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The present investigation is a study of the effect of rotation on the charac-
teristics of Rayleigh waves propagation in a homogeneous, isotropic, thermoelastic
diffusive half-space in the framework of different theories of thermoelastic diffusion,
including the Coriolis and Centrifugal forces. The medium is subjected to stress-free,
thermally insulated/isothermal and chemical potential boundary conditions and is
rotating about an axis perpendicular to its plane. Secular equations of surface wave
propagation in the considered media are derived. The phase velocities and atten-
uation coefficients of surface wave propagation have been computed by using the
irreducible case of Cardano’s method, with the help of DeMoivre’s theorem known
from the secular equations. The amplitudes of surface displacements, temperature
change, concentration and the specific loss of energy are computed numerically. Ro-
tation effect on the phase velocity, attenuation coefficient, amplitudes of surface wave
propagation and specific loss of energy are presented graphically in order to illus-
trate and compare the analytically obtained results. Some special cases of frequency
equation are also deduced from the present investigation.

Key words: wave propagation, isotropic, generalized thermoelastic diffusion, rota-
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1. Introduction

The classical uncoupled theory of thermoelasticity predicts two phe-
nomena which are not compatible with physical observations. First, the equation
of heat conduction of this theory does not contain any elastic term; second, the
heat conduction equation is of a parabolic type, predicting infinite speeds of
propagation of the heat waves.

Biot [7] introduced the theory of coupled thermoelasticity to overcome the
first shortcoming. The governing equations of this theory are coupled, elimi-
nating the first paradox of the classical theory. However, both theories share
the second shortcoming, because the heat equation for the coupled theory is of
a mixed parabolic/hyperbolic type. In the Lord–Shulman theory [15], a flux
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rate term is incorporated (with one relaxation time) into the Fourier’s law
of heat conduction, and a generalized theory was formulated admitting finite
speeds for thermal signals. The Green–Lindsay theory [12], called tempera-
ture rate-dependent thermoelasticity in which temperature rate-dependence is
included among the consecutive variables with two constants that act as two
relaxation times, does not violate the classical Fourier law of heat-conduction
when the body under consideration has a center of symmetry. The Lord and
Shulman [15] theory of generalized thermoelasticity was further extended to ho-
mogeneous anisotropic heat-conducting materials recommended by Dhaliwal
and Sherief [10]. All these theories predict a finite speed of heat propagation.
Chanderashekhariah [8] treats this wave-like thermal disturbance as a second
sound. A survey article of various representative theories in the range of gener-
alized thermoelasticity have been presented by Hetnarski and Ignaczak [14].

Diffusion can be defined as a random walk of an ensemble of particles from
the region of high concentration to that of low concentration. Nowadays, there
is a great deal of interest in the study of this phenomenon due to its application
in geophysics and electronic industry. In integrated circuit fabrication, diffusion
is used to introduce dopants in controlled amounts into the semiconductor sub-
stance. In particular cases, diffusion is used to form the base and emitter in
bipolar transistors, integrated resistors and the source/drain regions in Metal
Oxide Semiconductor (MOS) transistors, and dope poly-silicon gates in MOS
transistors. In most of the applications, the concentration is calculated using
what is known as Fick’s law. This is a simple law which does not take into
consideration the mutual interaction between the introduced substance and the
medium into which it is introduced, or the effect of temperature on this interac-
tion. Study of the phenomenon of diffusion is used to improve the conditions of
oil extraction (seeking ways of more efficient recovering of oil from oil deposits).
These days, oil companies are interested in the process of thermodiffusion for
more efficient extraction of oil from oil deposits.

Until recently, thermodiffusion in solids, especially in metals, was considered
as a quantity that is independent of the body deformation. Practice however,
indicates that the process of thermodiffusion could have a very considerable
influence upon the deformation of the body.

The thermodiffusion in elastic solids is due to coupling of fields of tempera-
ture, mass diffusion and that of strain, in addition to heat and mass exchange
with the environment. Nowacki [18–21] developed the theory of thermoelastic
diffusion by using a coupled termoelastic model. Dudziak and Kowalski [11]
and Olesiak and Pyryev [22], respectively, discussed the theory of thermod-
iffusion and coupled quasi-stationary problems of thermal diffusion in an elastic
layer. They studied the influence of cross-effects arising from coupling of the
fields of temperature, mass diffusion and strain, due to which the thermal exci-
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tation results in additional mass concentration and which generates additional
fields of temperature.

