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Influences of magnetic field on wave propagation in generalized
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This paper is devoted to estimation of the influence of magnetic field in an elastic
solid half-space under thermoelastic diffusion. The governing equations in xz-plane
are solved taking into consideration the GL model. The reflection of dilatational (P)
wave and shear vertical (SV) wave splits into four waves, namely: P wave, thermal
wave, mass diffusion wave and SV wave. The reflection phenomena of P and SV
waves from the free surface of an elastic solid with thermoelastic diffusion, under the
influence of magnetic field is considered. The expressions for the reflection coefficients
for the four reflected waves are obtained. These reflection coefficients are found to
depend upon the angle of incidence θ of P and SV waves, thermoelastic diffusion,
magnetic field and other material parameters. The numerical values for the reflection
coefficients are calculated analytically and presented graphically for various values of
these parameters. Relevant results of previous investigations are deduced as special
cases from this study.
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Notations

τij components of Maxwell’s stress tensor,
T0 natural state temperature of the medium,
ui components of the displacement tensor,
�H0 primary, constant magnetic field vector,

a, b measures of thermoelastic diffusion,
αc coefficient of linear diffusion expansion,
αt coefficient of linear thermal expansion,
P chemical potential per unit mass,
�h perturbed magnetic field over �H0,

σij components of the stress tensor,
τ0, τ1 diffusion relaxation times,
τ0, τ1 thermal relaxation times,

�F Lorenz’s body forces vector,
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D thermoelastic diffusion constant,
Cv specific heat per unit mass,
�H total magnetic field vector,
µe magnetic permeability,

λ, µ Lamé’s constants,
S entropy per unit mass,
�B magnetic induction,
K thermal conductivity,
Θ predicted finite speed,
�j electric intensity,
C concentration,
k wave number,
v phase speed,

β1 = αt(3λ + 2µ),
β2 = αc(3λ + 2µ),
Θ = T − T0.

1. Introduction

Thermoelasticity theories that predict a finite speed for the propaga-
tion of thermal signals have arisen much interest in the last four decades.
Danilovskaya [1] was the first author to solve an actual problem in the the-
ory of elasticity with nonuniform heat distribution. The problem was the half-
space subjected of thermal shock, in the context of what it became known
as the theory of uncoupled thermoelasticity. In this theory, the temperature
is governed by a parabolic partial differential equation that does not contain
any elastic terms, unlike the conventional thermoelasticity theory [2], based on
a parabolic heat equation, which predicts an infinite speed for the propagation
of heat, generalized and modified into various thermoelastic models based on
hyperbolic thermoelasticity [3]. These theories, referred to as generalized ther-
moelasticity, were introduced in the literature in an attempt to eliminate the
shortcomings of the classical dynamical thermoelasticity. For example, Lord
and Shulman [4], by incorporating a flux-rate term into Fourier’s law of heat
conduction, formulated a generalized theory which involves a hyperbolic heat
transport equation admitting finite speed for thermal signals. Green and Lind-
say [5], by including temperature rate among the constitutive variables, devel-
oped a temperature-rate dependent thermoelasticity that did not violate the
classical Fourier law of heat conduction, when the body under consideration
has a center of symmetry, and this theory also predicts a finite speed of heat
propagation.

During the second half of the twentieth century, non-isothermal problems of
the theory of elasticity became increasingly attractive. This is due mainly to their
numerous applications in widely diverse fields. First, the high velocities of modern
aircraft give rise to aerodynamic heating, which produces high thermal stresses,
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reducing the strength of the aircraft structure. Secondly, in the nuclear field,
the external high temperatures and temperature gradients originating inside the
nuclear reactors influence their design and operations (Nowinski [6]). Chan-
drasekharaiah [7] referred to this wavelike thermal disturbance as a “second
sound”. The Lord and Shulman theory of generalized thermoelasticity was further
extended by Dhaliwal and Sherief [8] to include the anisotropic case. A survey
article of representative theories in the range of generalized thermoelasticity is
due to Hetnarski and Ignaczak [9]. Chandrasekharaiah [10] introduced
a review literature about hyperbolic thermoelasticity. Sinha and Sinha [11] and
Sinha and Elsibai [12, 13] studied the reflection of thermoelastic waves from the
free surface of a solid half-space and at the interface of two semi-infinite media in
welded contact, in the context of generalized thermoelasticity. Abd-Alla and
Al-Dawy [14] studied the reflection phenomena of SV waves in a generalized
thermoelastic medium. Recently, Sharma et al. [15] investigated the problem
of thermoelastic wave reflection from the insulated and isothermal stress-free as
well as rigidly fixed boundaries of a solid half-space, in the context of different
theories of generalized thermoelasticity.

