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57045 Metz, France

2)Laboratoire de Physique et Mécanique des Matériaux
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The thermomechanical response of beams made up of thermoplastic polymer
is analysed in the case of cyclic bending. The material behavior is modelled by a
viscoelastic law depending on temperature and frequency. Inertia effects are neglected.
The stress, strain and temperature distributions are expressed as functions of the
beam geometry, the loading parameters and the material characteristics. The stability
of the steady-state solutions is analysed with use of a linear perturbation approach.
The conditions for thermal runaway (thermo-mechanical instability) are explored.
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1. Introduction

The dynamic response of polymeric materials is of great interest to design
such structural elements as vibration dampers and to anticipate catastrophic
self-heating, which may occur under particular conditions. Thermal runaway re-
sults from unbalance between the loss energy and heat transfer; this phenomenon
is worsed by high temperature sensitivity and low thermal conductivity of ther-
moplastic elastomers.

Experimental aspects of thermal failure in polymers have been explored by
Hertzberg [5], Ratner and Koborov [8] and Ridell et al. [9] Menges and
Alf [7] showed the continuous increase of temperature in the case of pulsating
tensile load. Constable [1] explored the cyclic torsion and bending; he related
the cyclic thermal softening to the compliance loss, the specimen geometry and
the magnitude of cyclic load.
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Huang and Lee [6] studied the thermomechanical coupling phenomena of
viscoelastic rods loaded alternatively. Tauchert [18] analysed the influence
of testing conditions on the internal heat generated in polyethylene rods and
showed the existence of high-frequency regime, leading to thermal failure before
the thermal equilibrium. Ting [19] for alternative torsion solicitation and Ting

and Tuan [20] for cyclic internal pressure, proposed with use of complex vari-
ables, a simplified formulation of the coupled thermomechanical problem. They
calculated by iteration the temperature distribution and the stress response de-
scribing the equilibrium state.

Takahara et al. [10, 11] have calculated the temperature field by assum-
ing a uniform distribution through the sample. Lesieutre and Govindswamy

[15] determined the dynamic response in simple shear through generic damping
elements introduced in finite element calculation. The temperature effects were
introduced owing to a time-dependent shift factor. This description, in terms
of reduced time, was also developed by Wineman and Kolberg [21] to deter-
mine the continuous response of a polymeric beam subjected to pure bending.
Schapery [16] and Schapery and Cantey [17] studied the thermal response
of a viscoelastic material subjected to harmonic shearing for two loading situa-
tions: imposed displacement or inertial driving. They have shown the existence
of an instable response of the system in accordance with their experimental
observations of thermal runaway. Considering the frequency and temperature
dependence of viscoelastic materials, the temperature distribution has been ob-
tained in closed form by Molinari and Germain [12] for a cyclic compressive
loading. They also analysed the stability of the steady state solutions and cor-
roborated the conditions of thermal runaway to experimental observations, see
also Leroy and Molinari [13] and [14] for analogies with shear stability prob-
lems. Using the same thermosensitive law as in [12], Dinzart and Molinari [3]
extended the previous study to torsional loading of plain or hollow cylinders.

This paper is devoted to the analysis of the thermomechanical response of a
viscoelastic beam under cyclic pure bending. The classical assumptions of beam
theory are made, i.e. plane sections remain plane so that the strains vary lin-
early through the thickness of the beam. Thermal runaway is explored for a
beam under curvature control or under bending moment control. The bending
moment and curvature are expressed as functions of the cross-section geometry,
the material parameters and loading conditions. The linear viscoelastic behav-
ior is specified as a Boltzmann law, where the storage and loss moduli depend
linearly on the temperature. The material is assumed to be isotropic and incom-
pressible. An example of real material is provided by thermoplastic elastomer
whose Poisson’s ratio is close to 0.5. Inertia effects are neglected. The formula-
tion is restricted to conditions of small strains and rotations; thermal expansion
is not taken into account.
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The paper is organised as follows. The governing equations and the descrip-
tion of pure bending assumptions are introduced in Sec. 2. The mean temper-
ature over a cycle and the bending moment are expressed as functions of the
strain amplitude in Sec. 3. The fourth section is devoted to a parametric study.
The conditions of existence of steady-state solutions are established in the last
section. A simplified linear stability analysis is conducted under the assumption
of uniform temperature distribution, which leads to closed-form conditions of
thermal runaway.

2. Governing equations

2.1. Geometry and mechanical fields

The sample is a straight cylindrical beam of rectangular cross-section of
characteristic half-height e and half-width l. The x-axis coincides with the line
drawn through the centroids of the cross-sections. The y-axis and z-axis are
placed along the lines of symmetry. The beam is loaded only by bending moments
M(t) about the z-axis at the end faces A and B. The intersection of the beam
segment with the x− y plane of symmetry is described in Fig. 1 for undeformed
and deformed states.
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1−a Undeformed segment of beam

1−b Deformed segment of beam
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Fig. 1. Geometrical description of the beam.
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Standard assumptions concerning pure bending deformation are applied at
each time t. The deformation is small enough to neglect the change in shape
of the cross-section. Each plane cross-section rotates about the z-direction and
remains plane. The line segments initially straight along the y-axis rotate into
radial line segments which may intersect at the common point O. The line seg-
ments initially straight along the x-axis are curved into circular arcs of center O.
These segment lines are alternatively elongated and shorten.

The neutral axis is at the distance R(t) from the center of curvature O. The
inclination angle between the end faces A and B is denoted Θ(t). As the length
L of the beam along the neutral axis remains constant, the curvature is related
to the inclination angle by

(2.1) R(t)Θ(t) = L.

