiα) is a quadratic form of its arguments, with coefficients Cα...

(n)
satisfying the following symmetry conditions:

Cαβγδ
(1) = Cβαγδ

(1) = Cγδαβ
(1) , Ciαjβ

(2) = Cjβiα
(2) ,

Cαβiγ
(3) = Cβαiγ

(3) , Cαβi
(1) = Cβαi

(1) , Cij
(1) =Cji

(1).

The equations of equilibrium for Cosserat shells can be written as

(2.6) Nαβ
|α−Bβ

αV α+fβ =0, V α
|α+BαβNαβ+f3 =0, Mαi

|α−V i+li =0,

where f = f iAi and l = liAi represent the assigned force and assigned director
force, respectively, measured per unit area of S.

For any displacement field v = (u,δ), the strain energy of the Cosserat shell
is

(2.7) U(v) =

∫

S

W
(
eαβ(v), γi(v), ρiα(v)

)
da.

Also, we consider the energy norm ‖ · ‖ and the scalar product 〈·, ·〉 given by

(2.8)

‖v‖2 = 2U(v) = 〈v, v〉,

〈v, ṽ〉 =

∫

S

[
N ′αβ(v)eαβ(ṽ) + V i(v)γi(ṽ) + Mαi(v)ρiα(ṽ)

]
da.

2.2. Cylindrical shells

In this section we confine our attention to cylindrical Cosserat shells and
write the relevant field equations for this particular geometry of the surface.

We assume that the reference configuration S of the Cosserat shell is a cylin-
drical (open or closed) surface with arbitrary cross-section, with generators par-
allel to the axis Ox3 of the rectangular Cartesian coordinate frame Ox1x2x3 (see
Fig. 1).

The cylindrical surface S is situated between the planes x3 = 0 and x3 = z̄,
and we denote by Cz the cross-section boundary curve which belongs to the
plane x3 = z, z ∈ [0, z̄]. Let us choose the surface curvilinear coordinates θ1 = s,
θ2 = z on S, where s ∈ [0, s̄] represents the arc parameter along the curves Cz

and z = x3, z ∈ [0, z̄]. We denote by ei the unit vectors along the Oxi axes. The
parametric equations of S are given by

(2.9) R = R(s, z) = xα(s)eα + z e3, D = D(s) = ǫαβx′
β(s)eα,

where the functions xα(s) are assumed to be of class C3[0, s̄]. We denote by (·)′ =
d
ds(·) and ǫαβ is the two-dimensional alternator (ǫ12 = −ǫ21 = 1, ǫ11 = ǫ22 = 0).
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Fig. 1. Reference configuration of the cylindrical shell.

The end edge curves are C0 and Cz̄. For closed shells, the functions xα(s) (and
their derivatives) satisfy the continuity conditions at s = 0 and s = s̄. For open
shells, we denote by L1 and L2 the lateral edges characterized by s = 0 and
s = s̄, respectively. We remark that, for the surface S given by (2.9), we have

(2.10)
A1 = τ(s) = x′

α(s)eα, A2 = e3, A3 = n(s) = ǫαβx′
β(s)eα,

Aαβ = δαβ, B11 = −r−1, B12 = B21 = B22 = 0,

where τ and n represent the unit tangent and normal vectors to Cz, r is the
curvature radius of Cz and δαβ is the Kronecker symbol. Thus, the physical
components of any tensor on the cylindrical surface coincide with the covariant
and with the contravariant components of the same tensor. Taking into account
that θ1 = s, θ2 = z and A3 = n, in what follows we shall employ the subscripts s,
z and n instead of the indices 1, 2 and 3, respectively, for any tensor components.
In particular, we can decompose any vector v as v = vsτ+vze3+vnn. Using this
notation convention together with (2.10), the geometrical relations (2.3) become

(2.11)

ess =
∂us

∂s
+

un

r
, esz = ezs =

1

2

(
∂us

∂z
+

∂uz

∂s

)
, ezz =

∂uz

∂z
, γn = δn,

γs = δs −
us

r
+

∂un

∂s
, γz = δz +

∂un

∂z
, ρss =

∂δs

∂s
+

1

r

∂us

∂s
+

un

r2
,

ρzz =
∂δz

∂z
, ρsz =

∂δs

∂z
, ρzs =

∂δz

∂s
+

1

r

∂us

∂z
, ρns =

∂δn

∂s
, ρnz =

∂δn

∂z
.
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The equations of equilibrium (2.6) can be written in the condensed form

(2.12) A(v) = −F ,

where F = (fs, fz, fn, ls, lz, ln) and we have denoted by A the linear operator de-
fined on the set of displacement fields v = (u,δ), by A(v) =

(
A1(v), . . . ,A6(v)

)

with

(2.13)

A1(v) =
∂

∂s
Nss(v) +

∂

∂z
Nzs(v) +

1

r
Vs(v),

A2(v) =
∂

∂s
Nsz(v) +

∂

∂z
Nzz(v),

A3(v) =
∂

∂s
Vs(v) +

∂

∂z
Vz(v) − 1

r
Nss(v),

A4(v) =
∂

∂s
Mss(v) +

∂

∂z
Mzs(v) − Vs(v),

A5(v) =
∂

∂s
Msz(v) +

∂

∂z
Mzz(v) − Vz(v),

A6(v) =
∂

∂s
Msn(v) +

∂

∂z
Mzn(v) − Vn(v).

We investigate the deformation of cylindrical shells loaded by assigned body
loads f and l, by external forces and couples on the lateral edges (for open
shells) and by resultant forces and moments acting on the end edges C0, Cz̄. The
boundary conditions on lateral edges (in the case of open cylindrical shells) are

(2.14) N = N(γ), M = M(γ) on Lγ (γ = 1, 2),

where N(γ) and M(γ) are prescribed vector fields.
For simplicity, we use the notation s1 = 0, s2 = s̄. In the case of closed cylin-

drical shells, we consider the following continuity conditions for the displacement
field v = (u,δ) at the end points of the interval [s1, s2]:

(2.15) v(s1, z) = v(s2, z),
∂v

∂s
(s1, z) =

∂v

∂s
(s2, z),

∂2v

∂s2
(s1, z) =

∂2v

∂s2
(s2, z),

where z ∈ [0, z̄].
Adopting the usual approach of the relaxed Saint–Venant’s problem, we as-

sume that the resultant forces and moments acting on the end edges are pre-
scribed. For any displacement field v = (u,δ), we define the vectors

(2.16) R(v) =

∫

C0

N(v) dl, M(v) =

∫

C0

[R ×N(v) + D ×M(v)]dl,
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which represent the resultant force and the resultant moment about O of the
external forces and director couples acting on the end edge C0, corresponding
to the displacement field v. Relations (2.16) can be expressed using the tensor
components

(2.17)

Ri(v) ei = −
∫

C0

[
x ′

αNzs(v) + ǫαβx′
βVz(v)

]
dl eα −

∫

C0

Nzz(v)dl e3,

Mi(v) ei =

∫

C0

[ǫβαxβNzz(v)+ x ′
αMzz(v)]dleα

+

∫

C0

[ǫαβx ′
αxβNzs(v)+ xαx ′

αVz(v)−Mzs(v)]dle3.

The boundary conditions on the end edge C0 are

(2.18) R(v) = R
0, M(v) = M

0.

From the conditions of equilibrium for the shell and the relations (2.14) and
(2.18), we can readily deduce the boundary conditions on the end edge Cz̄.

To resume, our problem consists in determining the equilibrium of a cylindri-
cal shell subject to the assigned body loads f , l, the external loads on the lateral
edges (2.14) (for open cylindrical shells), and the resultant force and resultant
moment (2.18) on C0.

Let us denote the problem formulated above by P (R0,M0, f , l,N(γ),M(γ)).
We mention that in the case when f = l = N(γ) = M(γ) = 0, this prob-
lem is the well-known relaxed Saint–Venant’s problem for Cosserat shells. On
the other hand, if the prescribed loads f , l, N(γ) and M(γ) are independent of
the axial coordinate z, then P (R0,M0, f , l,N(γ),M(γ)) is called the Almansi–
Michell problem, by analogy with the corresponding situation from the three-
dimensional theory of elasticity. Also, if f , l, N(γ) and M(γ) are polynomials
in the axial coordinate z, then P (R0,M0, f , l,N(γ),M(γ)) is known as the Al-
mansi problem. In Sec. 3 we shall give a solution to the problems of Almansi
and Michell.