Sherief et al. [29] developed the generalized theory of thermoelastic diffu-
sion with one relaxation time, which allows the finite speeds of propagation of
waves. Recently Kumar et al. [17] derived the basic equations for generalized
thermoelastic diffusion(GL-model) and discussed the Lamb waves. Sherief and
Saleh [30] investigated the problem of a thermoelastic half-space in the con-
text of the theory of generalized thermoelastic diffusion with one relaxation
time. Singh [31, 32] discussed the reflection phenomenon of waves from a free
surface of an elastic solid with generalized thermodiffusion. Aouadi [2–6] inves-
tigated different types of problems in thermoelastic diffusion. Sharma [24, 26]
discussed the plane, harmonic, generalized thermoelastic diffusive waves and
elasto-thermodiffusive surface waves in heat-conducting solids.

Chanderashekhariah and Srinath [9] discussed the thermoelastic plane
waves without energy dissipation in a rotating body. Ahmad and Khan [1] stud-
ied the thermoelastic plane waves in a rotating isotropic medium. Othman [23]
investigated the effect of rotation and relaxation time on a thermal shock prob-
lem for a half-space in generalized thermo-viscoelasticity. Sharma et al. [27, 28]
discussed the effect of rotation on Rayleigh waves in the piezothermoelastic half-
space.

Keeping in mind the above applications of thermodiffusion, the present paper
deals with the study of the influence of rotation on Rayleigh waves in a homo-
geneous, isotropic thermoelastic diffusive half-space, in the context of different
theories of thermoelastic diffusion. The amplitudes of surface displacements,
temperature change and concentration are determined. The phase velocity and
attenuation coefficients of wave propagation have been computed by using the
irreducible case of Cardano’s method, with the help of DeMoivre’s theorem,
from the secular equations. The specific loss of energy has been also computed.

2. Basic equations

Following Kumar et al. [17], the governing equations for anisotropic homo-
geneous elastic solid with generalized thermoelastic diffusion (Green–Lindsay
theory), in absence of body forces, heat and mass diffusion sources, are:

(i) Constitutive relations

σij = cijkmekm + aij(T + τ1Ṫ ) + bij(C + τ1Ċ),(2.1)

ρS = k +
ρCE

T0
(T + τ0Ṫ ) − aijeij + a(C + τ0Ċ),(2.2)

P = bijeij + b(C + τ1Ċ) − a(T + τ1Ṫ ).(2.3)
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(ii) Equations of motion

(2.4) cijkmekm,j + aij [(T + τ1Ṫ ),j ] + bij [(C + τ1Ċ),j ] = ρüi.

(iii) Equation of heat conduction

(2.5) ρCE(Ṫ + τ0T̈ ) + aT0(Ċ + τ0C̈) − aij ėijT0 = KijT,ij .

(iv) Equation of mass diffusion

(2.6) −α∗
ijbkmekm,ij − α∗

ijb[(C + τ1Ċ),ij ] + α∗
ija[(T + τ1Ṫ ),ij ] = −Ċ.

Here cijkm(cijkm = ckmij = cjikm = cijmk) are elastic parameters. aij (= aji),
bij (= bji) are tensors of thermal and diffusion moduli respectively. ρ, CE are,
respectively, the density and specific heat at constant strain; a, b are, respec-
tively, coefficients describing the measure of thermoelastic diffusion effects and
of diffusion effects, T0 is the reference temperature assumed to be such that
|T/T0| � 1. τ0, τ1 are diffusion relaxation times with τ1 ≥ τ0 ≥ 0, and τ0,
τ1 are thermal relaxation times with τ1 ≥ τ0 ≥ 0. ui are components of the
displacement vector u. T (x1, x2, x3, t) is the temperature change and C is the
concentration. σij (= σji), Kij (= Kji), eij = (ui,j + uj,i)/2 are the components
of stress, thermal conductivity and strain tensor, respectively. α∗

ij (= α∗
ji) are

diffusion parameters. P , S are the chemical potential and entropy per unit mass
respectively, and k is a material constant. The symbols “,” and “.” correspond to
partial and time derivatives respectively.

If we assume

cijkm = λδijδkm + µδimδjk + µδikδjm, aij = −β1δij ,

bij = −β2δij , Kij = Kδij , α∗
ij = Dδij ,

(2.7)

we obtain the basic governing equations for homogeneous, isotropic, generalized
thermoelastic diffusion (Green–Lindsay theory) in absence of the body forces,
heat and mass diffusion sources, as:

(i) Constitutive relations

σij = 2µeij + δij [λekk − β1(T + τ1Ṫ ) − β2(C + τ1Ċ)],(2.8)

ρT0S = k + ρCE(T + τ0Ṫ ) + β1T0ekk + aT0(C + τ0Ċ),(2.9)

P = −β2ekk + b(C + τ1Ċ) − a(T + τ1Ṫ ).(2.10)

(ii) Equations of motion

(2.11) µui,jj + (λ + µ)uj,ij − β1(T + τ1Ṫ ),i − β2(C + τ1Ċ),i = ρüi.
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(iii) Equation of heat conduction

(2.12) ρCE(Ṫ + τ0T̈ ) + β1T0ėkk + aT0(Ċ + τ0C̈) = KT,ii.

