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A study has been made of the convection of micropolar fluids heated from below
in the presence of suspended particles (fine dust) and uniform vertical rotation Ω
(0, 0,Ω). The effect of Coriolis forces on the stability is chosen along the direction of
the gravitational field. It is found that the presence of coupling between thermal and
micropolar effects, rotation parameter and suspended particles may introduce over-
stability in the system. Using the Boussinesq approximation, the linearized stability
theory and normal mode analysis, the exact solutions are obtained for the case of two
free boundaries. Graphs have been plotted by giving numerical values to the parame-
ters accounting for rotation Ω (0, 0,Ω) and the dynamic microrotation viscosity κ and
coefficient of angular viscosity γ′ to depict the stability characteristics, for both the
cases of stationary convection and overstability. It is found that Rayleigh number for
the case of overstability and stationary convection increases with increase in rotation
parameters and decreases with increase in micropolar coefficients, for a fixed wave
number, showing thereby the stabilizing effect of rotation parameters and destabiliz-
ing effect of micropolar coefficients on the thermal convection of micropolar fluids.
Thus there is a competition between the stabilizing effect of rotation parameters and
destabilizing effect of micropolar coefficients and the suspended particles. It is also
found from the graphs that the Rayleigh number for the case of overstability is always
smaller than the Rayleigh number for the case of stationary convection, for a fixed
wave number.

Notations

Ω (0, 0,Ω) rotation vector having components,
ρ density of fluid,
v velocity of fluid,
ϑ spin,
p pressure,
T temperature,
g acceleration due to gravity,

kT thermal conductivity,
u particle velocity,

cpt heat capacity of particles,
êz unit vector in z-direction,
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δ the coefficient giving account of coupling between spin and heat flux,
υ kinematic viscosity of the fluid,
j1 microinertial constant,
cv specific heat at constant volume,

ε′, β′, γ′ coefficients of angular viscosity,
κ dynamic microrotation viscosity,

N number density,
mN the mass of suspended particles per unit volume,

K Stoke’s drag coefficient,
r′ particle radius,
π constant value,

ρ0 reference density,
T0 reference temperature,
α coefficient of thermal expansion,
∂ curl operator,
∇ del operator,
β uniform temperature gradient,

v(u, v, w) perturbations in fluid velocity v(0, 0, 0),
u(�, r, s) perturbations in particles velocity u(0, 0, 0),

ω perturbations in spin ϑ,
δρ perturbations in density ρ,
θ perturbations in temperature T ,

∂/∂t convective or material derivative,
κT thermal diffusity,
ξz z-component of current density,
ζz z-component of vorticity,
R dimensionless Rayleigh number,
p1 thermal Prandtl number,
k wave number of the disturbance,
n growth rate of the disturbance,
d depth of the layer,

A, �1, L1, L2, b constants,
D derivative with respect to z (= d/dz).

1. Introduction

Micropolar theory was introduced by Eringen [1] in order to describe some
physical systems which do not sastisfy the Navier–Stokes equations. Micropolar
fluids are able to describe the behaviour of colloidal solutions, liquid crystals,
animal blood etc.The equations governing the flow of micropolar fluid theory
involve a spin vector and a microinertia tensor, in addition to the velocity vec-
tor.A generalization of the theory including thermal effects has been developed
by Kazakia and Ariman [2] and Eringen [3]. The stability investigations of
the Bénard problem in the framework of various external force fields, assume
importance not only on account of being a meaningful mathematical extensions
of the problem, but also because of its importance in the problem of meteoro-
logy, oceanography and various other fields of practical importance. The effects
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of the action of a uniform vertical magnetic field and a uniform vertical rota-
tion acting individually or simultaneously on the Bénard problem, have been
investigated by Chandrasekhar [4] and others, in which it is shown that in
some respect their individual/combined effects are remarkably alike, namely
they both inhibit the onset of instability and elongate the cells which appear at
the marginal stability for certain ranges of values of the parameters involved.
Another interesting point brought out by Chandrasekhar’s analysis, which is
in general qualitative agreement with the experimental results of Nakagawa
[5, 6], Fultz, Nakagawa and Frenzen [7] and others is that, in both the
problems, the marginal state could either be stationary or oscillatory in charac-
ter for which sufficient conditions are obtained.