In recent years, the theory of magneto-thermoelasticity which deals with
the interactions between strain, temperature and electromagnetic fields, have
drawn the attention of many researchers because of their extensive applica-
tions in diverse fields, such as geophysics, for understanding of the effect of the
Earth’s magnetic field on seismic waves, damping of acoustic waves in a magnetic
field, emission of electromagnetic radiation from nuclear devices, development of
a highly sensitive superconducting magnetometers, electrical power engineering,
optics, etc. Knopoff [16] and Chadwick [17] studied these types of problems in
the beginning, developed later by Kaliski and Petykiewicz [18]. Abd-Alla
et al. [19] studied the reflection of generalized magneto-thermo-viscoelastic plane
waves. Ezzat and Youssef [20] studied the generalized magneto-thermoelas-
ticity in a perfectly conducting medium. Baksi et al. [21] illustrate magneto-
thermoelastic problems with thermal relaxation and heat sources in a three-
dimensional, infinite, rotating elastic medium.

Diffusion may be defined as a random walk of an ensemble of particles, from
regions of high concentration to regions of lower concentration. The study of this
phenomenon is of great concern due to its many geophysical and industrial appli-
cations. In integrated circuit fabrication, diffusion is used to introduce“dopants”
in controlled amounts into the semiconductor substrate. In particular, diffusion
is used to form the base and emitter in bipolar transistors, form integrated re-
sistors, form the source/drain regions in Metal Oxide Semiconductor (MOS)
transistors and dope poly-silicon gates in MOS transistors. The phenomenon of
diffusion is used to improve the conditions of oil extraction (seeking ways of more
efficient recovering of oil from oil deposits). These days, oil companies are in-
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terested in the process of thermoelastic diffusion for more efficient extraction of
oil from oil deposits. Using the coupled thermoelastic model, Nowacki [22–24]
developed the theory of thermoelastic diffusion. Using the L-S Model, Sherief
et al. [25] generalized the theory of thermoelastic diffusion, which allows finite
speeds of propagation of waves. The present study is motivated by the impor-
tance of thermoelastic diffusion process in the field of oil extraction. Recently,
Singh [26, 27] investigated the reflection phenomena of P and SV waves with
generalized thermo-elastic diffusion.

In this article, the P and SV waves on an isotropic homogeneous solid half-
space under influence of the magnetic field with generalized thermoelastic dif-
fusion, is studied for the GL model. The paper is classified as follows: In Sec. 2,
we present the governing equations and solutions. The expressions of reflection
coefficients upon magnetic field, thermal relaxation times, diffusion relaxation
times, angle of incidence of P and SV waves and other thermal and diffusion
parameters at free surface, are derived in Sec. 3. The numerical results are pre-
sented and the effect of magnetic field is shown graphically and discussed in
Sec. 4. Finally, the conclusions are drawn in Sec. 5.

2. Governing equations and solution

The governing equations for an isotropic, homogeneous, elastic solid with
generalized thermoelastic diffusion at reference temperature T0 with the body
forces are:

(i) The constitutive equations:

σij =

[
λekk − β1

(
1 + τ1

∂

∂t

)
Θ − β2

(
1 + τ1 ∂

∂t

)
C

]
δij + 2µeij ,(2.1)

ρT0S = ρCv

(
1 + τ0

∂

∂t

)
Θ + β1T0ekk + aT0

(
1 + τ0 ∂

∂t

)
C,(2.2)

P = −(β2 − b)
(

1 + τ1 ∂

∂t

)
ekk − a

(
1 + τ1

∂

∂t

)
Θ.(2.3)

(ii) Maxwell’s stress equation:

(2.4) τij = µe[Hihj +Hjhi −Hk.hkδij ].