(iv) Equation of mass diffusion

(2.13) Dβ2ekk,ii + Da(T + τ1Ṫ ),ii + Ċ − Db(C + τ1Ċ),ii = 0.

Following Sherief et al. [29], the governing equations for an isotropic homo-
geneous elastic solid with generalized thermoelastic diffusion (Lord–Shulman
theory) in absence of the body forces, heat and mass diffusion sources are:

(i) Constitutive relations

σij = 2µeij + δij [λekk − β1T − β2C],(2.14)

ρT0S = ρCET + β1T0ekk + aT0C,(2.15)

P = −β2ekk + bC − aT.(2.16)

(ii) Equations of motion

(2.17) µui,jj + (λ + µ)uj,ij − β1T,i − β2C,i = ρüi.

(iii) Equation of heat conduction

(2.18) ρCE(Ṫ + τ0T̈ ) + β1T0(ėkk + τ0ëkk) + aT0(Ċ + τ0C̈) = KT,ii.

(iv) Equation of mass diffusion

(2.19) Dβ2ekk,ii + DaT,ii + Ċ + τ0C̈ − DbC,ii = 0.

Combining Eqs. (2.8)–(2.13) and (2.14)–(2.19) in one form, we obtain the gov-
erning equations for an isotropic homogeneous elastic solid with generalized
thermoelastic diffusion in absence of the body forces, heat and mass diffusion
sources, which are:

(i) Constitutive relations

σij = 2µeij + δij [λekk − β1(T + τ1Ṫ ) − β2(C + τ1Ċ)],(2.20)

ρT0S = k + ρCE(T + αṪ ) + β1T0ekk + aT0(C + βĊ),(2.21)

P = −β2ekk + b(C + τ1Ċ) − a(T + τ1Ṫ ).(2.22)

(ii) Equations of motion in the rotation frame of reference are:

(2.23) µui,jj + (λ + µ)uj,ij − β1(T + τ1Ṫ ),i − β2(C + τ1Ċ),i

= ρ[üi + {Ω × (Ω × u}i + (2Ω × u̇)i].
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(iii) Equation of heat conduction

(2.24) ρCE(Ṫ + τ0T̈ ) + β1T0(ėkk + ετ0ëkk) + aT0(Ċ + γC̈) = KT,ii.

(iv) Equation of mass diffusion

(2.25) Dβ2ekk,ii + Da(T + τ1Ṫ ),ii + (Ċ + ετ0C̈) − Db(C + τ1Ċ),ii = 0.

Here, the medium is rotating with angular velocity Ω = Ων̂, where ν̂ is the
unit vector along the axis of rotation and these equations of motion include two
additional terms, namely:

(i) The centripetal acceleration Ω × (Ω × u) due to time-varying motion,
(ii) The Coriolis acceleration (2Ω × u̇),

where β1 = (3λ + 2µ)αt and β2 = (3λ + 2µ)αc; λ, µ are the Lamé constants, αt

is the coefficient of linear thermal expansion and αc is the coefficient of linear
diffusion expansion. k = α = β = γ = ε = τ0 = τ0 = τ1 = τ1 = 0 for the
Coupled Thermoelasticity (CT) model, k = α = β = τ1 = τ1 = 0, ε = 1, γ = τ0

for the Lord–Shulman (LS) model, and α = τ0, β = τ0, ε = 0, γ = τ0 for the
Green–Lindsay (GL) model.

3. Formulation of the problem

We consider a homogeneous isotropic, thermodiffusive elastic half-space ini-
tially at uniform temperature T0. The origin of the coordinate system (x1, x2, x3)
is assumed at any point on the plane horizontal surface. We take x3-axis along
the axis of material symmetry and pointing vertically downwards into the half-
space, which is thus represented by x3 ≥ 0. The surface x3 = 0 is subjected to
traction-free, thermally insulated or isothermal and chemical potential bound-
ary conditions. We choose the x1-axis in the direction of wave propagation, so

Fig. 1. Geometry of the problem.
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that all particles on a line parallel to x2-axis are equally displaced. Therefore,
all the field quantities will be independent of the x2-coordinate. Then for a two-
dimensional problem,

(3.1) −→u (x1, x3, t) = (u1, 0, u3), T (x1, x3, t), C(x1, x3, t)

are the displacement vector, temperature change and concentration.
We define the dimensionless quantities:

(3.2)

x′
i =

w∗
1xi

v1
, t′ = w∗

1t, u′
i =

w∗
1ui

v1
, T ′ =

β1T

ρv2
1

, C ′ =
β2C

ρv2
1

,

P ′ =
P

β2
, τ ′

0 = w∗
1τ0, τ ′

1 = w∗
1τ1, τ0′ = w∗

1τ
0, τ1′ = w∗

1τ
1,

Ω′ =
Ω

w∗
1

, h′ =
v1h

w∗
1

, σ′
ij =

σij

β1T0
, v2

1 =
λ + 2µ

ρ
, w∗

1 =
ρCEv2

1

K
.

Here w∗
1 is the characteristic frequency of the medium, v1 is the longitudinal

wave velocity in the medium.
Upon introducing the quantities (3.2) in Eqs. (2.23)–(2.25), after suppressing

the primes, we obtain

u1,11 + δ1u1,33 + δ2u3,13 − τ1
t T,1 − τ1

c C,1 = ü1 − Ω2u1 + 2Ωu̇3,(3.3)

δ2u1,13 + δ1u3,11 + u3,33 − τ1
t T,3 − τ1

c C,3 = ü3 − Ω2u3 − 2Ωu̇1,(3.4)

∇2T = τ0
t Ṫ + ζ1τ

0
c Ċ + ζ2τ

0
e ė,(3.5)

q∗1∇2e + q∗2τ
1
t ∇2T − q∗3τ

1
c ∇2C + τ0

f C = 0,(3.6)

where

δ1 =
µ

λ + 2µ
, δ2 =

λ + µ

λ + 2µ
, ζ1 =

aT0v
2
1β1

w∗
1Kβ2

, ζ2 =
β2

1T0

ρKw∗
1

,

q∗1 =
Dw∗

1β
2
2

ρv4
1

, q∗2 =
Dw∗

1β2a

β1v2
1

, q∗3 =
Dw∗

1b

v2
1

, e =
∂u1

∂x1
+

∂u3

∂x3
,

τ1
t = 1 + τ1

∂

∂t
, τ1

c = 1 + τ1 ∂

∂t
, τ0

t = 1 + τ0
∂

∂t
, τ0

c = 1 + γ
∂

∂t
,

τ0
e = 1 + ετ0

∂

∂t
, τ0

f = 1 + ετ0 ∂

∂t
, ∇2 ≡ ∂2

∂x2
1

+
∂2

∂x2
3

.
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4. Solution of the problem

We assume the solutions in the form

(4.1) (u1, u3, T, C) = (1,W, S,R)U exp[ιξ(x1 sin θ + mx3 − ct)],

where c = ω/ξ is the non-dimensional phase velocity, ω is the frequency and ξ
is the wave number. Here θ is the angle of inclination of wave normal to the
axis of symmetry (x3-axis); m is still an unknown parameter. 1, W , S, R are
respectively the amplitude ratios of displacements u1, u3, temperature change
T and concentration C with respect to u1.

Using solutions (4.1) in Eqs. (3.3)–(3.6), we obtain

δ1m
2+s2−c2(1+Γ 2)+(δ2ms−2ιΓ c2)W +ιω−1cs[τ11

t S+τ11
c R] = 0,(4.2)

δ2ms+2ιΓ c2+(δ1s
2+m2−c2(1+Γ 2))W +ιω−1cm[τ11

t S+τ11
c R]U = 0,(4.3)

ζ2τ
10
e sc+ζ2τ

10
e mcW−ιω−1[z(s2+m2)+c2τ10

t ]S−ιω−1c2ζ1τ
10
c R = 0,(4.4)

q∗1(s
2+m2)(s+mW )−ιω−1c(s2+m2)(q∗2τ

11
t S−q∗3τ

11
c R)+ω−2c3τ10

f R = 0,(4.5)

where

(4.6)

Γ = Ωω−1, z = ιω, s = sin θ,

τ11
t = 1 − ιξτ1, τ11

c = 1 − ιξτ1,

τ10
t = 1 − ιξτ0, τ10

c = 1 − ιξγ, τ10
e = 1 − ιξετ0, τ10

f = 1 − ιξετ0.

The system of Eqs. (4.2)–(4.5) has a non-trivial solution if the determinant
of the coefficients [1,W, S,R]T vanishes, which yields the following polynomial
characteristic equation:

(4.7) m8 + A∗m6 + B∗m4 + C∗m2 + D∗ = 0.