Micropolar fluid stabilities have become an important field of research these
days. Ahmadi [8] and Pe’rez-Garcia et al. [9] have studied the effects of the
microstructures on the thermal convection and have found that in the absence
of coupling between thermal and micropolar effects, the principle of exchange of
stabilities may not be fulfilled and consequently, the micropolar fluids introduce
oscillatory motions. The existence of oscillatory motions in micropolar fluids has
been depicted by Lekkerkerker in liquid crystals [10, 11], Bradley in dielec-
tric fluids [12] and Laidlaw in binary mixture [13]. In the study of problems of
thermal convection, it is a frequent practice to simplify the basic equations by
introducing an approximation which is attributed to Boussinesq [14]. In geo-
physical situations, the fluid is often not pure but contains several suspended
particles. Motivation for the study of certain effects of particles immersed in the
fluid such as particle heat capacity, particle mass fraction and thermal force, is
due to the fact that the knowledge concerning fluid — particles mixtures is not
commensurate with their industrial and scientific importance. Saffman [15] has
considered the stability of laminar flow of a dusty gas. Sharma et al. [16] have
considered the effect of suspended particles on the onset of Bénard convection
in hydromagnetics and found that the critical Rayleigh number was reduced be-
cause of the heat capacity of particles, thereby destabilizing the system. On the
other hand, multiphase fluid systems are concerned with the motion of liquid or
gas containing immiscible inert identical particles of all multiphase fluid systems
observed in nature, blood flow in arteries, flow in rocket tubes, dust-in-gas cool-
ing system to enhance heat transfer processes, movement of inset solid particles
in atmosphere, and sand or other particles on sea or ocean beaches are the most
common examples of multiphase fluid systems.

Generally, the suspended particles number density has a destabilizing effect
on the thermal convection of the fluids. From the physical point of view, the
effect of rotation on the micropolar fluids in the presence of suspended particles
is interesting because there is a competition between the large enough stabilizing
effect of rotation and the destabilizing effect of suspended particles. Moreover,
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rotation introduces Coriolis acceleration which plays an important role in the
stability of the system and a centrifugal force which is neglected due to its small
magnitude. The rotating fluid also finds its application in meteorphysics and
oceanography. Sharma and Kumar [17] have studied the stability of micropo-
lar fluids heated from below in the presence of suspended particles (fine dust)
and have found that suspended particles number density has a destabilizing ef-
fect on the convection of micropolar fluids. Keeping in mind the importance
and relevance of thermal convection with suspended particles and rotation, the
present paper deals therefore with the thermal convection of micropolar fluid in
the presence of suspended particles in rotation.

2. Formulation of the problem and perturbation equations

Consider the stability of an infinite, horizontal layer of an incompressible
micropolar fluid of thickness d permeated with suspended particles (or fine dust).
A uniform vertical rotation Ω(0, 0,Ω) pervades the system. This fluid-particles
layer is heated from below but convection sets in when the temperature gradient
between the lower and upper boundaries exceeds a certain critical value. The
critical temperature gradient depends upon the bulk properties and boundary
conditions of the fluid.

Let v, ϑ,p, ρ, T, g, kT , cpt, cv, êz,u, δ, υ and j1 denote the velocity, the spin,
the pressure, the density, the temperature, the acceleration due to gravity, the
thermal conductivity, the heat capacity of particles, the specific heat at constant
volume, the unit vector in z-direction, the particle velocity, the coefficient giving
account of coupling between spin and heat flux, kinematic viscosity of the fluid
and microinertial constant, respectively. ε′, β′, γ′ are the coefficients of angular
viscosity and κ is the dynamic microrotation viscosity and −→r1 = (x, y, z). Let N ,
mN denote respectively, the number density and the mass of suspended particles
per unit volume. If K = 6πµr′, r′ being the particle radius, is the Stoke’s
drag coefficient then the mass, momentum, internal angular momentum, internal
energy balance equation, using the Boussinesq approximation, are

∇ · v = 0,(2.1)

ρ0
dv
dt

= −∇
(

p − ρ0

2
|Ω × r1|2

)
+ (µ + κ)∇2v + κ∇× ϑ − ρgêz(2.2)