In the remainder of this paper, we consider anisotropic and inhomogeneous
Cosserat shells, with constitutive coefficients which are independent of the axial
coordinate z. Thus, we assume that the coefficients Cα...

(n) of the strain energy
density W in (2.5) are functions of the circumferential coordinate s only.

We denote by D(f , l,N(γ),M(γ)) the set of all displacement fields
v = (u,δ) ∈ C1(S̄) ∩ C2(S) which satisfy the equations of equilibrium (2.12),
together with the conditions on the lateral edges (2.14) for open shells,
and the continuity conditions (2.15) for closed shells. Then, the problem
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P (R0,M0, f , l,N(γ),M(γ)) can be formulated in the following form: find
a displacement field v ∈ D(f , l,N(γ),M(γ)) which satisfies the end edge con-
ditions (2.18).

2.3. Some results concerning Saint–Venant’s problem

In this section, we summarize some results concerning the relaxed Saint–
Venant’s problem for anisotropic cylindrical shells which have been obtained
previously in [12]. The results and the notations presented in this section will be
useful in the subsequent considerations.

The relaxed Saint–Venant’s problem is a particular situation of the problem
P (R0,M0, f , l,N(γ),M(γ)), in which we have

f = l = 0, N(γ) = M(γ) = 0, γ = 1, 2.

We shall denote by P (R0,M0) the relaxed Saint–Venant’s problem, and by
K(R0,M0) the set of all solutions to this problem. Also, we shall use the
notation D0 = D(0,0,0,0). We observe that P (R0,M0) can be decomposed
into two problems:

(P1): the extension-bending-torsion problem, characterized by R0
α = 0,

(P2): the flexure problem, characterized by R0
3 = M0

i = 0.

We denote by KI(R0
3,M0

1,M0
2,M0

3) and KII(R0
1,R0

2) the sets of all solutions
v = (u,δ) to the problems (P1) and (P2), respectively.

In [12], we have determined an exact solution of the extension-bending-
torsion problem (P1) expressed as a linear combination of four displacement
fields v(1), v(2), v(3) and v(4). These displacement fields v(k) are known and their
expressions are given in the Appendix. For any constants ak, k = 1, 2, 3, 4, we
denote by â the four-dimensional vector â = (a1, a2, a3, a4) and let v{â} be the
displacement field

v{â} = a1v
(1) + a2v

(2) + a3v
(3) + a4v

(4).

According to [12], the displacement field v{â} has the following properties:
(i) ∂v{â}/∂x3 is a rigid displacement field; (ii) v{â} satisfies the equations of
equilibrium for zero body loads and the boundary conditions on the lateral edges
for zero external loads, i.e. v{â} ∈ D0; and (iii) the resultant force and resultant
moment corresponding to the field v{â} are given by

(2.19)

R (v{â}) = −
( 4∑

k=1

D3kak

)
e3,

M (v{â}) = ǫβα

( 4∑

k=1

Dβkak

)
eα −

( 4∑

k=1

D4kak

)
e3,
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where the coefficients Dkr are defined by

(2.20) Dkr =
1

z̄
〈v(k), v(r)〉, k, r ∈ {1, 2, 3, 4}.

We have det
(
Dkr

)
4×4

6= 0. The solution of the relaxed Saint–Venant’s problem
is presented by the following result.

Theorem 1. (i) The extension-bending-torsion problem (P1) for cylindrical

Cosserat shells admits a solution v0 ∈ KI(R0
3,M0

1,M0
2,M0

3) such that
∂v0

∂x3
is a

rigid displacement field. This solution is given by

(2.21) v0 = v{â},

where the constants ak are determined by the system of equations

(2.22)
( 4∑

r=1

Dkr ar

)

k=1,...,4

=
(
M0

2,−M0
1,−R0

3,−M0
3

)
.

(ii) The flexure problem (P2) admits a solution vF ∈ KII(R0
1,R0

2) of the form

(2.23) vF =

x3∫

0

v{b̂} dx3 + v{ĉ} + w(s),

where b̂ = (b1, b2, b3, b4), ĉ = (c1, c2, c3, c4) are constants and w(s) is a displace-

ment field which depends only on s. For this solution, the constants bk are given

by

(2.24)
( 4∑

r=1

Dkr br

)

k=1,...,4

=
(
−R0

1,−R0
2, 0, 0

)
.

Theorem 1 has been proved in Sec. 5 (see Theorems 4 and 5) of [12]. We
mention that the constants ĉ and the field w(s) appearing in (2.23) have also
been determined in [12] and their expressions are recorded in the Appendix.

We mention that v0 and vF represent exact solutions to the linear equations
of problems (P1) and (P2). In this context, we notice that the solutions v0 and vF

possess properties which are analogous to those of the classical Saint–Venant’s
solutions in linear elasticity (see e.g., [9]).

3. Solution to the problems of Almansi and Michell

In this section, we shall give a solution to the Almansi and Michell problems
P (R0,M0, f , l,N(γ),M(γ)), as defined in Sec. 2.2. Thus, we study the defor-
mation of cylindrical shells subject to some assigned body loads f , l, and some
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external loads on the lateral edges N(γ),M(γ) (for open shells). The resultant
force R

0 and resultant moment M
0 act on the end edge C0.

Let us confine our attention first to the Almansi–Michell problem and assume
that the fields f , l,N(γ),M(γ) are independent of the axial coordinate x3. For this
case, the Theorem 1 of [12] admits the following consequence.

Corollary 2. Let v be a solution of the Almansi–Michell problem

P (R0,M0, f , l,N(γ),M(γ)). If
∂v

∂x3
∈ C1(S̄) ∩ C2(S), then

∂v

∂x3
is a solution

of the relaxed Saint–Venant’s problem P (G,Q) where

(3.1)

G =

∫

C0

fdl + (1 − ε)(N(1) + N(2)),

Q = ǫαβR0
βeα +

∫

C0

(R × f + D× l)dl

+(1 − ε)

2∑

γ=1

(R(γ)(0) × N(γ) + D(γ) ×M(γ)),

where we denote by

R(γ)(z) =
[
R(s, z)

]
s=sγ

, D(γ) =
[
D(s)

]
s=sγ

(γ = 1, 2),

and ε is a parameter which takes the values ε = 0 for open cylindrical shells and

ε = 1 for closed shells.

Suggested by Corollary 2 and Theorem 1, we search for the solution of the
Almansi–Michell problem in the form

(3.2) v =

x3∫

0

x3∫

0

v{b̂} dx3 dx3 +

x3∫

0

v{ĉ} dx3 + v{â} + x3 w(s) + w̃(s),

where â, b̂, ĉ are sets of constants to be determined, while w(s) and w̃(s) are
unknown displacement fields of class C2[0, s̄] which depend on s only. Indeed,
for the field (3.2) we have (modulo a rigid displacement)

(3.3)
∂v

∂x3
=

x3∫

0

v{b̂} dx3 + v{ĉ} + w(s),

and the Theorem 1 asserts that (3.3) can be a solution of Saint–Venant’s relaxed
problem for a suitable choice of b̂, ĉ and w(s). Let us prove the following result.
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Theorem 3. Denote by X the set of all displacement fields of the form (3.2).
Then, there exists a field v = (u,δ) ∈ X such that v is a solution of the Almansi–

Michell problem P (R0,M0, f , l,N(γ),M(γ)).

P r o o f. Assume that v is a displacement field of the form (3.2). We want
to determine the constants â, b̂, ĉ and the fields w(s), w̃(s) such that v will be
a solution. By virtue of Corollary 2 and (3.3), if v is a solution of the problem
P (R0,M0, f , l,N(γ),M(γ)), then we have

(3.4)

x3∫

0

v{b̂} dx3 + v{ĉ} + w(s) ∈ K(G,Q).