The coefficients A∗, B∗, C∗, D∗ are given in Appendix A. The characteris-
tic equation (4.7) is biquadratic in m2 and hence it possesses four roots m2

p,
p = 1, 2, 3, 4. Since we are interested in surface waves only, so it is essential that
motion should be confined to free surface x3 = 0 of the half-space, so that the
characteristic roots m2

p must satisfy the radiation conditions Re(mp) ≥ 0. Then
the formal expressions for displacements, temperature change and concentration
can be written as
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u1 =
4∑

p=1

Ap exp[ιξ(x1 sin θ + ιmpx3 − ct)],(4.8)

u3 =
4∑

p=1

n1pAp exp[ιξ(x1 sin θ + ιmpx3 − ct)],(4.9)

T =
4∑

p=1

n2pAp exp[ιξ(x1 sin θ + ιmpx3 − ct)],(4.10)

C =
4∑

p=1

n3pAp exp[ιξ(x1 sin θ + ιmpx3 − ct)],(4.11)

where Ap (p = 1, 2, 3, 4) are arbitrary constants.
The coupling constants n1p, n2p, n3p (p = 1, 2, 3, 4) are given in Appendix A.

5. Boundary conditions

The non-dimensional boundary conditions at the surface x3 = 0 are given by
(i) Mechanical conditions (stress-free surface)

(5.1)
σ33 = (δ2 − δ1)u1,1 + u3,3 − τ1

t T − τ1
t C = 0,

σ31 = δ1(u3,1 + u1,3) = 0.

(ii) Thermal conditions

(5.2) T,3 + hT = 0,

where h is the surface heat transfer coefficient. Here h → 0 corresponds to
thermally insulated boundaries and h → ∞ refers to isothermal surfaces.

(iii) Chemical potential

(5.3) P = u1,1 + u3,3 − n2τ
1
c C + n1τ

1
t T = 0,

where

n1 =
a(λ + 2µ)

β1β2
, n2 =

b(λ + 2µ)
β2

2

.

6. Derivation of the secular equations

Substituting the values of u1, u3, T and C from Eqs. (4.8)–(4.11) in the
boundary conditions (5.1)–(5.3), we obtain a system of four simultaneous linear
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equations as

(6.1)
4∑

p=1

P1pAp = 0,
4∑

p=1

P2pAp = 0,
4∑

p=1

P3pAp = 0,
4∑

p=1

P4pAp = 0,

where

P1p = (δ2 − δ1) + ιmpn1p +
ιτ11

t n2p

ξ
+

ιτ11
c n3p

ξ
, P2p = n1p + ιmp,

P3p = 1 + ιmpn1p +
ιτ11

c n2n3p

ξ
− ιτ11

t n1n2p

ξ
, P4p = (ιmp + h)n2p, p = 1, 2, 3, 4.

The system of Eqs. (6.1) has a non-trivial solution if the determinant of the
coefficients of amplitudes Ap, p = 1, 2, 3, 4 vanishes. After lengthy algebraic
reductions, it leads to the secular equation:

(6.2) P41D1 − P42D2 + P43D3 − P44D4 = 0,

where

D1 = P12(P23P34 − P33P24) − P13(P22P34 − P32P24) + P14(P22P33 − P32P23),

D2 = P11(P23P34 − P24P33) − P13(P21P34 − P31P24) + P14(P21P33 − P31P23),

D3 = P11(P22P34 − P24P32) − P12(P21P34 − P31P24) + P14(P21P32 − P31P22),

D4 = P11(P22P33 − P23P32) − P12(P21P33 − P31P23) + P13(P21P32 − P31P22).

For thermally insulated (h → 0) thermoelastic diffusion of the half-space, the
secular Eq. (6.2) becomes

(6.3) m1n21D1 − m2n22D2 + m3n23D3 − m4n24D4 = 0,

and in the case of isothermal (h → ∞) thermoelastic diffusion of the half-space,
the Eq. (6.2) reduces to

(6.4) n21D1 − n22D2 + n23D3 − n24D4 = 0.

Eqs. (6.3) and (6.4) are Rayleigh surface waves secular equations for stress-free,
chemical potential, thermally insulated and isothermal boundaries of generalized
isotropic thermoelastic diffusive half-space in a rotating medium, respectively.
These secular equations contain complete information corcerning the phase ve-
locity, wave number and attenuation coefficient of the Rayleigh waves in such
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media. In general, wave number and hence the phase velocity of waves is a com-
plex quantity, therefore the waves are attenuated in space.

If we write

(6.5) c−1 = ν−1 + ιω−1F

so that ξ = E + ιF , where E = ω/ν, ν and F are real. Also the roots of
characteristic Eq. (4.7) are, in general, complex, and hence we assume that
mp = pp + ιqp, so that the exponent in the plane wave solutions (4.8)–(4.11)
becomes

(6.6) ιE(x1 sin θ − mI
px3 − νt) − E

(
F

E
x1 sin θ + mR

p x3

)
,

where

(6.7) mR
p = pp − qp

F

E
, mI

p = qp + pp
F

E
.