Taking advantages of the symmetry of the problem and of the isotropic behavior
of the material, the strain and stress distributions and the temperature do not
depend on the spatial variables (x, z). A local description of the cross-section
along the normal direction ey is provided by the variable

y = r −R(t),

where r is the coordinate of a line segment from the center O.

Mechanical boundary conditions

The first type of loading conditions considered in this paper consists in pre-
scribing the rotation angle Θ(t) in the form of superposition of a periodic loading
to a static deformation Θm:

(2.2) Θ(t) = Θm +Θ0 sinωt

with Θ0 ≥ 0.
Alternatively, a second type of loading is analysed when the beam is loaded

by a bending moment applied to the end face B:

(2.3) M(t) = Mm +M0 sinωt

with M0 ≥ 0. The opposite bending moment is applied at the end face A.
The inclination angle Θ(t) is then controlled by the prescribed moment. The
curvature or the bending moment are transmitted with no normal resultant
force acting on a cross-section and without shearing.
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Strain and stress fields

The stress tensor is expressed in the following form:

(2.4) σij = −pδij + sij ,

where p is the hydrostatic pressure and sij the stress deviator. The linear
isotropic incompressible viscoelastic behavior is described according to the Bolz-
mann law:

(2.5) sij = 2

t∫

−∞

G
(
t− t′, T

)
ε̇ij
(
t′
)
dt

= 2G∞ (T ) εij + 2

t∫

−∞

(
G
(
t− t′, T

)
−G∞ (T )

)
ε̇ij
(
t′
)
dt,

where G∞ (T ) is the equilibrium modulus at the temperature T . The thermal
effects are included in the temperature-dependence of the relaxation function G.

Inertia effects are neglected as the frequency ω is sufficiently small, i.e.

ω � 1

L2

√
EIz
ρS

where E is the Young modulus, ρ the volumic mass, Iz the

quadratic moment of the cross-section about the z-axis and S the cross -sectional
area (see Christensen [2]).

Under the assumption of pure bending and small deformation, each material
element is under uniaxial stress state σxx(y, t) (other σij = 0).

As the temperature variation is small during a cycle, the temperature
distribution appears in the first approximation as an even function of the co-
ordinate y: Tm(y, t) = Tm(−y, t). The material presents the same response
in tension and in compression and consequently, the uniaxial stress state is
an odd function of the coordinate y: σxx(y, t) = −σxx(−y, t). The deviatoric
stresses and the hydrostatic pressure are also odd functions of the coordinate y:
sij(y, t) = −sij(−y, t) and p(y, t) = −p(−y, t). As the radial stresses (σyy, σzz)
are assumed to be negligible in pure bending, the stress decomposition (2.4)
induces syy = szz = p(y, t).

The usual development under small deformation assumption leads to the
following expression for the axial strain εxx at the coordinate y at the time t:

εxx (y, t) =
y

L
Θ (t) .

Using the prescribed kinematic assumption (2.2), the axial strain is expressed as:

(2.6) εxx (y, t) =
y

e
(εm + ε0 sinωt)

with εm =
eΘm

L
and ε0 =

eΘ0

L
.
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The deviatoric stresses are expressed after substitution into the Boltzmann
law (2.5). As εii = 0 due incompressibility, we obtain εyy = εzz = −εxx/2. It
yields syy = szz = −sxx/2 = p(y, t). The axial stress has the form:

σxx = (3/2)sxx.(2.7)

2.2. Visco-elastic behavior in cyclic loading

The amplitude of temperature oscillations resulting from the sinusoidal so-
licitation is small enough to substitute in the constitutive law the temperature

averaged over a cycle Tm = ω/2π
∫ t0+2π/ω
t0

T (t)dt in place of the temperature T .
After substitution of the strain tensor (2.6) into the constitutive law (2.5),

it follows that:

(2.8) sxx = 2G∞ (Tm) εm
y

e
+ 2ε0

[
G′(ω, Tm) sinωt+G′′(ω, Tm) cosωt

] y
e

where εm is the strain response to the static loading Θm. The frequency and
temperature-dependent storage and loss moduli,G′ (ω, Tm) andG′′ (ω, Tm) given
by

G′ (ω, Tm) = G∞ (Tm) + ω

∞∫

0

(G (u, Tm) −G∞ (Tm)) sin(ωu)du,

G′′ (ω, Tm) = ω

∞∫

0

(G (u, Tm) −G∞ (Tm)) cos(ωu)du,

are proportional respectively to the average stored energy and dissipated energy
in a cycle.

Molinari and Germain [12] conducted the tests for different frequencies
and various temperatures on a Peba elastomer and have demonstrated the ex-
istence of master curves describing the storage and loss moduli in the range of
tests. Similarly, we describe the variations of the moduli in terms of the reduced
temperature Tr = T − (1/β) ln (ω/ω0), where β and ω0 are material character-
istics:

G′ (ω, T ) = h1 − h2Tr,(2.9)

G′′ (ω, T ) = g1 − g2Tr = g2 (Tω − T ) .(2.10)

The frequency-dependent temperature Tω is introduced for the sake of simplicity:

(2.11) Tω =
g1
g2

+
1

β
ln (ω/ω0) .

The material parameters describing the behavior of a Peba elastomer are given
in Sec. 4.
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2.3. Heat equation

The evolution of the temperature is assumed to be governed by the linear
heat equation using the assumption of transverse heat transfer:

(2.12) ρc
∂T

∂t
− k

∂2T

∂y2
= Q̇,

where ρ is the density, c the specific heat capacity, k the heat conductivity and
Q̇ the energy dissipated per unit time and unit volume.