Let us assume that the medium is a perfect electric conductor, and that the
linearized Maxwell equations are governing the electromagnetic field, taking into
account absence of the displacement current (SI); then we have
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(2.5)

curl	h = 	j,

curl 	E = −µe
∂	h

∂t
,

div	h = 0,

div 	E = 0,

where

	h = curl(	u× 	H0),(2.6)

	H = 	H0 + 	h, 	H0 = (0,H, 0),

H denoting constant primary magnetic field acting in direction y.
(iii) Equation of motion:

(2.7) σji,j + τji,j = ρüi,

which tends to

(2.8) µui,jj + (λ+ µ)uj,ij − β1

(
1 + τ1

∂

∂t

)
Θ,i − β2

(
1 + τ1 ∂

∂t

)
C,i + Fi = ρüi,

where
	F = 	j × 	B.

(iv) Equation of heat conduction

(2.9) ρCv

(
1 + τ0

∂

∂t

)
Θ̇ + β1T0ėkk + aT0

(
1 + τ0 ∂

∂t

)
Ċ = KΘ,kk.

(v) Equation of mass diffusion

(2.10) Dβ2e,ii +Da

(
1 + τ1

∂

∂t

)
Θ,ii + Ċ −Db

(
1 + τ1 ∂

∂t

)
C,ii = 0.

If the body forces are neglected and the L-S model is applied, the relevant
equations are deduced as in [26].

The thermal relaxation times τ1 and τ0 satisfy the inequality τ1 ≥ τ0 > 0,
the diffusion relaxation times τ1 and τ0 also satisfy the inequality τ1 ≥ τ0 > 0.

For two-dimensional motion in xz plane, the Eqs. (2.6), (2.9) and (2.10) are
written as

(λ+ 2µ)u1,11 + (λ+ µ)u3,13 + µu1,33 − β1τ
1
θΘ,1 − β2τ

1
c C,1 + F1 = ρü1,(2.11)

(λ+ 2µ)u3,33 + (λ+ µ)u1,31 + µu3,11 − β1τ
1
θΘ,3 − β2τ

1
c C,3 + F3 = ρü3,(2.12)

K∇2Θ = ρCvτ
0
θ Θ̇ + β1T0ė+ aT0τ

0
c Ċ,(2.13)

Dβ2∇2e+Daτ1
θ∇2Θ −Dbτ1

c∇2C + Ċ = 0,(2.14)
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where

τ1
θ = 1 + τ1

∂

∂t
, τ1

c = 1 + τ1 ∂

∂t
, τ0

θ = 1 + τ0
∂

∂t
, τ0

c = 1 + τ0 ∂

∂t
,

∇2 =
∂2

∂x2
+

∂2

∂z2
.

The displacement components u1 and u3 may be written in terms of scalar
and vector potential functions φ and ψ as

(2.15) 	u = 	∇φ+ 	∇× 	ψ,

and take the form

(2.16) u1 =
∂φ

∂x
− ∂ψ

∂z
, u3 =

∂φ

∂z
+
∂ψ

∂x
.

Substituting the displacements from Eqs. (2.16) into Eqs. (2.11)–(2.14), we get

µ∇2ψ = ρ
∂2ψ

∂t2
,(2.17)

(λ+ 2µ+ µeH
2)∇2φ− β1τ

1
θΘ − β2τ

1
cC = ρ

∂2φ

∂t2
,(2.18)

K∇2Θ = ρCvτ
0
θ

∂Θ

∂t
+ β1T0

∂

∂t
∇2φ+ aT0τ

0
c

∂C

∂t
,(2.19)

Dβ2∇2φ+Daτ1
θ∇2Θ −Dbτ1

c∇2C +
∂C

∂t
= 0.(2.20)

It follows from Eqs. (2.17)–(2.20) that the SV wave does not influence the
thermal, magnetic and diffusion fields but the P-wave does. The solution of
Eq. (2.17) corresponds to the propagation of SV waves with velocity Vs =

√
µ/ρ.