This shows that ν is the propagation velocity and F is the attenuation coefficient
of the wave. Upon using representation (6.5) in secular Eqs. (6.3) and (6.4), the
values of propagation speed ν and attenuation coefficient F of wave propagation
can be obtained.

7. Surface displacements, temperature change and concentration

The amplitudes of surface displacements, temperature change and concen-
tration at the surface x3 = 0 during Rayleigh wave propagation in the cases of
stress-free chemical potential, thermally insulated or isothermal boundaries of
the half-space are:

(7.1)
u1S = G∗A exp[ιE(x1 sin θ − νt)], u3S = H∗A exp[ιE(x1 sin θ − νt)],

TS = I∗A exp[ιE(x1 sin θ − νt)], CS = J∗A exp[ιE(x1 sin θ − νt)],

where

(7.2)

A = A1 exp(−Fx1 sin θ),

G∗ = (D1 − D2 + D3 − D4)/D1,

H∗ = (n11D1 − n12D2 + n13D3 − n14D4)/D1,

I∗ = (n21D1 − n22D2 + n23D3 − n24D4)/D1,

J∗ = (n31D1 − n32D2 + n33D3 − n34D4)/D1.
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8. Specific loss

The specific loss is the ratio of energy (∆W ) dissipated in leading a specimen
through a stress cycle, to the elastic energy (W ) stored in the specimen when
the strain is a maximum. The specific loss is the most direct method of defining
internal friction in a material. For a sinusoidal plane wave of small amplitude,
Kolsky [16] shows that the specific loss ∆W/W equals 4π times the absolute
value of the imaginary part of ξ to the real part of ξ, i.e.

(8.1)
∆W

W
= 4π

∣∣∣∣ Im(ξ)
Re(ξ)

∣∣∣∣ = 4π

∣∣∣∣νF

ω

∣∣∣∣ = 4π

∣∣∣∣FE
∣∣∣∣.

9. Special cases

1. In absence of the rotation effect (Ω = 0) in Eqs. (6.3) and (6.4), we obtain
the corresponding frequency equations for isotropic generalized thermoelastic
diffusive half-space.

2. Further in absence of the diffusion effect, i.e. if we take β2 = a = b = Ω = 0
in Eqs. (6.3)–(6.4), we obtain the frequency equations of generalized isotropic
thermoelastic half-space as

m1m
′
21G

∗
1 − m2m

′
22G

∗
2 + m3m

′
23G

∗
3 = 0,(9.1)

m′
21G

∗
1 − m′

22G
∗
2 + m′

23G
∗
3 = 0,(9.2)

where

m′
1p = − ιξf2m

3
p + (f5f2 + τ11

t f4s)mp

ιξm4
p + (ιξf3 + f4τ11

t + f5)m2
p + f3f5

,

m′
2p =

(f2 − s)f4m
2
p − f3f4s

ιξm4
p + (ιξf3 + f4τ11

t + f5)m2
p + f3f5

,

H∗
1p = δ2 − δ1 + ιmpm

′
1p +

ιτ11
t m′

2p

ξ
, H∗

2p = m′
1p + ιm2p, p = 1, 2, 3,

G∗
1 = H∗

12H
∗
23 − H∗

22H
∗
13, G∗

2 = H∗
11H

∗
23 − H∗

21H
∗
13, G∗

3 = H∗
11H

∗
22 − H∗

21H
∗
12.

The above Eqs. (9.1)–(9.2) are similar to those derived by Sharma et al. [25,
Eq. (35)] by setting β2 = a = b = Ω = 0.

3. In absence of the thermal, diffusion and rotation effects, we obtain the
frequency equation corresponding to isotropic elastic half-space by changing the
non-dimensional quantities into the physical quantities as

(9.3)
(

2 − c2

c2
2

)2

= 4
(

1 − c2

c2
1

)1/2(
1 − c2

c2
2

)1/2

,
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where
c2
1 =

λ + 2µ

ρ
, c2

2 =
µ

ρ
.

The frequency equation (9.3) is same as that derived in Ewing, Jardetzky
and Press [13].