Under steady state conditions, the heat generated through dissipation over
a cycle is balanced by the heat loss into the surroundings. The averaged tem-
perature Tm over a cycle is time-independent. The spatial distribution of the
averaged temperature Tm satisfies the heat equation (2.12) averaged over a cy-
cle:

(2.13) −kd
2Tm

dy2
=

ω

2π
∆Qst = ∆Q

st
,

where ∆Q
st

is the time average per cycle of the energy dissipated per unit
volume:

(2.14) ∆Q
st

=
ω

2π

2π/ω∫

0

Q̇(t)dt.

Since the dissipated energy per cycle is given by the hysteresis loop, we have:

(2.15) ∆Q
st

=
ω

2π

2π/ω∫

0

σij ε̇ijdt.

Thermal dilatation is not taken into account in the following analysis. The
end faces A and B (Fig. 1a) are assumed to be adiabatic. The temperature
distribution appears also as an even function of the variable y. The thermal
boundary conditions specify the heat transfer at the lateral boundaries y = e
and vanishing of the heat flux along the neutral axis y = 0:

k
dTm

dy
+ λ (Tm − T0) = 0 at y = e,(2.16)

k
dTm

dy
= 0 at y = 0,(2.17)

where λ is the heat transfer coefficient at the external boundary and T0 is the
external temperature.



66 F. Dinzart, A. Molinari, R. Herbach

3. Steady state response

The steady state response is analyzed first; in that case, the heat generated
by dissipation during a cycle is exactly balanced by the heat transferred to the
surroundings.

3.1. Temperature distribution

The dissipated energy is evaluated from Eq. (2.15):

(3.1) ∆Q
st

=
3

2

ω

e2
ε20y

2G′′(ω, Tm),

where the dissipation modulus is expressed by Eq. (2.10). As a consequence of
(2.13), the average temperature satisfies the differential equation

d2Tm

dy2
− a2y2Tm = −a2y2Tω,(3.2)

with a2 =
3

2k

ω

e2
g2ε

2
0.(3.3)

The temperature distribution Tm involves the modified Bessel functions I1/4

and I−1/4 (Watson [23]):

Tm(y) = Tω + κ1
√
yI−1/4(ay2/2) + κ2

√
yI1/4(ay2/2),(3.4)

with (κ1, κ2) determined so as to satisfy the thermal boundary conditions (2.16)
and (2.17). As the derivative of the function

√
yI−1/4(ay2/2) versus y is

a
2y

3/2I3/4(ay2/2) and vanishes for y = 0, it can be shown using Eq. (2.17) that
κ2 = 0. Taking account of the thermal boundary condition at y = e (2.16), the
temperature distribution reads:

(3.5) Tm(y) = Tω + κ1
√
yI−1/4(ay2/2)

with

(3.6) κ1 =
λ (T0 − Tω)[

kae3/2I3/4(ae2/2) + λ
√
eI−1/4(ae2/2)

] .

3.2. Resulting bending moment

In some experiments, a prescribed bending moment is transmitted to the
specimen at the end face B, the end face A remaining fixed. The relation be-
tween the amplitude of the bending moment and the axial deformation has to
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be established. The phase angle between the applied curvature and the result-
ing moment derives from the dissipative effects. In case of uniform tempera-
ture distribution, the phase angle is identical to the loss tangent defined as

tanψ =
G′′ (ω, Tm)

G′ (ω, Tm)
.

The bending moment is calculated in terms of stress by M(t) = 2l
e∫

−e

σxxydy

= 3l
e∫

−e

sxxydy which can be transformed to:

(3.7) M = Mm +M1 sinωt+M2 cosωt = Mm +M0 sin (ωt+ ϕ) ,

where

Mm = 12
l

e
εm

e∫

0

G∞ (Tm(y)) y2dy,(3.8)

M0 =
√
M2

1 +M2
2 ,(3.9)

tanϕ = M2/M1,(3.10)

(3.11)

M1 = 12
l

e
ε0

e∫

0

G′ (ω, Tm) y2dy,

M2 = 12
l

e
ε0

e∫

0

G′′ (ω, Tm) y2dy.

Using (3.5), we have:

M1 = 4le2ε0h2

[(
h1

h2
− g1
g2

)
− 3κ1

1

ae3/2
I3/4(ae2/2)

]
(3.12)

M2 = −12
l

a
e1/2ε0g2κ1I3/4(ae2/2).(3.13)

4. Parametric analysis

The cross-section of the beam drawn in Fig. 1a is defined by its half-height
e = 5 · 10−3 m and its half-width l = 25 · 10−3 m. The parametric analysis is
conducted at the reference temperature T0 = 320 K. The influence of the loading
parameters is described in terms of deformation amplitude, bending moment
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and pulsation frequency. Effects of the geometry are studied in connection with
their contribution to the heat diffusion process. The material considered here is
a thermoplastic elastomer, where the amorphous polyether phase is crosslinked
by a semi-crystalline polyamid (PEBA). The material tests for characterising
the storage and loss moduli G′(ω, T ) (2.9) and G′′(ω, T ) (2.10) are conducted at
different frequencies and various temperatures. The results can be synthetised
on a single master curve (Ferry [4]). The melting temperature is 441 K. The
mechanical and thermal properties are presented by Molinari and Germain

[12] in the following table for a Peba of Shore D and hardness 40.
The coefficients h1, h2, g1 and g2 are constant in the temperature interval

Tr > 314 K.