From (3.4) and Theorem 1 (see also the Appendix), we deduce that w(s) can
be determined as the solution of the cross-section plane problem, while the
constants b̂ and ĉ are given by

( 4∑

r=1

Dkr br

)

k=1,...,4

= (−Gα, 0, 0),

(3.5) ( 4∑

r=1

Dkr cr

)

k=1,...,4

=
(
ǫαβ

(
Qβ −Mβ(ŵ)

)
,R3(ŵ) − G3,M3(ŵ) − Q3

)
,

where ŵ is expressed by ŵ = w(s) +
∫ z
0 v{b̂} dz. In what follows, we assume that

b̂, ĉ and w(s) are known. Let us determine w̃(s) such that the field (3.2) satisfies
v ∈ D(f , l,N(γ),M(γ)). The equations of equilibrium (2.12) reduce to

(3.6) A(w̃) = −F −A
(
V {b̂, ĉ, w}

)
,

where we have denoted:

V {b̂, ĉ, w} =

z∫

0

z∫

0

v{b̂} dz dz +

z∫

0

v{ĉ} dz + z w(s).

Also, from (2.14) and (2.15) we obtain the boundary conditions:
(i) for open shells

(3.7)
N(w̃) = N(γ) −N

(
V {b̂, ĉ, w}

)
,

M(w̃) = M(γ) −M
(
V {b̂, ĉ, w}

)
on Lγ (γ = 1, 2);

(ii) for closed shells

(3.8) w̃(s1) = w̃(s2), w̃ ′(s1) = w̃ ′(s2).
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Since the operators A and ∂/∂z commute, we obtain that

∂

∂z
A
(
V {b̂, ĉ, w}

)
= A

( z∫

0

v{b̂} dz + v{ĉ} + w(s)

)
= 0,

by virtue of (3.4). Thus, the right-hand side of (3.6) is a function independent
of z. Similarly, we see that the right-hand sides of relations (3.7) do not de-
pend on z. Consequently, the Eqs. (3.6)–(3.8) constitute a cross-section plane
problem of the type (5.1)–(5.3) for the unknown field w̃(s) (see the Appendix).
We know that the problem (3.6)–(3.8) admits a solution w̃(s) if and only if the
conditions corresponding to (5.4) are satisfied. But, in our case the conditions
(5.4) reduce to

R

( z∫

0

v{b̂} dz + v{ĉ} + w(s)

)
= G, M3

( z∫

0

v{b̂} dz + v{ĉ} + w(s)

)
= Q3,

which hold true by virtue of (3.4). Hence, we can determine the field w̃(s) such
that v ∈ D(f , l,N(γ),M(γ)).

Finally, we find the constants â by imposing the end edge conditions
Ri(v) = R0

i , Mi(v) = M0
i . We notice that the relations Rα(v) = R0

α are verified
in view of (3.4). Then, the remaining conditions R3(v) = R0

3, Mi(v) = M0
i can

be put in the form of the algebraic system

(3.9)
( 4∑

r=1

Dkr ar

)

k=1,...,4

=
(
ǫαβ

(
M0

β−Mβ(w̄)
)
,R3(w̄)−R0

3,M3(w̄)−M0
3

)
,

where w̄ = V {b̂, ĉ, w}+ w̃. From (3.9) we determine â and the proof is complete.

Let us turn our attention now to the Almansi problem. As we have mentioned
above, in the case of the Almansi problem the external loads f , l,N(γ) and M(γ)

are polynomials in the axial coordinate, i.e. we have

(3.10)

f =
n∑

m=0

f(m)x
m
3 , l =

n∑

m=0

l(m)x
m
3 ,

N(γ) =
n∑

m=0

N
γ
(m)x

m
3 , M(γ) =

n∑

m=0

M
γ
(m)x

m
3 ,

where f(m) and l(m) are given functions which depend only on s, while N
γ
(m) and

M
γ
(m) are known constants (γ = 1, 2).
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In what follows, we shall present a method to construct the solution of the
Almansi problem P (R0,M0, f , l,N(γ),M(γ)).

Let us denote by (A0) the Almansi–Michell problem P
(
R

0,M0, f(0), l(0),
N

γ
(0),M

γ
(0)

)
and by (Am) the particular Almansi problem P

(
0,0, f(m)x

m
3 ,

l(m)x
m
3 ,N γ

(m)x
m
3 ,M γ

(m)x
m
3

)
, m = 1, . . . , n. Let Sm

(
f(m)x

m
3 , l(m)x

m
3 ,N γ

(m)x
m
3 ,

M
γ
(m)x

m
3

)
denote the set of all solutions to the problem P

(
0,0, f(m)x

m
3 , l(m)x

m
3 ,

N
γ
(m)x

m
3 ,M γ

(m)x
m
3

)
, m = 0, 1, . . . , n. By the linearity of the theory, it is sufficient

to know the solution of each problem (Am) in order to solve our initial Almansi
problem. We notice that we have already determined a solution of the problem
(A0) in Theorem 3.

To obtain a solution of the problems (Am) for all m ≥ 1, we employ the
method of induction. As our induction hypothesis, assume that we know a so-
lution of the problem (Am). This implies that we can find a displacement field
v∗ such that

(3.11) v∗ ∈ Sm

(
f(m+1)x

m
3 , l(m+1)x

m
3 ,N γ

(m+1)x
m
3 ,M γ

(m+1)x
m
3

)
.

Let us determine a solution v of the problem (Am+1). To this end, we shall use
the following result, which is a consequence of Theorem 1 from [12].

Lemma 4. Let v be a solution of the problem (Am+1) such that
∂v

∂x3
∈ C1(S̄)∩

C2(S). Then, we have

(3.12)
1

m + 1

∂v

∂x3
∈ Sm

(
f(m+1)x

m
3 , l(m+1)x

m
3 ,N γ

(m+1)
xm

3 ,M γ
(m+1)

xm
3

)
.

The next theorem establishes the existence of a solution for the problem
(Am+1) and its proof shows how to construct such a solution.

Theorem 5. Let v∗ be the displacement field given by (3.11). Then, there

exists a solution v to the problem (Am+1) of the form

(3.13) v = (m + 1)

( x3∫

0

v∗ dx3 + v{â} + w∗(s)

)
,

where â are some constants and w∗(s) is a displacement field which depends only

on s.

P r o o f. Let us determine first the function w∗(s) such that the field (3.13)
satisfies v ∈ D(f(m+1)x

m+1
3 , l(m+1)x

m+1
3 ,N γ

(m+1)x
m+1
3 ,M γ

(m+1)x
m+1
3 ). The equa-

tions of equilibrium (2.12) can be written in this case as

(3.14) A
(
w∗(s)

)
= − 1

m + 1

(
f(m+1)z

m+1, l(m+1)z
m+1

)
−A

( z∫

0

v∗ dz

)
.
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We notice that

∂

∂z

[
A
( z∫

0

v∗dz

)
+

1

m + 1

(
f(m+1)z

m+1, l(m+1)z
m+1

)]

= A(v∗) +
(
f(m+1)z

m, l(m+1)z
m
)

= 0,

by virtue of (3.11). Hence, the right-hand side of relation (3.14) does not depend
on z, and the Eq. (3.14) reduces to

(3.15) A
(
w∗(s)

)
= −

[
A
( z∫

0

v∗ dz

)]
(s, 0), s ∈ [0, s̄].

Similarly, the conditions on the lateral edges for open shells reduce to

N
(
w∗(sγ)

)
= −

[
N

( z∫

0

v∗dz

)]
(sγ , 0),

M
(
w∗(sγ)

)
= −

[
M

( z∫

0

v∗ dz

)]
(sγ , 0) on Lγ .

For closed cylindrical shells, the continuity conditions (2.15)1,2 become

w∗(s1) = w∗(s2), w∗ ′(s1) = w∗ ′(s2).

It is clear that the above conditions together with the Eqs. (3.15) represent
a cross-section plane problem of the type (5.1)–(5.3) for the determination
of w∗(s). The necessary and sufficient conditions (5.4) for the existence of a
solution w∗(s) are equivalent to the relations R(v∗) = 0, M3(v

∗) = 0, which
are valid by virtue of (3.11). Thus, from the Eqs. (3.15) we can find the field
w∗(s) with the desired properties.