10. Numerical results and discussion

Following Sherief and Saleh [30], we take the following values of relevant
parameters for copper:

λ = 7.76 × 1010 kg m−1s−2, µ = 3.86 × 1010 kg m−1s−2,

T0 = 0.293 × 103 K, CE = .3831 × 103 J kg−1K−1,

αt = 1.78 × 10−5 K−1, αc = 1.98 × 10−4 m3 kg−1,

a = 1.2 × 104 m2 s−2K−1, b = 9 × 105 kg−1 m5 s−2
,

D = 0.85 × 10−8 kg s m−3, ρ = 8.954 × 103 kg m−3,

K = 0.383 × 103 W m−1 K−1, Ω = 1 rpm,

τ0 = 0.01 s, τ1 = 0.07 s, τ0 = 0.02 s, τ1 = 0.08 s.

Phase velocity and attenuation coefficient
Figures 2 and 3, respectively, show the variations of phase velocity and at-

tenuation coefficient with respect to wave number, for θ = 75◦. Figures 2 and 3
describe the rotation effect on phase velocity and attenuation coefficient in dif-
ferent theories(CT, LS and GL) of thermoelastic diffusion. The rotation and
without rotation effects are indicated by the symbols R and WR respectively.
In these figures., the solid line (—) and dashed line (- - -) correspond to the
coupled-thermoelasticity theory (CT). The star and square symbols on these
lines correspond to the Lord–Shulman theory (LS). Similarly, the triangle and
circle symbols on these lines correspond to the Green–Lindsay theory (GL).
The phase velocity with rotation effect is also shown in small diagram within
the Fig. 2 to depict the effect of relaxation times.

From Fig. 2 it is evident that the values of phase velocity without the rotation
effect increase initially but then decrease smoothly in all three theories (CT,
LS and GL). The values of phase velocity corresponding to the CT theory lie
between the values corresponding to the GL and LS theories, i.e. higher and
lower than that of GL and LS theories respectively. On the other hand, the
values of phase velocity with rotation effect increase first and then decrease to
remain constant after that in CT and LS theories, whereas the values increase
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Fig. 2. Variations of phase velocity w.r.t. wave number.

Fig. 3. Variations of attenuation coefficient w.r.t. wave. number.
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and then remain constant in the GL theory. The increase in the values of phase
velocity is greater when we move from CT to generalized theories (LS and GL).
From Fig. 2 it is clearly seen that the values of phase velocity increase with the
increase of angular speed (Ω).

Figure 3 shows that without the rotation effect, values of the attenuation
coefficient increase in all three theories, but the increase in the values is less
from CT to LS and to GL theory. On the other hand, the values of attenuation
coefficient with rotation effect increase with wave number initially and then
decrease dramatically, but finally they increase smoothly. On comparing the
values of the attenuation coefficient with and without the rotation effects, we
find that the increase in the values is smaller with the rotation effect.

The variations of phase velocity and attenuation coefficient for Rayleigh
waves have been plotted in Figs. 4 and 5 with respect to wave number for
θ = 75◦ and θ = 90◦ keeping Ω = 1 fixed. In these figures, the solid line (—)
and dashed line (- - -) correspond to the coupled-thermoelasticity theory (CT).
The star and square symbols on these lines correspond to the Lord–Shulman
theory (LS). Similarly, the triangle and circle symbols on these lines correspond
to the Green–Lindsay theory (GL). The phase velocity with rotation effect is
also shown in small diagram within the Fig. 4 to depict the effect of relaxation
times.

Fig. 4. Variations of phase velocity w.r.t. wave number.
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Fig. 5. Variations of attenuation coefficient w.r.t. wave.

Figure 4 clearly indicates that as the value of θ increases, the increase in the
values of phase velocity is smaller, and as we move from CT to LS and then to
the GL theory, the increase in the values is greater. Similar type of behavior is
noticed in Fig. 5.

The variations of amplitudes of displacements (u1, u3), temperature change
(T ) and concentration (C) with respect to wave number are plotted in Figs. 6–10
for θ = 75◦. In these figures, the solid and dashed lines correspond to the CT
theory for WR and R respectively. The star and circle symbols on these lines
correspond to the LS theory respectively. Similarly, the triangle and square
symbols correspond to the GL theory respectively.

Figure 6 shows that without the rotation effect, the values of u1 increase
slowly for CT and LS theories, but for the GL theory, the values show a decrease
initially, but then increase steadily. If we compare the values of u1 corresponding
to different theories, we notice that the values of u1 are greater in the GL theory
as compared to the CT and LS theories to a certain limit, but after that the
values of u1 are greater in LS theory as compared to other two theories (CT
and GL). On considering the rotation effect, we see that there is a sharp decrease
in the values of u1 and then a dramatic increase in the values of u1, which remain
constant after that. The values corresponding to GL theory remain higher than
those of CT and LS theories. With the rotation effect, the values of u1 are greater
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Fig. 6. Variations of amplitude of surface horizontal displacement w.r.t. wave number.