Peba MPa

h1 91

h2 0.193

g1 3.1

g2 0.006

Material parameters

ω0 628 rad/s

β 0.4 K-1

k 0.2 Wm-1K-1

λ 20 Wm-2K-1

ρc 2 106 Wm-3K-1

4.1. The influence of the loading parameters

The evolution of the mean temperature Tm for increasing deformation is
represented in terms of the deformation ε0 in Fig. 2 for ω = 50 rad/s and for
εm = 0. The largest temperature is observed at the specimen center where the
heat diffusion towards the surroundings is limited.
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Fig. 2. Temperature at the center y = 0 and at the lateral boundary y = e with respect to

ε0 =
eΘ0

L
(for ω = 50 rad/s).
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For a given frequency, we have Mm = 0 and the bending moment M0 (calcu-
lated from Eqs. (3.9) with (3.12) and (3.13) presents an extremum M cr

0 at a crit-
ical value εcr0 (Fig. 3). Two types of loading conditions are analyzed: a prescribed
curvature (2.2) or a prescribed moment (2.3). Under the cyclic kinematic εm = 0,
when the deformation amplitude ε0 = eΘ0/L and the frequency ω are imposed,
only one bending moment M0 is associated to steady state regime. For a bend-
ing moment M0 larger than M cr

0 , the solution presented in Fig. 3 shows that no
steady state regime can be established. When the prescribed bending moment
M0 is smaller than M cr

0 , two steady-state regimes can be described provided that
the melting temperature is not reached. The stability of the regimes is analyzed
in the next section.

Alternatively, the bending momentM0 may be analysed in terms of frequency
ω when the deformation ε0 is fixed (Fig. 4). The thermal softening effects are
amplified at high frequency regime since the dissipated energy is less evacuated
to the surroundings. For larger values of ε0, the frequency associated with the
extremum of bending decreases.

The critical deformation εcr0 defined before decreases when the frequency
increases (Fig. 5). As a consequence, for an assumed value of the momentM0, the
steady-state solution becomes unstable when the frequency ω reaches a critical
value. For instance, in Fig. 5, the critical value of ω is 100 rad · s−1 for M0 = 3
Nm. Schapery and Cantey [17] have already discussed in their Figure 10 the
existence of this type of instability.
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Fig. 3. Evolution of the bending moment M0 in terms of ε0 = eΘ0/L (for ω = 50 rad/s).
Note the evolution of the rate of growth ν as a function of the boundary conditions. The
neutral stability point defined by ν = 0 under prescribed moment (φ→∞) corresponds to
the maximum of the M0 versus the ε0 curve. The ascending branch is stable (ν < 0) and

the descending branch (ν > 0) are unstable.
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Fig. 4. Evolution of the bending moment in terms of the frequency ω.
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Fig. 5. Amplification of the thermal effects with larger values of the frequency ω.

The axial stress profile defined by σ0(y) = 3ε0
y

e

√
G′(ω, Tm)2 +G′′(ω, Tm)2

for εm = 0 is analyzed for two deformation amplitudes ε0 in Fig. 6. The bending
moment M0 can be related to an equivalent axial stress σ0e introduced when

a linear stress distribution of the form σ0e (y) =
y

e
σ0e is considered: M(t) =

2l
∫ e
−e

σ0e

e
y2dy =

σ0e

e
Iz, where Iz = 4le3/3 is the quadratic moment of the
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cross-section area about the z-axis. Figure 6 shows that the axial stress profile
σ0 (y) differs from the equivalent stress profile σ0e (y) when the amplitude of
the deformation ε0 increases: the boundary layers of the beam appear more
constrained.
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Fig. 6. Axial stress profiles at two values of ε0 = eΘ0/L.

4.2. Effects of the geometry

The maximum axial stress at the lateral boundary σ0(e) =

3ε0

√
G′ (ω, Tm)2 +G′′ (ω, Tm)2 is plotted in Fig. 7 versus the amplitude de-

formation for various widths. For increasing width, the maximum amplitude of
the axial stress at the boundary σcr

0 (e) and the corresponding critical amplitude
deformation εcr0 decrease.

Let us consider the first-order expansion of the modified Bessel functions

I−1/4 (Watson [23]): I−1/4

(
ay2/2

)
=

√
2
a−1/4

Γ (3/4)
y−1/2. The first-order asymp-

totic expansion of the temperature distribution (3.5) with respect to ay2 for
both loading modes has the form:

(4.1) Tm(y) = Tω +
T0 − Tω(ωg2e
2λ

ε20 + 1
) + o(ay2) .

At the first order, the temperature distribution does not depend on the varia-
ble y.
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Fig. 7. Evolution of the amplitude σ0(e) of the axial stress at the boundary versus ε0 =
eΘ0

L
.

The bending moment M0 is also approached by its expansion versus ay2 at
the first order:

(4.2) M0 = 4le2ε0g2 (Tω − Tm)

[
1+

(
h2

g2

)2[
1 +

1

(Tm − Tω)

(
h1

h2
− g1
g2

)]2
]1/2

+ o (ay2)

with Tm = Tω +
T0 − Tω(ωg2e
2λ

ε20 + 1
) . The contribution of the heat transfer coefficient

λ at the external boundary may be analyzed in connection with the width influ-

ence. When the ratio λ/e is kept constant, the temperature (4.1) is unchanged

while the bending moment (4.2) is multiplied by a factor κ2 when the width e is

changed by κe (Fig. 8 ). As a consequence, the amplitude of the critical bending

moment M cr
0 corresponds to the same critical deformation amplitude εcr0 and

critical temperature T cr
m for a constant ratio λ/e.