To complete the proof, we have to determine the constants â such that the
field (3.13) satisfies R(v∗) = 0, M(v∗) = 0. These end edge conditions lead us
to the following relations:

( 4∑

r=1

Dkr ar

)

k=1,...,4

=

(
ǫβαMβ

( z∫

0

v∗dz + w∗

)
,R3

( z∫

0

v∗dz + w∗

)
,M3

( z∫

0

v∗dz + w∗

))
,

which can be used to find the constants ak, k = 1, . . . , 4.
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Let us mention that the form (3.13) for the solution v of the problem (Am+1)
has been suggested by the result (3.12) presented in Lemma 4.

By the method of induction, we know how to solve any problem (Am), for
m = 0, 1, . . . , n. In conclusion, we can determine the solution to the Almansi
problem P (R0,M0, f , l,N(γ),M(γ)).

The results established in this paper concerning the problems of Almansi
and Michell, can be useful in the treatment of practical problems for loaded
cylindrical shells. Since the solution procedure is valid for the case of general
anisotropy, we can particularize it for different material symmetries. Provided we
know the constitutive coefficients which characterize a specific anisotropic shell,
we can apply the above method to obtain the displacement field corresponding
to the given external loads. We mention that the constitutive coefficients for
isotropic and orthotropic Cosserat shells have been determined completely in
[1, 2], in terms of the classical elasticity constants. In the next section, we present
the case of orthotropic cylindrical Cosserat shells and determine the equilibrium
of a circular tube under the action of a hydrostatic pressure which depends
linearly on the axial coordinate.

The Cosserat theory has the advantage that it can be easily extended to
include some other effects, such as thermal and porosity effects [12, 13]. Also,
we remark a strong analogy between the properties of solutions for Cosserat
shells and the corresponding classical results of the three-dimensional elas-
ticity.

4. Deformation of an orthotropic circular cylindrical tube

In this section we shall restrict our attention to orthotropic and homoge-
neous shells. We use the model of Cosserat surfaces and assume that the axes of
orthotropy coincide with the directions of the vectors {A1,A2,A3} ≡ {τ, e3,n}.

We consider cylindrical shells made of an orthotropic material with consti-
tutive coefficients denoted by c11, c22, c33, c12, c13, c23, c44, c55 and c66, such
that

t11 = c11ε11 + c12ε22 + c13ε33,

t22 = c12ε11 + c22ε22 + c23ε33,

t33 = c13ε11 + c23ε22 + c33ε33,

t23 = 2c44ε23, t31 = 2c55ε31, t12 = 2c66ε12,

where tij and εkr are the components of the stress tensor and strain tensor in the
three-dimensional linear theory, referred to the orthonormal basis {A1,A2,A3}.
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Let h be the constant thickness of the cylindrical shell. It is convenient to
introduce the notations

I =
h3

12
, γ =

I

hr2
=

1

12

(
h

r

)2

,

d11 = c11 −
c13c13

c33
, d22 = c22 −

c23c23

c33
, d12 = c12 −

c13c23

c33
.

Then, the strain energy function (2.5)1 for orthotropic and homogeneous cylin-
drical Cosserat shells has the form (see [2], Sec. 4.27)

2W = h[c11(ess)
2 + c22(ezz + γrρzz)

2 + c33(γn)2 + 2c12ess(ezz + γrρzz)

+ 2c13essγn + 2c23(ezz + γrρzz)γn + c44(γz + γrρnz)
2 + c55(γs)

2

+ c66(2esz + γrρsz)
2] + γh[d11(rρss − 2ess + γn)2 + d22(rρzz)

2

+ 2d12(rρss − 2ess + γn)(rρzz) + c66(rρsz + rρzs − 2esz)
2],

and the relations (2.5)2−4 can be used to derive the constitutive equations in our
case. We mention that the expressions of dαβ and the other coefficients which
appear in the constitutive equations have been determined in [2], Chapter 4, by
comparison between the solutions to some corresponding problems in the two
different approaches (three-dimensional and Cosserat surface). In this respect,
see also the paper [14].

Let us formulate the specific problem which will be treated subsequently.
We investigate the deformation of a circular cylindrical orthotropic shell under
the action of a hydrostatic pressure, acting on its surface. Assume that the
magnitude of this pressure depends only on the axial coordinate. The cylindrical
tube is also subjected to extension, bending and torsion, due to some resultant
forces and moments acting on its end edges. Thus, the system of external loads
acting on the closed cylindrical shell is given by

(4.1) f = 0, l = −h(P1x3 + P0)n, R
0 = R0

3e3, M
0 = M0

i ei,

where the resultants R0
3 and M0

i are prescribed, while P0 and P1 are given con-
stants. The component ln specified in (4.1) accounts for the hydrostatic pressure
(P1x3 + P0) acting on the major surfaces of the shell (see [1], Sec. 24iii), which
is linear in the axial coordinate.

We shall determine the equilibrium of the circular tube subject to the exter-
nal loads (4.1), using the results presented in Sec. 3. For a circular cross-section,
the functions xα(s) which appear in the parametric representation (2.9) are
given by

(4.2) x1(s) = r0 cos
s

r0
x2(s) = r0 sin

s

r0
, s ∈ [0, 2πr0],
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where r0 denotes the radius of the cylindrical surface. We have r(s) = r0 and
s̄ = 2πr0.

In the case of circular cylindrical orthotropic shells, the field v{â} has been
determined in [12], Sec. 6, and it has the following expression:

(4.3)

uα = −1

2
aαx2

3 − a4(ǫαβxβ)x3 + (Daγxγ + Ga3)xα,

u3 = (aαxα + a3)x3, δ3 = r−1
0 (aαxα)x3,

δα = r−1
0 [−a4(ǫαβxβ)x3 + (Eaγxγ + Ha3)xα + F (ǫγδaγxδ)ǫαβxβ],

where the constant coefficients D, E, F , G and H are given by the equations

(4.4)

c11D + c13E = −c12(1 + γ),

c13D + c33E + c55(D + F ) = −c23(1 + γ),

(c55 + γd11)(D + F ) − γd11E = γd12,

and

(4.5)
(c11 + γd11)G + (c13 − γd11)H = −c12,

(c13 − γd11)G + (c33 + γd11)H = −c23.

The resultants corresponding to the field (4.3) are expressed by (2.19) where the
coefficients Dkr have the following values:

(4.6)

D11 = D22 =
1

2
r2
0 s̄h
{
(1 + γ)

[
c22(1 + γ) + c12D + c23E

]

+ γ
[
d22 − d12(D + F − E)

]}
,

D33 = s̄h(c22 + c12G + c23H),

D44 = hr2
0c66(1 + 3γ + γ2),

Dkr = 0 for k 6= r.

Following the method described in Sec. 3, we divide our problem into two prob-
lems, with respect to the dependence on the axial coordinate. Thus, we determine
separately the deformation of the cylindrical tube due to the following systems
of external loads:

(4.7) f = 0, l = −hP0n, R
0 = R0

3e3, M
0 = M0

i ei,

and

(4.8) f = 0, l = −h(P1x3)n, R
0 = 0, M

0 = 0.
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This split is necessary because the loads (4.7) give rise to a problem of Almansi–
Michell type, while (4.8) represents an Almansi problem (since the external load
l depends on x3). In view of the linearity of the theory, the solution of our
initial problem is then obtained as a sum of the solutions for the two auxiliary
problems.