Fig. 7. Variations of amplitude of surface vertical displacement w.r.t. wave number.
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Fig. 8. Variations of amplitude of temperature change w.r.t. wave number.

Fig. 9. Variations of amplitude of concentration w.r.t. wave number.
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Fig. 10. Variations of specific loss w.r.t. wave number.

than the values for no rotation effects. On the other hand, the reverse behavior
occurs in case of vertical surface displacement except the LS theory where the
values of u3 are greater with the rotation effect.

The values of T show an approximately constant behavior in all theories for
the case without the rotation effect. With rotation effect, the values of T increase
initially and then decrease to remain constant. In absence of the rotation effect,
the values of T are smaller compared to the values for the case without rotation
effect. Similarly, the values of C without the rotation effect are greater than
those of without rotation effect.

Figure 10 shows the variations of specific loss with respect to the wave num-
ber for θ = 75◦. The values of specific loss without the rotation effect are in-
creasing in all the theories CT, LS and GL, whereas the values of specific loss
with rotation effect increase initially and then decrease sharply, but finally they
increase. The values of specific loss increase with rotation effect initially, but
after a certain limit, the reverse behavior occurs.

11. Conclusions

The propagation of Rayleigh waves in a homogeneous isotropic, rotating half-
space have been investigated in the context of different theories of thermoelastic
diffusion. The secular equations for surface wave propagation in the considered
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media are derived. The dispersion curves, attenuation coefficients, amplitudes of
surface displacements, temperature change and concentration and specific loss
of energy are computed and shown graphically in different theories of thermoe-
lastic diffusion in the case of copper material. The numerically computed results
are found to be in good agreement with the corresponding analytic results. The
effects of relaxation times and rotation are observed on phase velocity, attenu-
ation coefficient and amplitudes of surface displacements, temperature change,
concentration and specific loss of energy. The analysis carried out will be useful
in the design and construction of rotating sensors and other surface acoustic
wave (SAW) devices, in addition to possible biosensing applications.

Appendix A

A∗ =
ιξ(f1I1 − f2I8) + δ1d1 − d7sτ

11
c

ιξδ1I1
,

B∗ =
f1d1 − δ1d2 − f2d3 − ιξl21f8 + s(d5τ

11
t − d8τ

11
c )

ιξδ1I1
,

C∗ =
f2d4 − l21I3 − δ1f3I6 − f1d2 + s(d6τ

11
t − d9τ

11
c )

ιξδ1I1
,

D∗ = −f3(s2τ11
t I12 + f1I6 − s4τ11

c I17) + l21I6

ιξδ1I1
,

f1 = s2 − c2(1 + Γ 2), f2 = δ2s, f3 = δ1s
2 − c2(1 + Γ 2), f4 = ζ2τ

10
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f5 = ιξs2 + cτ10
t , f6 = cζ1τ

10
c , f7 = f8s

2 − ιw−1cτ10
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11
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11
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11
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11
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11
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11
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11
c )τ11

t , I6 = f5f7 + f6q
∗
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11
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11
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c , I12 = f4f7 + q∗1f6s

2,
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2τ11

c , I14 = I11s
2 + f3f6, I15 = q∗1(f5+ιξs2)−f4q

∗
2τ

11
t ,

I16 = f5 + ιξf3 + f4τ
11
t , I17 = f5q

∗
1 − f4q

∗
2τ

11
t , I18 = (f3 + s2)q∗2 + q∗1s

2,

d1 = ιξI2 − I3 − q∗1I4 − f4I5, d2 = f3I3 + I6 + q∗1s
2I4 + f4I7,

d3 = q∗1sI9 − f2I3 − f4sI5, d4 = f2I6 + f4sI7 + q∗1s
3I4,
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d5 = f2I10 + f4sI1 − q∗1sI11, d6 = f2I12 − f4sI13 − q∗1sI14,

d7 = ιξq∗1(f2 − s), d8 = f2I15 + f4s(q∗1 + q∗2)τ
11
t − q∗1s(ιξs

2 + I16),

d9 = f2s
2I17 + f4sI18τ

11
t − q∗1s(f3f5 + s2I16),

n1p = − ιξI8m
5
p − ιξf8l1m

4
p + d3m

3
p − l1I3m

2
p − d4mp − l1I6

ιξI1m6
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p − d2m2
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,

n2p =
d5m

4
p + l1I10m

3
p + d6m

2
p + l1I12mp − f3sI12

ιξI1m6
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,

n3p = −d7m
6
p + ιξq∗1l1m5

p + d8m
4
p + l1I15m

3
p + d9m
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,

p = 1, 2, 3, 4.
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