5. Linear stability analysis

So far, the analysis has been restricted to the mathematical existence of
the steady-state solutions, but their physical existence, which depends on their
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Fig. 8. Effect of the heat transfer coefficient λ on steady states.

stability, was not established. This section is aimed at analysing the influence
of the loading conditions on the stability of steady states.

5.1. Preliminary consideration to the linearized stability analysis

We consider weak instabilities for which the characteristic time of growth
is large with respect to the period of a cycle. The temperature evolution is
described using two time-scales:

– the fast time t0 = t describes the variations of temperature, stress and
strain in a cycle,

– the slow time t1 = εt – with ε being small parameter – follows the de-
velopment of the instability troughout the successives cycles. The average
temperature T̄ over a cycle is defined as

(5.1) T̄ (y, t1) =
ω

2π

t0+2π/ω∫

t0

T
(
y, t′0, t1

)
dt′0.

The time-dependence of T̃ is slow since the evolution of the averaged tem-
perature is controlled by the weak instability. The stability of the steady state
solution is inferred by considering a small perturbation of the stationary tem-
perature profile Tm (y) and looking on the evolution of the average temperature
T̄ (y, t1) at times much larger than the period 2π/ω. Time averaging in a cycle
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of the heat equation (2.12) leads to:

(5.2) ρc
∂T̄

∂t
− k

∂2T̄

∂y2
= ∆Q.

To demonstrate (5.2), we have used the following relationships:

∂

∂t
T (y, t0, t1) =

∂T

∂t0
+ ε

∂T

∂t1

and
∂T

∂t
= ε

∂T

∂t1
= ε

∂T̄

∂t1
=
∂T̄

∂t

(expressions developed by Molinari and Germain [12]). The energy dissipated
per unit volume and per cycle at the time t is expressed as:

(5.3) ∆Q =
ω

2π

t0+2π/ω∫

t0

σij

(
y, t′0, t1

)
ε̇ij
(
y, t′0, t1

)
dt′0

and is considered as the superimposition of a perturbation to the heat generated
in stable regime:

(5.4) ∆Q = ∆Q
st

+ ∆Q̂ exp νt

with ∆Q
st

given by (3.1). The average temperature is considered as the super-
imposition of a perturbation δT̄ (y, t) to the steady temperature Tm (y):

(5.5) T̄ (y, t) = Tm (y) + δT̄ (y, t) = Tm (y) + δT̂ (y) exp νt.

The perturbation is supposed to be separated into space and time contributions,
where ν denotes the rate of growth of the perturbation. The steady state solution
is linearly stable if the real part of ν is negative. After substraction of (2.13)
from (5.2), a differential equation governing the perturbation δT̂ (y) is obtained:

(5.6) ν
(ρc
k
δT̂ (y)

)
− d2δT̂ (y)

dy2
=

1

k
∆Q̂,

where the expression ∆Q̂ is determined as the local increase of energy
dissipated per cycle. When instability occurs, the amplitude of the response
varies with time. We define the amplitude of the axial strain by εa and a sim-
ilar decomposition as for the temperature perturbation (5.5) is considered (see
Appendix A):

(5.7) εa = ε0 + δε̄(t) = ε0 + δε̂ exp νt.
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Note that εxx is given by (2.6) where ε0 is replaced by εa. The bending moment
given by M(t) = Mm +Ma sinωt with Ma decomposed into:

(5.8) Ma = M0 + δM̄(t) = M0 + δM̂ exp νt.

The increment of energy dissipated per cycle can be expressed as a function of
deformation and temperature increment (see Appendix A):

(5.9)
1

k
∆Q̂ = a2y2

[
2
δε̂

ε0
(Tω − Tm (y)) − δT̂

]
.

The temperature perturbation δT̂ (y) has also to satisfy the thermal bound-
ary conditions and the symmetry condition at y = 0:

k
dδT̂ (y)

dy
+ λδT̂ (y) = 0 at y = e,(5.10)

(5.11) k
dδT̂ (0)

dy
= 0.

5.2. Stability analysis for a prescribed curvature

Prescribed deformation imposes δε̂ = 0. From Eqs. (5.6) and (5.9), it follows
that the temperature perturbation satisfies the differential equation:

(5.12) ν
(ρc
k
δT̂ (y)

)
− d2δT̂ (y)

dy2
= −a2y2δT̂ (y).

The conditions of neutral stability ν = 0 corresponds to vanishing of the rate
of growth of the perturbation. It is seen that δT̂ (y) satisfies the same type of
equation as the homogeneous part of the Eq. (3.2) governing the steady state
temperature Tm. The solution is expressed as δT̂ (y) = χ1

√
yI−1/4(ay2/2) +

χ2
√
yI1/4(ay2/2), where the constants (χ1, χ2) are determined by the thermal

boundary conditions (5.10) and (5.11). It is numerically observed that no values
different from (χ1 = 0, χ2 = 0) can be found to satisfy the condition of neutral
stability ν = 0. Therefore, the sign of ν is determined by considering a particular
loading, for instance a zero amplitude of strain. Then the evolution of δT̂ (y)

satisfies the equation: ν
(ρc
k
δT̂ (y)

)
− d2δT̂ (y)

dy2
= 0. This equation and the

associated thermal boundary conditions are similar to those analyzed by Leroy

and Molinari [13]. These authors have shown that ν < 0. Consequently, the
steady state solutions under prescribed curvature are stable.
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5.3. Stability analysis for a prescribed bending moment

The amplitude Ma of the bending moment is given by Ma =
√
M2

1 +M2
2

with M1 and M2 obtained from (3.11), where ε0 is replaced by εa and Tm

by T̄ . The substitution is valid when weak instabilities are considered. Then
δM̂ is derived from (5.8) (see Appendix B). For a prescribed moment, δM̂ =
0. A combined linearisation of εa and T̄ at the first order gives the following
relationship:

(5.13)
δε̂

ε0
=

[
e∫
0

(h2G
′ (ω, Tm) + g2G

′′ (ω, Tm)) y2dy

] [
e∫
0

δT̂ y2dy

]

[(
e∫
0

G′ (ω, Tm) y2dy

)2

+

(
e∫
0

G′′ (ω, Tm) y2dy

)2
] .