We observe that, for the external loads (4.7), we have a problem of Almansi–
Michell type, and consequently we can apply the technique presented by The-
orem 3 to derive the solution of this problem. On the other hand, in order to
solve the problem for the external loads (4.8), we follow the recurrence process
described by Lemma 4 and Theorem 5 for the treatment of Almansi’s problem.
After some simple but lengthy calculations, we obtain the following solution for
our initial problem corresponding to the loads (4.1):

(4.9)

uα = −1

2
aαx2

3 − a4(ǫαβxβ)x3 + (Daγxγ + Ga3)xα + A(P1x3 + P0)xα,

u3 = (aαxα + a3)x3 + C

(
1

2
P1x3 + P0

)
x3,

δα = r−1
0 [−a4(ǫαβxβ)x3 + (Eaγxγ + Ha3)xα

+ F (ǫγδaγxδ)ǫαβxβ + B(P1x3 + P0)xα],

δ3 = r−1
0

[
(aαxα)x3 − r2

0P1

(
A

(
1 + γ

d12

c44

)
+ Bγ

(
1 − d12

c44

))]
.

Here, the notations D, E, F , G, H are specified by (4.4) and (4.5), while the
constant coefficients A, B and C are given by the relations

(4.10)

(c11 + γd11)A + (c13 − γd11)B + c12C = 0,

(c13 − γd11)A + (c33 + γd11)B + c23C = −1,

c12A + c23B + c22C = 0.

The constants ak are expressed in terms of the applied resultants by

(4.11) aα =
ǫαβM0

β

D11
, a3 = − R0

3

D33
, a4 = −M0

3

D44
,

where Dkr are given in (4.6).
Finally, we consider the same problem in the limiting case of a very thin

shell, i.e. h ≪ r. If we apply the above results in the limit γ ≡ 1

12

(
h

r0

)2

→ 0,

then we obtain that the constants A, B, C, D, E, F , G and H are given by

D = −F = G = − c12c33 − c13c23

c11c33 −
(
c13

)2 , E = H =
c12c13 − c11c23

c11c33 −
(
c13

)2
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and
c11A + c13B + c12C = 0,

c13A + c33B + c23C = −1,

c12A + c23B + c22C = 0.

The form of the solution (4.9) is simplified and becomes

uα = −1

2
aαx2

3 − a4(ǫαβxβ)x3 + D(aγxγ + a3)xα + A(P1x3 + P0)xα,

u3 = (aαxα + a3)x3 + C

(
1

2
P1x3 + P0

)
x3, δ3 = r−1

0

[
(aαxα)x3 − r2

0AP1

]
,

δα = r−1
0 [−a4(ǫαβxβ)x3+E(aγxγ + a3)xα−D(ǫγδaγxδ)ǫαβxβ+B(P1x3+P0)xα].

Here, the constants ak are determined by the relations (4.11), in which the
coefficients D11, D33 and D44 are expressed by

D11 =
1

2

r2
0hs̄

c11c33 −
(
c13

)2 det
(
cij

)
3×3

,

D33 =
hs̄

c11c33 −
(
c13

)2 det
(
cij

)
3×3

,

D44 = hr2
0c66.

We mention that, for isotropic and homogeneous Cosserat shells, the problems of
Saint–Venant, Almansi and Michell have been solved in [8, 15] and the solutions
have been given in a closed form. The particular cases of circular cylindrical
shells and Cosserat plates have also been treated thoroughly. Using the identi-
fication of the constitutive coefficients in the isotropic case, we have compared
these results (see [13], Sec. 6.2) with the corresponding solutions from the clas-
sical theory (see e.g. [3–5]), and we have found a good agreement between the
two approaches.

5. The Almansi–Michell problem for orthotropic plates

We emphasize that the results presented in this paper are exact in the context
of linear theory and they involve no approximations. In order to show that the
results obtained by this method are correct, we shall make a comparison with
the exact three-dimensional solution of the Almansi–Michell problem for initially
flat shells.

In this section we confine our attention to the special case when the reference
configuration is a flat surface. This means that Bαβ = 0 and the cylindrical shell
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reduces to a rectangular plate. We can choose the coordinate frame Ox1x2x3

such that the reference surface is situated in the x1Ox3 plane (see Fig. 2) and is
given by the parametric equations (2.9), with

(5.1) x1(s) = s − s̄

2
, x2(s) = 0, s ∈ [0, s̄].

Thus, in our case we have A1 = τ = e1, A2 = e3, A3 = n = −e2, and
the reference configuration occupies the region {(x1, x3); −s̄/2 < x1 < s̄/2,
0 < x3 < z̄} ⊂ x1Ox3.

x3

x1

x2

0

e1
e2

e3

x3

x1

x2

0

e1
e2

e3

A1

A2A3

z

z

s

s
2

s
2

h

Fig. 2. Reference configurations of the Cosserat plate and the corresponding
three-dimensional plate.

Since the curvature radius r is +∞ for flat surfaces, the geometrical equations
(2.11) written for Cosserat plates become

ess =
∂us

∂s
, ezz =

∂uz

∂z
, esz = ezs =

1

2

(
∂us

∂z
+

∂uz

∂s

)
,

γs = δs +
∂un

∂s
, γz = δz +

∂un

∂z
, γn = δn,

ρss =
∂δs

∂s
, ρzz =

∂δz

∂z
, ρsz =

∂δs

∂z
,

ρzs =
∂δz

∂s
, ρns =

∂δn

∂s
, ρnz =

∂δn

∂z
.

If the Cosserat plate is made of an homogeneous and orthotropic material in
which the axes of orthotropy coincide with the directions of {A1,A2,A3}, then
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the strain energy function has the form (see [14], and also [2], Sec. 4.27)

2W = h
[
c11(ess)

2 + c22(ezz)
2 + c33(γn)2 + 2c12essezz + 2c13essγn

+ 2c23ezzγn + c44(γz)
2 + c55(γs)

2 + 4c66(esz)
2] + I[d11(ρss)

2

+ d22(ρzz)
2 + 2d12ρssρzz + c66(ρsz + ρzs)

2].

From the constitutive equations (2.5)2−4 we get in our case

Nss = h(c11ess + c12ezz + c13γn), Nzz = h(c12ess + c22ezz + c23γn),

Nsz = Nzs = 2hc66esz, Vs = hc55γs, Vz = hc44γz,

Vn = h(c13ess + c23ezz + c33γn), Mss = I(d11ρss + d12ρzz),

Msz = Mzs = Ic66(ρsz + ρzs), Mzz = I(d12ρss + d22ρzz), Msn = Mzn = 0.

For this particular (flat) reference configuration, we shall present the solution
of the Almansi–Michell problem in terms of the displacement field in a closed
form. In other words, let us determine the equilibrium of the plate under the
action of the body loads f(x1), l(x1) , the tractions N(γ) and director couples
M(γ) on the lateral edges x1 = ± s̄

2 , the resultant force R
0 = R0

i ei, the resultant
moment M

0 = M0
i ei acting on the end edge x3 = 0. Here, f = fiei and l = liei

are arbitrary functions of x1, while N(γ), M(γ), R
0 and M

0 are given constant
vectors. (The loads N(1) and M(1) act on the edge x1 = −s̄/2, and the loads
N(2) and M(2) act on the edge x1 = +s̄/2.)

To find the solution of our Almansi–Michell problem, we follow the procedure
described in Sec. 3 by Theorem 3. First, we notice that the displacement field
v{â} corresponding to Cosserat plates is given by [12]

(5.2)

u1 = −1

2
a1(Ax2

1 + x2
3) − a3Ax1, u2 =

1

2
a2(Ax2

1 − x2
3) + a4x1x3,

u3 = (a1x1 + a3)x3,

δ1 = a2Ax1 + a4x3, δ2 = B(a1x1 + a3), δ3 = −a2x3 + a4 p(x1),

where we denote by p(x1) the function

(5.3) p(x1) = x1 −
2

ϑ
· sinh(ϑx1)

cosh(ϑs̄/2)
, with ϑ =

2

h

√
3c44

c66
,

and the constants A, B, C are given by the expressions

A =
c12c33 − c13c23

c11c33 − (c13)2
, B =

c11c23 − c12c13

c11c33 − (c13)2
, C =

det(cij)3×3

c11c33 − (c13)2
.
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Then, if we search the solution of our Almansi–Michell problem in the form (3.2)
and we follow the steps presented in the proof of Theorem 3, we arrive at the
solution v = {u,δ} given by

(5.4)

u1 = −1

2
Ax2

1

(
1

2
b1x

2
3+c1x3+a1

)
− 1

2
x2

3

(
1

12
b1x

2
3+

1

3
c1x3+a1

)