For solving analytically the Eqs. (2.18)–(2.20) in the form of a harmonic
travelling wave, we suppose the solution to take the form

(2.21) {φ,Θ,C} = {φ0, Θ0, C0}eik(x sin θ+z cos θ−vt),

where the pair (sin θ, cos θ) denotes the projection of the wave normal onto the
xz-plane.

The homogeneous system of equations in φ0, Θ0 and C0 obtained by inserting
(2.21) into Eqs. (2.18) to (2.20), admits non-trivial solutions and enables to
conclude that it satisfies the cubic equation

(2.22) ξ3 + Lξ2 +Mξ +N = 0,
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where

ξ = ρv2, τθ = τ0 + iω−1, τc = τ 0 + iω−1, τ11
θ = 1− iωτ1,

τ11
c = 1− iωτ1, d1 =

K

cvτθ
, d2 = −iωρDbτ11

c ,

ε =
β2

1T0τ
11
θ

iωρcvτθ
, ε1 = − a

β1β2
, ε2 = −iωρDβ2

2τ
11
c , ε3 =

iωaτc
β1β2τ11

c

,

M = (λ+ 2µ+ µeH
2)(d1 + d2 + εε1ε2ε3) + d1d2 + d2ε− εε2(ε1 + ε3)− ε2,

N = −d1d2(λ+ 2µ+ µeH
2) + ε2d1,

L = −(ε+ εε1ε2ε3 + d1 + d2 + λ+ 2µ+ µeH
2).

The roots of Eq. (2.22) give three values of ξ; each value of ξ corresponds to
a wave if v2 is real and positive. Hence, three positive values of v will be the
velocities of propagation of three possible waves.

Using Cardan’s method, Eq. (2.22) is written as:

(2.23) Λ3 + 3QΛ+G = 0,

where

(2.24) Λ = ξ +
L

3
, Q =

3M − L3

9
, G =

27N − 9LM + 2L3

27
.

For all the three roots of Eq. (23) to be real, ∆0 (= G2 + 4Q3) should be
negative. Assuming ∆0 to be negative, we obtain the three roots of Eq. (23) as

(2.25) Λn = 2
√
−Q cos

(
Φ+ 2π(n− 1)

3

)
, n = 1, 2, 3,

where

(2.26) Φ = tan−1

(√|∆0|
−G

)
.

Hence,

(2.27) vn =

√
3Λn − L

3ρ
, n = 1, 2, 3,

satisfying the inequality v1 > v2 > v3, which refer to the P wave, MD wave
and T wave respectively; this fact may be verified, when we solve the Eq. (2.23)
using a computer program of Cardan’s Method.
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3. Boundary conditions and reflection coefficients

In the previous section, it has been shown that there exist three kinds of
dilatational waves and one SV wave in an isotropic elastic solid with generalized
thermodiffusion. Any wave incident at the interface of two elastic solid bodies,
in general, produces dilatational and rotational waves in both media [28, 29].
Let us now consider an incident P or SV wave shown in Fig. 1.

Fig. 1. Incident P and SV waves (for incident P wave, θ0 =θ1, for incident SV wave, θ0 =θ4).

Now, we take into consideration: if the wave normal of the incident wave
makes angle θ0 with the positive direction of the z-axis, and those of reflected P,
T and SV waves make angles θ1, θ2, θ3 with the z-axis, the displacement poten-
tials ψ and φ, the temperature Θ and the concentration C, take the following
forms:

ψ = B0 exp[ik0(x sin θ0 + z cos θ0)− iωt](3.1)

+B1 exp[ik3(x sin θ3 − z cos θ3)− iωt],
φ = A0 exp[ik0(x sin θ0 + z cos θ0)− iωt](3.2)

+A1 exp[ik1(x sin θ1 − z cos θ1)− iωt]
+A2 exp[ik2(x sin θ2 − z cos θ2)− iωt]
+A3 exp[ik3(x sin θ3 − z cos θ3)− iωt],

Θ = ζ0A0 exp[ik0(x sin θ0 + z cos θ0)− iωt](3.3)

+ ζ1A1 exp[ik1(x sin θ1 − z cos θ1)− iωt]
+ ζ2A2 exp[ik2(x sin θ2 − z cos θ2)− iωt]
+ ζ3A3 exp[ik3(x sin θ3 − z cos θ3)− iωt],
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C = η0A0 exp[ik0(x sin θ0 + z cos θ0)− iωt](3.4)