+ KN(u − v) + 2ρ0(v × Ω),

ρ0j1
dϑ

dt
= (ε′ + β′)∇(∇ϑ) + γ′∇2ϑ + κ∇× v − 2κϑ,(2.3)

ρ0cv

(
∂

∂t
+ v.∇

)
T + mNcpt

(
∂

∂t
+ u.∇

)
T = kT∇2T + δ(∇× ϑ).∇T(2.4)
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and the equation of state is given by

(2.5) ρ = ρ0[1 − α(T − T0)],

where ρ0, T0 are reference density, reference temperature at the lower boundary
and α is the coefficient of thermal expansion. In the Eq. (2.2), the term 2(Ω×v)
represents the Coriolis acceleration and the term 1

2(grad |Ω × r1|2) represents
the centrifugal force (which is of very small magnitude).

If we assume the dust particles to be of uniform particle size, spherical shape
and small relative velocities between the two phases (fluid and particles), then
the net effect of the particles on the fluid is equivalent to an extra body-force
term per unit volume KN(u − v), as has been taken in Eq. (2.2). This force
exerted by the fluid on the particles is equal and opposite to that exerted by
the particles on the fluid. The distance between the particles is assumed to
be so large compared with their diameter that interparticle reactions can be
ignored. The equations of motion and continuity for the particles, under these
restrictions, are

(2.6)
mN

[
∂

∂t
+ u.∇

]
u = KN(v − u),

∂N
∂t

+ ∇.(N.u) = 0.

The steady-state solution of the governing equations (2.1)–(2.6) is given by

(2.7)
v = 0, u = 0, ϑ = 0, T = T0 − β(z), ρ = ρ0(1 + αβz),

p = p0 − gρ0

[
z +

αβz2

2

]
,

where p0 is the pressure at z = 0 and β = (T0 − T1)/d (T0 > T1) is the magni-
tude of uniform temperature gradient.

Let the initial stationary state, as described by (2.7), be slightly perturbed.
Let v(u, v, w), u(�, r, s), ω, N , δp, δρ, θ denote respectively the perturbations on
fluid velocity v(0, 0, 0), particles velocity u(0, 0, 0), spin ϑ and particles number
density N0, pressure p, density ρ, temperature T . Then Eqs. (2.1)–(2.6) yield
the perturbation equations

∇ · v = 0,(2.8)

ρ0
dv
dt

= −∇δp + (µ + κ)∇2v + κ∇× ω + αρ0gêz(2.9)

+ KN0(u − v) + 2ρ0(v × Ω),

ρ0j1
dω

dt
= (ε′ + β′)∇(∇.ω) + γ′∇2ω + κ∇× v − 2κω,(2.10)
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H1
dθ

dt
= β(w + h1s) + kT∇2θ +

δ

ρ0cv
[∇θ.(∇× ω) − (∇× ω)z.β],(2.11)

mN

(
∂

∂t
+ u.∇

)
u = KN0(v − u),(2.12)

∂M

∂t
+ ∇.u = 0,(2.13)

where H1 = 1+h1, h1 = fcpt/cv, f = mN0/ρ0, M = N/N0, d/dt = (∂/∂t+v.∇)
is the convective or material derivative.

Using the non-dimensional numbers,

z = z∗d, θ = βdθ∗, t =
ρ0d

2

µ
t∗, v =

κT

d
v∗, Ω =

µ

ρ0d2
Ω∗,

u =
κT

d
u∗, p =

µκT

d2
p∗, ω =

κT

d2
ω∗,

and then removing the stars for convenience, the non-dimensional forms of
Eqs. (2.8)–(2.13) become

∇ · v = 0,(2.14)

dv∗
dt

= −∇δp + (1 + K1)∇2v + K1∇×ω + êzRθ + N2(u−v) + 2(v×Ω),(2.15)

j̄2
dω

dt
= C ′

1∇(∇.ω) − C ′
0∇× (∇× ω) + K1(∇× v − 2ω),(2.16)

H1p1
dθ

dt
= β(w + h1s) + ∇2θ + δ̄[∇θ.(∇× ω) − (∇× ω)z],(2.17)

(
a

d

dt
+ 1

)
u = v.(2.18)