−Ax1(c3x3+a3)+ũ1(x1),

u2 =
1

2
Ax2

1

(
1

2
b2x

2
3+c2x3+a2

)
− 1

2
x2

3

(
1

12
b2x

2
3+

1

3
c2x3+a2

)

+x1x3

(
1

2
c4x3+a4

)
+ũ2(x1),

u3 =
1

6
b1x1x3

[
x2

3+x2
1

(
A− C

c66

)
+

3Cs̄2

4c66

]

+
1

2
x2

3(c1x1+c3)+x3(a1x1+a3)+ũ3(x1),

δ1 = Ax1

(
1

2
b2x

2
3+c2x3+a2

)
+x3

(
1

2
c4x3+a4

)
+ δ̃1(x1),

δ2 = Bx1

(
1

2
b1x

2
3+c1x3+a1

)
+B(c3x3+a3)+ δ̃2(x1),

δ3 = −x3

(
1

6
b2x

2
3+

1

2
c2x3+a2

)
+b2x3 q(x1)+(c4x3+a4)p(x1)+ δ̃3(x1),

where the function q(x1) is defined by

q(x1) =
1

2
Ax2

1 −
As̄

ϑ
· cosh(ϑx1)

sinh(ϑs̄/2)
+

1

ϑ2

(
2A − C

c66

)
.

The functions ũi(x1) and δ̃i(x1) which appear in (5.4) are known, and they
can be computed directly by solving simple linear boundary-value problems for
ordinary differential equations. More precisely, ũ1(x1) and δ̃2(x1) can be found
from the equations

c11ũ
′′
1 (x1) − c13δ̃

′
2(x1)

= −1

h
f1(x1) −

1

2
b1

[
c12Ax2

1 −
C

c66
(c12 + c66)

(
x2

1 −
s̄2

4

)]
,

(5.5) c13ũ1(x1) − c33δ̃2(x1)

=
1

h
l2(x1) +

1

2
b1c23x1

[
1

3
x2

1

(
A − C

c66

)
+

C

4c66
s̄2

]
,

(c11ũ
′
1 − c13δ̃2)

(
± s̄

2

)
=

1

h
N

(γ)
1 − 1

6
b1c12

(
A +

2C

c66

)
·
(
± s̄

2

)3

,
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and the functions ũ2(x1) and δ̃1(x1) are determined by

(5.6)

c55

(
ũ ′′

2 (x1) − δ̃ ′
1(x1)

)

= −1

h
f2(x1) + c44

[
c4

(
p(x1) − x1

)
+ b2

(
q(x1) −

1

2
Ax2

1

)]
,

Id11δ̃
′′
1 (x1) + hc55

(
ũ ′

2(x1) − δ̃1(x1)
)

= −l1(x1) − I
[
(d12 + c66)

(
c4p

′(x1) + b2q
′(x1)

)
+ c66(c4 + b2Ax1)

]
,

(
ũ ′

2 − δ̃1

)(
± s̄

2

)
=

1

hc55
N

(γ)
2 ,

δ̃ ′
1

(
± s̄

2

)
=

1

Id11
M

(γ)
1 − A

[
c4p

(
± s̄

2

)
+ b2q

(
± s̄

2

)]
.

The functions ũ3(x1) and δ̃3(x1) satisfy the following uncoupled boundary-value
problems which are easy to solve:

(5.7)

ũ ′′
3 (x1) = − 1

hc66
f3(x1) +

(
A − C

c66

)
(c1x1 + c3),

ũ ′
3

(
± s̄

2

)
=

1

hc66
N

(γ)
3 + A

[
1

2
c1

(
± s̄

2

)2

+ c3

(
± s̄

2

)]

and

(5.8)

δ̃ ′′
3 (x1) − ϑ2δ̃3(x1) = − 1

Ic66
l3(x1) − c2

(
1

2
ϑ2Ax2

1 + A − C

c66

)
,

δ̃ ′
3

(
± s̄

2

)
=

1

Ic66
M

(γ)
3 − c2A ·

(
± s̄

2

)
.

The constants b1, b2, c1, . . . , c4 and a1, . . . , a4 which appear in the Eqs. (5.4)–(5.8)
are expressed in terms of the loads applied, by the relations

b1 =
−12

hs̄3C

( s̄/2∫

−s̄/2

f1(x1)dx1 + N
(2)
1 − N

(1)
1

)
,

b2 =
−12

h3s̄C

( s̄/2∫

−s̄/2

f2(x1)dx1 + N
(2)
2 − N

(1)
2

)
,(5.9)

c1 = − 12

hs̄3C

[
R0

1 +

s̄/2∫

−s̄/2

x1f3(x1)dx1 −
s̄

2

(
N

(1)
3 + N

(2)
3

)]
,
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c2 = − 12

h3s̄C

(
R0

2 −
s̄/2∫

−s̄/2

l3(x1)dx1 + M
(1)
3 − M

(2)
3

)
,(5.9)

[cont.]

c3 =
−1

hs̄C

( s̄/2∫

−s̄/2

f3(x1)dx1 + N
(2)
3 − N

(1)
3

)
,

c4 = − 1

D

[ s̄/2∫

−s̄/2

(
x1f2(x1) + l1(x1)

)
dx1

+
s̄

2
(N

(1)
2 + N

(2)
2 ) − (M

(1)
1 − M

(2)
1 )

]
,

a1 =
12

hs̄3C

(
M0

2 − h

s̄/2∫

−s̄/2

x1

(
c12ũ

′
1 − c23δ̃2

)
dx1

)

− s̄2b1c22

40

(
A +

4C

c66

)
,

a2 = − 12

h3s̄C

[
M0

1 − Id11

(
δ̃1

(
s̄

2

)
− δ̃1

(−s̄

2

))

− Is̄b2d22

12

(
As̄2 − h2C

c44

)]
,

a3 =
−1

hs̄C

(
R0

3 − h

s̄/2∫

−s̄/2

(
c12ũ

′
1 − c23δ̃2

)
dx1

)
,

a4 = − 1

D

[
M0

3 − Ic66

(
ϑ2

s̄/2∫

−s̄/2

x1δ̃3dx1 − δ̃3

(
s̄

2

)
+ δ̃3

(−s̄

2

))]
,

where D is the torsional rigidity in the Cosserat theory which is given by

(5.10) D =
h3c66

3

(
s̄

2
+ p

(
s̄

2

))
=

h3s̄

3
c66

[
1 − 2

ϑs̄
tanh

(
ϑs̄

2

)]
.

Thus, the displacement field (5.4) represents the general solution of the Almansi–
Michell problem corresponding to orthotropic Cosserat plates. For comparison
purposes, we shall consider now the deformation of three-dimensional plates, i.e.
orthotropic rectangular parallelepipeds.

The problems of Almansi and Michell for three-dimensional cylinders have
been considered in several books, e.g. [10, 11, 16]. Let us consider a cylindrical
body which occupies the region {(x1, x2, x3); −s̄/2<x1 <s̄/2, −h/2<x2 <h/2,
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0 < x3 < z̄} referred to the Cartesian coordinate frame Ox1x2x3 (see Fig. 2).
The body is subjected to resultant forces and moments acting on the bases
x3 = 0, z̄, to the assigned body forces f∗ and to a prescribed stress vector field
p acting on the lateral boundaries x1 = ±s̄/2 and x2 = ±h/2. We assume that
the loads have the form

(5.11) f∗ = f∗
3 (x1, x2) e3, p = p3(x1, x2) e3, R

0 = R0
i ei, M

0 = M0
i ei,

where R
0 and M

0 denote the resultant force and resultant moment about O,
acting on the basis x3 = 0. We observe that the fields f∗ and p do not depend on
x3 and thus we have an Almansi–Michell problem. The solution of this problem
for orthotropic and homogeneous three-dimensional cylinders is presented in [16],
Sec. 4.8, in the form of the displacement field u∗ = u∗

i ei given by the relations

(5.12)

u∗
1 = −1

2
c∗1x3

(
1

3
x2

3 + Ax2
1 − Bx2

2

)
− 1

2
a∗1(x

2
3 + Ax2

1 − Bx2
2)