Using (5.6) and (5.9), the temperature perturbation satisfies the differential
equation:

(5.14) ν
(ρc
k
δT̂ (y)

)
− d2δT̂ (y)

dy2

= a2y2




2

[
e∫
0

(h2G
′ (ω, Tm) + g2G

′′ (ω, Tm)) y2dy

] [
e∫
0

δT̂ (y)y2dy

]

[(
e∫
0

G′ (ω, Tm) y2dy

)2

+

(
e∫
0

G′′ (ω, Tm) y2dy

)2
]

· (Tω − Tm (y)) − δT̂ (y)

]
.

The critical steady state corresponds to neutral stability (ν = 0) and is ob-
tained for the value εcr0 of the amplitude. No closed-form solution is available
for the integro-differential equations (5.14) with ν = 0. However, by using the
Bubnov–Galerkin method, one could give, as in Dinzart and Molinari [3],
an estimation of the critical axial strain εcr0 . The amplitude of the perturba-
tion δT̂ (y) is expressed as a linear combination of basis quadratic functions(
Φ1 = a1 + b1y − y2, Φ2 = a2 + b2y

3 − y4
)

such that δT̂ (y) = c1Φ1(y)+c2Φ2(y).
The constants (a1, b1, a2, b2) are determined in order to satisfy the thermal
boundary conditions. The orthogonality conditions written for the residuals of
the differential equation (5.14) provide a linear system for (c1, c2). Setting the
determinant of this system equal to zero provides the critical amplitude εcr

0 of
the steady state corresponding to the neutral state. It can be shown that steady
states of amplitude ε0 are stable for εcr0 > ε0 and unstable for εcr0 < ε0.
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5.4. Assumption of temperature uniformity in a cross-section

Simple stability results are obtained when some simplifying assumptions are
made. When the specimen is thin enough, the temperature within a cross-section
can be assumed as quasi-uniform. Then, explicit results are obtained concerning
the critical strains εcr0 and the corresponding values of the moment M cr

0 . The
energy equation (2.12) is first averaged over the thickness of the sample1):

(5.15) ρc

〈
∂T (y, t)

∂t

〉
− k

〈
∂2T (y, t)

∂y2

〉
=
〈
Q̇
〉
,

where k

〈
∂2T (y, t)

∂y2

〉
is simplified to

λ

e
(T (t) − T0) when considering thermal

boundary conditions. The resulting energy equation is averaged over a cycle in
view to determine the mean temperature evolution:

(5.16) ρc
dT̄ (t)

dt
+
λ

e

(
T̄ (t) − T0

)
= 〈∆Q〉,

where 〈∆Q〉 is defined from the space averaging of the energy dissipated
per unit volume and per cycle by (5.3). The perturbed temperature T̄ (t) is
expressed as the superposition of the steady temperature Tm and a small per-
turbation δT̄ (t). Instability is related to the growth of δT̄ (t) with time. It is
seen that the steady temperature Tm satisfies the equation derived from (5.16)
(see Appendix C):

(5.17)
λ

e
(Tm − T0) = 〈∆Qst〉 =

ke2a2

3
(Tω − Tm) .

Then the mean temperature is written as:

(5.18) Tm =
a2 +

3λ

ke3
T0

Tω

a2 +
3λ

ke3

Tω =

ωg2e

2λ
ε20 +

T0

Tω
ωg2e

2λ
ε20 + 1

Tω.

The evolution of the perturbation δT̄ (t) is obtained as the difference of Eqs.
(5.17) and (5.16):

(5.19) ρc
dδT̄ (t)

dt
+
λ

e
δT̄ (t) = 〈∆Q〉 − 〈∆Qst〉 .

1)The notation “〈 〉” corresponds to spatial averaging in a cross-section: 〈f(y, t)〉 =

1

2e

e
Z

−e

f(y, t)dy.
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The axial strain and bending moment amplitudes are expressed as a function
of the mean temperature over a cycle:

(5.20) εa

(
T̄ (t)

)
= ε0 (Tm) + δε̄

(
δT̄ (t)

)
,

(5.21) Ma

(
T̄ (t)

)
= M0 (Tm) + δM̄

(
δT̄ (t)

)
.

The energy increase 〈∆Q〉 − 〈∆Qst〉 is evaluated in Appendix C:

(5.22)
(
〈∆Q〉 − 〈∆Qst〉

)
=
ke2a2

3

[
2
δε̄(δT̄ (t))

ε0
(Tω − Tm) − δT̄

]
.

By inserting (5.19) into (5.22), the energy equation takes the following form:

(5.23) ρc
dδT̄ (t)

dt
+
λ

e
δT̄ (t) =

ke2a2

3

[
2
δε̄(δT̄ (t))

ε0
(Tω − Tm) − δT̄

]
.

The linear dependence of δε̄ upon δT̄ will be expressed later. The growth rate ν
of the perturbation, as defined by (5.5), follows the Eq. (5.24) according to
(5.23).

(5.24)
dδT̄ (t)

dt
− νδT̄ (t) = 0.