+ η1A1 exp[ik1(x sin θ1 − z cos θ1)− iωt]
+ η2A2 exp[ik2(x sin θ2 − z cos θ2)− iωt]
+ η3A3 exp[ik3(x sin θ3 − z cos θ3)− iωt],

where

(3.5)
ηj = k2

jGj [ρυ
2
j − λ− 2µ− µeH

2],

ζj = k2
jRj [ρυ

2
j − λ− 2µ− µeH

2],
(j = 1, 2, 3),

and

Gj =
ερυ2

j (ε1ε2 − d2 + ρυ2
j )

d1ε2 + ρυ2
j [ε(d1 − ρυ2

j )− ε2 − 2εε1ε2]
,(3.6)

Rj =
ε2[ρυ

2
j (εε1 + 1)− d1]

d1ε2 + ρυ2
j [ε(d1 − ρυ2

j )− ε2 − 2εε1ε2]
.(3.7)

A0 and B0 are the amplitudes of the incident P and SV waves, respectively, and
A1, A2, A3 and B1 are the amplitudes of the reflected P, M, T and SV waves,
respectively.

The boundary conditions at the free surface, i.e. z = 0, take the form

(3.8) σzz + τzz = 0, σzx + τzx = 0,
∂Θ

∂z
= 0,

∂C

∂z
= 0 on z = 0.

For the reflected waves, the wave numbers and the reflected angles may be
written as

(3.9) k0 sin θ0 = k1 sin θ1 = k2 sin θ2 = k3 sin θ3,

which take the equivalent form

(3.10)
sin θ0
v0

=
sin θ1
v1

=
sin θ2
v2

=
sin θ3
v3

.

Substituting the components from Eqs. (2.1), (2.4) and (3.1)–(3.4) into the
boundary conditions of Eq. (3.8), we obtain a system of four algebraic equa-
tions which take the forms:

(3.11)
∑

AijZj = Bi (i, j = 1, 2, 3, 4),

where
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A1j = −
(
λ+ 2µ cos2 θj + µeH

2 + β1τ
11
θ

ζj
k2

j

+ β2τ
11
c

ηj

k2
j

)(
kj

�

)2

,

A14 = µ sin 2θ4

(
k4

�

)2

,

A2j = sin(2θj)

(
kj

�

)2

, A24 = cos 2θ4

(
k4

�

)2

,

A3j = cos 2θj
ζj
k2

j

(
kj

�

)3

, A34 = 0,

A4j = cos θj
ηj

k2
j

(
kj

�

)3

, A44 = 0.

Zj and Bj for incident P and SV waves may be written in the following forms:
(i) For incident P wave

B1 = −A11, B2 = A21, B3 = A31, B4 = A41, � = k0,

Z1 =
A1

A0
, Z2 =

A2

A0
, Z3 =

A3

A0
, Z3 =

B1

A0
.

(ii) For incident SV wave

B1 = A14, B2 = −A24, B3 = A34, B4 = A44, � = k4,

Z1 =
A1

B0
, Z2 =

A2

B0
, Z3 =

A3

B0
, Z3 =

B1

B0
.

4. Numerical results and discussion

For computational work, the following material constants at T0 = 27◦C
are used for an elastic body subject to generalized thermoelastic diffusion and
magnetic field:

λ = 5.775× 1011 dyne/cm2, µ = 2.646× 1011 dyne/cm2,

ρ = 2.7 gm/cm3, Cv = 2.361 cal/gm ◦C,

K = 0.492 cal/cm s ◦C, t = 0.05 cm3/gm,

c = 0.06 cm3/gm, D = 0.5 g s/cm3,

a = 0.005 cm2/s2 ◦C, b = 0.05 cm5/gm s,

αt = 0.005, αc = 0.05,

ω = 20 s−1, τ0 = τ1 = 0.05,

τ0 = τ1 = 0.04.
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Magnetic field H

Fig. 2. Variations of (velocities of P wave, MD wave and T wave)× 102 as functions of the
magnetic field H.