− Ax1x2(c
∗
2x3 + a∗2) − Ax1(c

∗
3x3 + a∗3) − a∗4x2x3,

u∗
2 = −1

2
c∗2x3

(
1

3
x2

3 − Ax2
1 + Bx2

2

)
− 1

2
a∗2(x

2
3 − Ax2

1 + Bx2
2)

− Bx1x2(c
∗
1x3 + a∗1) − Bx2(c

∗
3x3 + a∗3) + a∗4x1x3,

u∗
3 =

1

2
x2

3(c
∗
1x1 + c∗2x2 + c∗3) + x3(a

∗
1x1 + a∗2x2 + a∗3)

+ a∗4ϕ(x1, x2) + χ(x1, x2),

This solution is exact in the context of a linear theory, and we shall use it for
comparison with our solution for plates in the Cosserat approach. The constants
c∗i and a∗k which appear in (5.12) are expressed in terms of the loads by

(5.13)

a∗1 =
12

hs̄3C
M0

2, a∗2 = − 12

h3s̄C
M0

1, a∗3 = − 1

hs̄C
R0

3,

c∗1 =
−12

hs̄3C

(
R0

1 +

∫

Σ

x1f
∗
3 da +

∫

∂Σ

x1p3dl

)
,

c∗2 =
−12

h3s̄C

(
R0

2 +

∫

Σ

x2f
∗
3 da +

∫

∂Σ

x2p3dl

)
,

c∗3 =
−1

hs̄C

(∫

Σ

f∗
3 da +

∫

∂Σ

p3dl

)
,

a∗4 =
−1

D0

(
M0

3 +

∫

Σ

(
c44x1

∂χ

∂x2
− c66x2

∂χ

∂x1

)
da

)
,
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where Σ denotes the rectangular cross-section Σ = {(x1, x2); −s̄/2 < x1 < s̄/2,
−h/2 < x2 < h/2} and ∂Σ is its boundary. The function ϕ(x1, x2) is the so-
called torsion function which is given as the solution of the boundary-value
problem

(5.14)
c66

∂2ϕ

∂x2
1

+ c44
∂2ϕ

∂x2
2

= 0 in Σ,

∂ϕ

∂x1
= x2 for x1 = ± s̄

2
, and

∂ϕ

∂x2
= −x1 for x2 = ±h

2
,

while D0 is the torsional rigidity of three-dimensional cylinders

(5.15) D0 =

∫

Σ

[
c44 x1

(
∂ϕ

∂x2
+ x1

)
− c66 x2

(
∂ϕ

∂x1
− x2

)]
da.

The function χ(x1, x2) appearing in (5.12) is determined by the boundary-value
problem

(5.16)

c66
∂2χ

∂x2
1

+ c44
∂2χ

∂x2
2

= −f∗
3 + (c66A + c44B − C)(c1x1 + c2x2 + c3) in Σ,

∂χ

∂x1
= Ax1

(
1

2
c1x1 + c2x2 + c3

)
− 1

2
c1Bx2

2 ±
p3

c66
for x1 = ± s̄

2
,

∂χ

∂x2
= Bx2

(
c1x1 +

1

2
c2x2 + c3

)
− 1

2
c2Ax2

1 ±
p3

c44
for x2 = ±h

2
.

Let us compare now the solution (5.12)–(5.16) in the three-dimensional the-
ory with the corresponding solution (5.4)–(5.10) for Cosserat plates, and to show
a good agreement between the two approaches. In making the identification of
the displacement fields in the two approaches, we employ the relations (see [2],
p. 122)

(5.17) u =
1

h

h/2∫

−h/2

u∗dx2, −δ =
1

h

h/2∫

−h/2

∂u∗

∂x2
dx2,

and for the two load systems we have the expressions

f =

h/2∫

−h/2

f∗(x1, x2)dx2 +

[
p

(
x1,

h

2

)
+ p

(
x1,

−h

2

)]
,

N(γ) =

h/2∫

−h/2

p

(
± s̄

2
, x2

)
dx2,

(5.18)
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−l =

h/2∫

−h/2

x2f
∗dx2 +

h

2

[
p

(
x1,

h

2

)
− p

(
x1,

−h

2

)]
,(5.18)

[cont.]

−M(γ) =

h/2∫

−h/2

x2p

(
± s̄

2
, x2

)
dx2.

The minus sign appearing in the left-hand sides of relations (5.17)2 and (5.18)3,4

is due to our choice of coordinate axes and the inverse orientation A3 = −e2.
Using the special form of the load system (5.11) appearing in the relation

(5.18), we obtain in this case that fα = 0, lα = 0, N
(γ)
α = 0, M

(γ)
α = 0, and from

(5.9) and (5.5), (5.6) we deduce that b1 = b2 = c4 = 0, and ũα = 0, δ̃α = 0.
Consequently, by comparison between (5.9) and (5.13) we get

(5.19) ai = a∗i , ci = c∗i , i = 1, 2, 3.

In view of (5.19), we can verify that the relations

uα =
1

h

h/2∫

−h/2

u∗
α dx2, −δα =

1

h

h/2∫

−h/2

∂u∗
α

∂x2
dx2,

are exactly satisfied by the solutions (5.4) and (5.12) in the two different ap-
proaches (modulo a rigid displacement). According to (5.17), we still have to
check the equalities

(5.20) u3 =
1

h

h/2∫

−h/2

u∗
3 dx2, −δ3 =

1

h

h/2∫

−h/2

∂u∗
3

∂x2
dx2, and a4 = a∗4,

for the complete agreement of the two solutions to hold. In what follows, we
shall observe that the relations (5.20) are satisfied approximately, but neverthe-
less they are satisfied exactly in the thin plate limit, i.e. when h ≪ s̄. Indeed,
in view of (5.4)3,6, (5.9)10, (5.12) and (5.13)7, the relations (5.20) are verified
approximately provided we have

(5.21)

ũ3(x1) ≃
I

2h
c1Bx1 +

1

h

h/2∫

−h/2

χ(x1, x2)dx2,

δ̃3(x1) ≃
I

2h
c2B − 1

h

[
χ

(
x1,

h

2

)
− χ

(
x1,

−h

2

)]
,

ϑ2

s̄/2∫

−s̄/2

x1δ̃3(x1)dx1 − δ̃3

(
s̄

2

)
+ δ̃3

(−s̄

2

)
≃
∫

Σ

(
c66x2

∂χ

∂x1
− c44x1

∂χ

∂x2

)
da
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and

(5.22) p(x1) ≃ −1

h

[
ϕ

(
x1,

h

2

)
− ϕ

(
x1,

−h

2

)]
, D ≃ D0.

Let us mention that the good agreement (5.22) between the torsion functions
and torsional rigidities in the two approaches has been proved in [2], Sec. 3.15

and 4.15, where it is shown that for a thickness range such that
h

s̄

√
c66

c44
< 2,

the value of D is very close to D0. The limit values of the quantities in (5.22)

coincide as
h

s̄
→ 0, and they are given by

(5.23) p(x1) = −1

h

[
ϕ

(
x1,

h

2

)
− ϕ

(
x1,

−h

2

)]
= x1, D = D0 =

h3s̄

3
c66.

Finally, for verifying the relations (5.21), we have to solve the boundary-value
problems (5.7), (5.8) and (5.16). In this purpose, let us confine ourself to a
simpler case when the load functions (5.11) are given by the expression

(5.24) f∗
3 (x1, x2) = g1x1 + g2x2 + g3, p3(x1, x2) = p0

3,

where gi and p0
3 are constants. Then, the functions ũ3(x1), δ̃3(x1) can be cal-

culated from the ordinary differential equations (5.7), (5.8), and we obtain the
following expressions in the thin plate limit:

(5.25)
ũ3(x1) =

1

2
Ax2

1

(
1

3
c1x1 + c3

)
+

2R0
1

hs̄3c66
x1

(
x2

1 −
3s̄2

4

)
+

p0
3

s̄c66
x2

1,

δ̃3(x1) =
1

2
c2Ax2

1, for h ≪ s̄.