5.4.1. Prescribed curvature. For kinematically controlled boundary conditions,
we have δε̄ = 0. The evolution of the perturbation δT̄ (t) is governed by:

ρc
dδT̄ (t)

dt
+
λ

e
δT̄ (t) = −ke

2a2

3
δT̄

with a2 =
3

2k

ω

e2
g2ε

2
0. As a consequence, the rate of growth is expressed as:

νε = − 1

ρc

(
ωg2ε

2
0

2
+
λ

e

)
.

Since νε is negative, all steady states are stable for kinematically controlled
boundary conditions.

5.4.2. Prescribed bending moment. For prescribed bending, the strain ampli-
tude perturbation is expressed as in Sec. 5.3 and simplified under the hypothesis
of uniform temperature distribution in a cross-section:

(5.25)
δε̄

ε0
= −G (Tm) δT̄ ,
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with G (Tm) =



dG′

dT
G′ +

dG′′

dT
G′′

G′ +G′′


 (Tm). After substitution of this expression

into (5.23), the rate of growth of the perturbation is expressed as:

(5.26) νM = − 1

ρc

(
ωg2ε

2
0

2
(2G (Tm) (Tω − Tm) + 1) +

λ

e

)
.

The critical temperature T cr
m at the stability transition satisfies νM = 0.

By using Eqs. (3.3) and (5.17), this condition can be written as:

(5.27) 1 +
(T cr

m − T0)

(Tω − T cr
m )

(2G (T cr
m ) (Tω − T cr

m ) + 1) = 0.

It is worth noting that T cr
m depends on the external temperature T0 and the

pulsation frequency.
The corresponding strain amplitude is given by substituting (5.27) in (5.26)

with νM = 0, or by using (5.18):

(5.28) εcr
2

0 =
2λ

eωg2

(T cr
m − T0)

(Tω − T cr
m )

and the critical bending moment is obtained after substitution into (3.9) and
(3.11). Under the assumption of temperature uniformity, it follows that:

(5.29) M cr
0 =

8λle

ωεcr0
(T cr

m − T0)

[
1 +

(
h2

g2

)2 [
1 +

1

(Tω − T cr
m )

(
h1

h2
− g1
g2

)]2
]1/2

.

For a cyclic solicitation conducted at the frequency ω = 50 rad/s and the
room temperature T0 = 320 K, the critical temperature is T cr

m = 381.78 K for
the Peba elastomer. The corresponding strain amplitude and bending moment
are: εcr0 = 0.113 and M cr

0 = 4.559 Nm.

5.4.3. Mixed mechanical boundary conditions. Mixed boundary conditions can
be expressed as follows:

(5.30) (ε0 − ε̆) − φ
(
M0 − M̆

)
= 0,

where ε̆, M̆ and φ ≤ 0 characterise the loading conditions. The limiting cases
φ = 0 and φ = ∞ correspond respectively to the prescribed curvature and
the prescribed bending moment. The perturbation of the bending moment is
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expressed as δM̄ = M0

[
δε̄

ε0
+ G (Tm) δT̄

]
. The perturbation of the strain am-

plitude δε̄ must satisfy the prescribed boundary condition, thus δε̄− φδM̄ = 0:

(5.31)
δε̄

ε0
=

(
ε0

ε̆− φM̆
− 1

)
G (Tm) δT̄ .

The rate of growth of the perturbation is given by:

(5.32) νφ = − 1

ρc

(
ωg2ε

2
0

2

(
1 − 2

(
ε0

ε̆− φM̆
− 1

)
G (Tm) (Tω − Tm)

)
+
λ

e

)
.

The critical temperature T cr
m at the stability transition is a solution of the equa-

tion νφ = 0, which by using (3.3) and (5.17) is written in the form:

(5.33) 1 +
(T cr

m − T0)

(Tω − T cr
m )

(
1 − 2

(
εcr0

ε̆− φM̆
− 1

)
G (T cr

m ) (Tω − T cr
m )

)
= 0.

For a prescribed bending moment (φ = ∞), the stability condition (5.27) is
retrieved. The strain amplitude and the bending moment at the point of neutral
stability are obtained as in the previous section by means of Eqs. (5.28) and
(5.29).

Alternatively, for φ = 0, we have from (5.30) ε̆ = ε0, and νφ given by (5.32)
cannot vanish, therefore the stability is always insure for kinematically pre-
scribed boundary condition.

Figure 3 shows that for a prescribed moment (φ = ∞), the steady states at
the neutral stability are unstable on the descending branch of the M0 versus ε0
curve. When the value of φ is decreased to zero, the range of stable steady state
increases. For the value φ = 0, all the steady states are stable.

6. Conclusion

The cyclic response of a rectangular beam made of viscoelastic material has
been analyzed for pure cyclic bending. The behavior of the elastomer was as-
sumed to be linear isotropic and incompressible. The loss and storage moduli
following from the Boltzmann law were expressed as functions of the frequency
and the temperature, thus inducing a thermomechanical coupling. The stress,
strain and temperature fields were determined under stationnary regime. The
stability of these steady states has been analyzed by considering a weak pertur-
bation in temperature, leading to a pertubation in the stress and strain fields.
As already demonstrated in the case of compressive loading [12], a prescribed
bending moment may initiate an unstable regime leading to a thermal runaway.
When mixed boundary conditions are considered, stable and unstable regimes
can also be defined.
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Appendix A.