Figure 2 displays the influence of the magnetic field on the velocities of P,
MD and T waves for various material parameters. It is shown that with small
values of the magnetic field, the P wave is the slowest but the T wave is the
fastest. With increasing values of the magnetic field, it is shown that MD wave
is the slowest and P wave is the fastest.

The numerical values of reflection coefficients of various reflected waves are
computed for angles of incidence P wave varying from 1◦ to 90◦ for the GL model,
when 0 < H < 100 Oersted. These numerical values of reflection coefficients
are shown graphically in Figs. 3–6. Figure 3 shows the reflection coefficients of
SV waves for the GL model. It begins from its minimum at θ = 0◦, increases
and then decreases to its minimum, to return to its value zero at θ = 90◦.
Figures 4–6 show the influence of the magnetic field on reflected P, MD and T
waves depending on the angle of incidence of P wave, respectively. It is shown

Angle of incidence θ

Fig. 3. Effects of the magnetic field on reflection coefficients of SV waves as functions of the
angle of incidence θ of the P wave.
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Angle of incidence θ

Fig. 4. Effects of the magnetic field on reflection coefficient P wave as functions of the angle
of incidence θ of the P wave.

Angle of incidence θ

Fig. 5. Effects of the magnetic field [H = 0, (H = 10)× 103, (H = 100)× 108] on reflection
coefficient of the Mass Diffusion wave as functions of the angle of incidence θ of the P wave.

Angle of incidence θ

Fig. 6. Effects of the magnetic field [H = 0, H = 10, (H = 100)× 104] on reflection
coefficient of T as functions of the angle of incidence θ of the P wave.
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Angle of incidence θ

Fig. 7. Effects of the magnetic field on the reflection coefficient of SV wave as functions of
the angle of incidence gθ of the SV wave.

Angle of incidence θ

Fig. 8. Effects of the magnetic field on the reflection coefficient of P wave as functions of the
angle of incidence θ of the SV wave.

Angle of incidence θ

Fig. 9. Effects of the magnetic field [H = 0, (H = 10)× 102, (H = 100)× 107] on the
reflection coefficient of MD as functions of the angle of incidence θ of the SV wave.
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Angle of incidence θ

Fig. 10. Effects of the magnetic field [H = 0, H = 10, (H = 100)× 103] on the reflection
coefficient of T wave as functions of the angle of incidence θ of the SV wave.

that with increasing angle of incidence of P wave, all reflection coefficients in-
crease from their minima to maxima and then decrease to their minimal value.
Also, it can be concluded that increasing of the magnetic field leads to reduction
of all reflection coefficients.

Effects of the magnetic field on reflected SV, P, MD and T waves as functions
of the angle of incidence of SV wave are displayed in Figs. 7–10 respectively. It
is seen that the reflection coefficients for the reflected waves start from their
minima at θ = 0◦, increase with increasing of the angle of incidence, attain
their critical values at θ = 45◦ and next decrease and return to their minima
at θ = 90◦. Also, and with influence of the magnetic field, one can see that the
reflection coefficient of SV wave reflected from the incident SV wave, increases
with increasing of the magnetic field at the interval 0◦ < θ < 45◦, and after the
critical value the reflection coefficient decreases with increasing H . Dependences
in Fig. 8 are more complex. From Fig. 9 it is seen that the reflection coefficient
of MD wave increases with larger values of the magnetic field.

Finally, from Fig. 10 it can be seen that the reflection coefficient of T wave
decreases with increasing H .

5. Conclusions

The effects of the magnetic field, thermal relaxation times and diffusion re-
laxation times on the reflection coefficients of SV, P, MD and T waves reflected
from incident P and SV waves have been shown. The conclusions can be sum-
marized as follows:

The angle of incidence θ affects the reflection coefficients in various ways.
Analytically, it is seen that the magnetic field and thermal relaxation times have
a strong influence on reflection coefficients for incident P and SV waves. For the
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reflection coefficients of the incident SV wave, the angle of incidence θ = 45◦ is a
critical value for the reflected waves. Graphically, it is shown that the influence
of the magnetic field is very pronounced and either increasing or decreasing the
reflection coefficients. Finally, the results obtained may be applicable to seismic
waves, earthquakes, geophysics, volcanos, nuclear fields, geology, etc.
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