Taking into account (5.24), the boundary-value problem (5.16) can be solved by
means of the Fourier series expansions. We obtain the solution

(5.26) χ(x1, x2) =
1

2
Ax2

1

(
1

3
c1x1 − c2x2 + c3

)

+
1

2
Bx2

2

(
− c1x1 +

1

3
c2x2 + c3

)
+ p0

3

(
x2

1

s̄c66
+

x2
2

hc44

)

+

+∞∑

n=0

[
H2n+1(x1)sin

(2n + 1)πx2

h
+ G2n+1(x2)sin

(2n + 1)πx1

s̄

]
,
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denoting by η =
√

c66/c44 and

H2n+1(x1)

=
(−1)n · 4h2

(2n + 1)3π3

[
h(g2 + c2C − 2c2c66A)

(2n + 1)πc44
+ s̄c2Aη

cosh
(
(2n + 1)πηx1/h)

sinh
(
(2n + 1)πηs̄/2h)

]
,

G2n+1(x2)

=
(−1)n · 4s̄2

(2n + 1)3π3

[
s̄(g1 + c1C − 2c1c44B)

(2n + 1)πc66
+

hc1B

η

cosh
(
(2n + 1)πx2/ηs̄)

sinh
(
(2n + 1)πh/2ηs̄)

]
.

By virtue of (5.25) and (5.26) we observe that the relations (5.21) are satisfied
exactly in the limit as h/s̄ → 0.

In conclusion, the solution of our problem in the theory of Cosserat plates
is in a very good agreement with the exact three-dimensional solution for thin
plates and moreover, the solutions in the two approaches coincide in the thin
plate limit, i.e. when h/s̄ → 0.

To recapitulate, the solution of the Almansi–Michell problem for very thin
orthotropic plates (h ≪ s̄) with the load system (5.11), (5.24) is given by (from
(5.4), (5.23), (5.25))

u1 = −1

2
c1x3

(
Ax2

1 +
1

3
x2

3

)
− 1

2
a1(Ax2

1 + x2
3) − Ax1(c3x3 + a3),

u2 =
1

2
c2x3

(
Ax2

1 −
1

3
x2

3b

)
+

1

2
a2(Ax2

1 − x2
3) + a4x1x3,

u3 =
1

2
Ax2

1

(
1

3
c1x1 + c3

)
+

1

2
x2

3(c1x1 + c3) + x3(a1x1 + a3)

+
2R0

1

hs̄3c66
x1

(
x2

1 −
3s̄2

4

)
+

p0
3

s̄c66
x2

1,

δ1 = Ax1(c2x3 + a2) + a4x3,

δ2 = Bx1(c1x3 + a1) + B(c3x3 + a3),

δ3 =
1

2
c2Ax2

1 − x3

(
1

2
c2x3 + a2

)
+ a4x1,

where the constants ci and ak are expressed in terms of the loads by

a1 =
12

hs̄3C
M0

2, a2 = − 12

h3s̄C
M0

1, a3 = − 1

hs̄C
R0

3, a4 = − 3

h3s̄ c66
M0

3,

c1 = − 1

C

(
g1+

12

hs̄3
R0

1

)
, c2 = − 1

C

(
g2+

12

h3s̄
R0

2

)
, c3 = − 1

C

(
g3+2p0

3

h+s̄

hs̄

)
.
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From the above comparison we observe that the theory of Cosserat surfaces
produce very good results for thin bodies, and the derivation of solutions is much
simpler than that in the three-dimensional theory, since we reduce the prob-
lem to ordinary differential equations instead of two-dimensional boundary-value
problems. Moreover, in the case of curved shells the advantage of the Cosserat
approach is even more visible, because it can easily handle problems in which
the axes of orthotropy vary along the circumference of the cylindrical thin body,
as can be seen from the example in Sec. 4.

Appendix A

The cross-section plane problem

We recall that the solution of the relaxed Saint–Venant’s problem for ani-
sotropic three-dimensional cylinders reduce to the solution of some general-
ized plane strain problems associated with the cross-section of the cylinder (see
e.g. [9]). As a counterpart of these generalized plane strain problems we consider,
in the case of cylindrical shells, the following problem (called the cross-section

plane problem): find the displacement field v(s) =
(
u(s),δ(s)

)
which depends

only on s, and which satisfies the equations

(A.1) A
(
v(s)

)
= −F(s),

and the boundary conditions:
(i) for open cylindrical shells

(A.2) N
(
v(sγ)

)
= N(γ), M

(
v(sγ)

)
= M(γ) on Lγ (γ = 1, 2),

(ii) for closed cylindrical shells

(A.3) v(s1) = v(s2), v′(s1) = v′(s2),

where F(s) = (fs, fz, fn, ls, lz, ln) represents the prescribed body loads, while
the external loads on the lateral edges N(γ) and M(γ) are given constants.

According to Theorem 2 from [12], the necessary and sufficient conditions for
the existence of the solution v(s) to the cross-section plane problem (A.1)–(A.3)
are the following:

∫

C0

f dl + (1 − ε)
(
N(1) + N(2)

)
= 0,

[∫

C0

(R × f + D× l) dl(A.4)

+ (1 − ε)
2∑

γ=1

(R(γ)(0) × N(γ) + D(γ) ×M(γ))

]
· e3 = 0,
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where ε takes the values ε = 0 for open cylindrical shells and ε = 1 for closed
shells.

The solution of the problem (A.1)–(A.3) can be determined as in Sec. 4
of [12], provided the conditions (A.4) are satisfied.

The displacement fields v(k)

Let us define the fields v(k), k = 1, 2, 3, 4, which are employed to construct the
solution of the relaxed Saint–Venant’s problem for cylindrical Cosserat shells.

First, we introduce four displacement fields denoted by v
(k)
c , k = 1, . . . , 4,

and given by

(A.5)
v

(α)
c =

(
−1

2
z2eα + zxαe3, zǫαβx′

βe3

)
, v

(3)
c = (ze3,0),

v
(4)
c = (−zǫαβxβeα, zx′

αeα).

We observe that the strain measures corresponding to the fields (A.5) are inde-
pendent of the axial coordinate x3 and that ∂v

(k)
c /∂x3 is a rigid displacement

field.
For each k = 1, . . . , 4, let us consider the cross-section plane problem (A.1)–

(A.3) for the given data

(A.6) F(s) = A(v(k)
c ), N(γ) = −N(v(k)

c (sγ)), M(γ) = −M(v(k)
c (sγ)), γ = 1, 2.

We can verify that the fields (A.6) satisfy the conditions (A.4), so that the
problem (A.1)–(A.3) with the system of external loads (A.6) admits a solution,
denoted by w(k)(s).

Then, we define the displacement fields

(A.7) v(k) = v(k)
c + w(k)(s), k = 1, 2, 3, 4.

Let us remark that the fields v(k) have the following properties (see [12], Sec. 5):

v(k) ∈ D0 and Rα

(
v(k)

)
= 0, k = 1, . . . , 4, α = 1, 2.

The field w(s) and the constants ĉ

For the sake of completeness, we present here the expressions for the field
w(s) and the constants ĉ which appear in the solution (2.23) of the flexure
problem (P2). The displacement field w(s) is determined by solving the cross-
section plane problem (A.1)–(A.3) for the external loads given by (see Theorem 5
of [12])
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F(s) = A
( x3∫

0

v{b̂} dx3

)
, N(γ) = −N

( x3∫

0

v{b̂} dx3

)
(sγ),

M(γ) = −M

( x3∫

0

v{b̂} dx3

)
(sγ), γ = 1, 2.

Then, the constants ĉ = (c1, c2, c3, c4) are given by the system of equations

( 4∑

r=1

Dkr cr

)

k=1,...,4

=
(
−M2(ŵ),M1(ŵ),R3(ŵ),M3(ŵ)

)
,

where we denote by ŵ(s) = w(s)+
∫ x3

0 v{b̂}dx3. In this manner, we have specified
precisely the solution vF of the flexure problem, introduced by Theorem 1.
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