The perturbed temperature δT̄ (t) = T̄ − Tm satisfies the differential equa-
tion following from the difference between Eq. (5.2) and the steady state heat
Eq. (2.13):

(A.1) ρc
∂
(
T̄ − Tm

)

∂t
− k

∂2
(
T̄ − Tm

)

∂y2
= ∆Q− ∆Q

st
,

which, if δT̄ (y, t) is decomposed into space and time contribution, may be ex-
pressed as

(A.2) ρc
∂
(
δT̂ (y) exp νt

)

∂t
− k

∂2
(
δT̂ (y) exp νt

)

∂y2
= ∆Q− ∆Q

st
.

This operation is valid, because the instability process is supposed to be slow;
therefore T̄ , εa and Ma can be considered as quasi-constant over several cycles.

From (3.1), we have ∆Q
st

=
3

2

ω

e2
ε20y

2g2 (Tω − Tm), and by replacing Tm

with T̄ and ε0 with εa, ∆Q =
3

2

ω

e2
ε2ay

2g2
(
Tω − T̄

)
. ∆Q − ∆Q

st
is calculted

after substitution of εa by ε0 + δε̂ exp νt and T̄ by Tm + δT̂ exp νt and using of
the definition (3.3) of a2:

∆Q− ∆Q
st

k
= a2y2

[(
1+

δε̂

ε0
exp νt

)2(
Tω−

(
Tm+δT̂ (y) exp νt

))
−(Tω − Tm)

]
.

This expression is approached at the first order by

∆Q− ∆Q
st

k
= a2y2

[(
1+2

δε̂

ε0
exp νt

)(
(Tω−Tm)−δT̂ (y) exp νt

)
− (Tω− Tm)

]
,

∆Q− ∆Q
st

k
= a2y2

[
2
δε̂

ε0
(Tω − Tm) − δT̂ (y)

]
exp νt,

from which the result (5.9) follows.

Appendix B.

Using (3.11) and the fact that ε0 and Tm have been replaced respectively
by εa and T̄ , the bending moment is expressed as Ma =

√
M2

1 +M2
2 =

12
l

e
εa






e∫

0

G′
(
ω, T̄

)
y2dy




2

+




e∫

0

G′′
(
ω, T̄

)
y2dy




2


1/2

.



82 F. Dinzart, A. Molinari, R. Herbach

After subsitution of εa by ε0 + δε̂ exp νt and T̄ by Tm + δT̂ exp νt and deve-
lopment to the first order we have:

Ma = 12
l

e
(ε0 + δε̂ exp νt)






e∫

0

G′ (ω, Tm) y2dy −
e∫

0

h2δT̂ y
2dy exp νt




2

+




e∫

0

G′′ (ω, Tm) y2dy −
e∫

0

g2δT̂ y
2dy exp νt




2


1/2

.

After factorisation by

M0 = 12
l

e
ε0






e∫

0

G′ (ω, Tm) y2dy




2

+




e∫

0

G′′ (ω, Tm) y2dy




2


1/2

,

we obtain:

Ma = M0

(
1 +

δε̂

ε0
exp νt

)

×




1 − 2

[
e∫
0

(h2G
′ (ω, Tm) + g2G

′′ (ω, Tm)) y2dy

] [
e∫
0

δT̂ y2dy

]

[(
e∫
0

G′ (ω, Tm) y2dy

)2

+

(
e∫
0

G′′ (ω, Tm) y2dy

)2
] exp νt




1/2

,

which is simplifed as

Ma = M0

(
1 +

δε̂

ε0
exp νt

)

×




1 −

[
e∫
0

(h2G
′ (ω, Tm) + g2G

′′ (ω, Tm)) y2dy

] [
e∫
0

δT̂ y2dy

]

[(
e∫
0

G′ (ω, Tm) y2dy

)2

+

(
e∫
0

G′′ (ω, Tm) y2dy

)2
] exp νt



.
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This expression is developed at the first order as:

Ma = M0 +M0 exp νt

×



δε̂

ε0
−

[
e∫
0

(h2G
′ (ω, Tm) + g2G

′′ (ω, Tm)) y2dy

] [
e∫
0

δT̂ y2dy

]

[(
e∫
0

G′ (ω, Tm) y2dy

)2

+

(
e∫
0

G′′ (ω, Tm) y2dy

)2
]



.

As a consequence,

δM̂ = M0



δε̂

ε0
−

[
e∫
0

(h2G
′ (ω, Tm) + g2G

′′ (ω, Tm)) y2dy

] [
e∫
0

δT̂ y2dy

]

[(
e∫
0

G′ (ω, Tm) y2dy

)2

+

(
e∫
0

G′′ (ω, Tm) y2dy

)2
] .

For a prescribed moment δM̂ = 0, we have

δε̂

ε0
=

[
e∫
0

(h2G
′ (ω, Tm) + g2G

′′ (ω, Tm)) y2dy

] [
e∫
0

δT̂ y2dy

]

[(
e∫
0

G′ (ω, Tm) y2dy

)2

+

(
e∫
0

G′′ (ω, Tm) y2dy

)2
] .

Appendix C.

Using the expression (3.1) of the dissipated energy 〈∆Qst〉 per cycle for a
stationary process, we obtain by spacial averaging through the cross-sectional
area:

(C.1) 〈∆Qst〉 =
ke2a2

3
(Tω − Tm) .

For a non-stationary process, the averaged dissipated energy 〈∆Q〉 is ob-
tained from spatial averaging of ∆Q. This result is obtained from (C1) by re-
placing Tm with T̄ and ε0 with εa

(C.2) 〈∆Q〉 =
ke2a2

3

(
1 +

δε̄

ε0

)2 (
Tω −

(
Tm + δT̄ (t)

))
.

At the first order, the expression (5.22) follows.
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