The new dimensionless coefficients are

(2.19)
K1 =

κ

µ
, j̄2 =

j1

d2
, δ̄ =

δ

ρ0cvd2
, C ′

0 =
γ′

µd2
,

C ′
1 =

ε′ + β′′ + γ′

µd2
, N2 = KN0

d2

µ
, a =

m

Kd2

µ

ρ0

,

and the dimensionless Rayleigh number R, thermal Prandtl number p1, are

(2.20) R =
gαβd4

µκT
, p1 =

µ

κT
,

where κT = kT /ρ0cv is the thermal diffusivity.
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Eliminating u between (2.15) and (2.18), we obtain

(2.21) L′
1 = L

′
2[−∇δp + (1 + K1)∇2v + K1∇× ω + Rθêz + 2(v × Ω)],

where

L′
1 = a

d2

dt2
+ F

d

dt
, L′

2 = a
d

dt
+ 1 and F = f + 1.

Elimination of s from Eq. (2.17), with the help of (2.18), yields

(2.22) L′
2

[
H1p1

d

dt
−∇2

]
θ =

(
a

d

dt
+ H1

)
βw + L′

2[∇θ.(∇× ω) − (∇× ω)z].

Both the boundaries are considered to be free. Since the surfaces are fixed
and are maintained at fixed temperature, we must have w = 0 = θ at z = 0 and
z = d. Further, tangential stresses do not act on free surfaces. The conditions
to be satisfied are Txz = 0, Tyz = 0, which yield

(2.23) µ

(
∂u

∂z
+

∂w

∂x

)
= 0 and µ

(
∂v

∂z
+

∂w

∂y

)
= 0.

Now, as w vanishes for all x and y on the boundaries, it follows from the
Eqs. (2.23) that ∂u/∂z = ∂v/∂z = 0.

Differentiating Eq. (2.14) with respect to z and using ∂u/∂z = ∂v/∂z = 0,
we conclude that ∂2w/∂z2 = 0 on free surfaces.

Thus the boundary conditions appropriate to the problem are

(2.24) w = 0,
∂2w

∂z2
= 0,

∂ζ

∂z
= 0, ξz = 0, θ = 0 at z = 0 and z = d,

where ξz = (∇ × ω)z, ζz = (∇ × v)z are the z-component of current density,
vorticity respectively.

3. Linear theory: dispersion relation

Since the perturbations applied to the system are assumed to be very small,
under the linearized theory, second and higher-order perturbations are neglected
and only the linear terms are retained. Accordingly, the non-linear terms (v.∇)v,
(v.∇)θ, (v.∇)ω, ∇θ.(∇× ω) in Eqs. (2.15)–(2.17) are neglected.

Applying the curl operator twice to Eq. (2.22) and linearizing, we obtain

(3.1) L1

[
H1p1

d

dt
−∇2

]
θ =

(
a

∂

∂t
+ H1

)
βw − L2δ̄ξz.
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Applying the curl operator twice to Eq. (2.15) and taking the z-component,
we get

(3.2) L1∇2w = L2

[
R∇2

1θ + (1 + K1)∇4w + K1∇2ξz − 2Ω
∂ξz

∂z

]
.

Applying the curl operator to Eqs. (2.15) and (2.16) taking z-component, we
get

L2
∂

∂t
ζz + n1ζz(L2 − 1) = (1 + K1)∇2ζzL2 + 2Ω

∂w

∂z
,(3.3)

j̄2
∂ξz

∂t
= C ′

0∇2ξz − K1(∇2w + 2ξz),(3.4)

where K1 and C ′
0 accounts for coupling between vorticity and spin effects and

spin diffusion, respectively. Here

(3.5)
∇2

1 =
∂2

∂x2
+

∂2

∂y2
, L1 = a

∂2

∂t2
+ F

∂

∂t
, L2 = a ∂

∂t + 1,

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

Combine the disturbances into a complete set of normal modes, and then exam-
ine the stability of each of these modes individually. For the system of Eqs. (3.1)–
(3.4), the analysis can be made in terms of two-dimensional periodic waves of
assigned wave numbers. Thus we ascribe to all quantities describing the pertur-
bation dependence on x, y and t in the form

(3.6) [w, ζz, ξz, θ] = [W (z), Z(z), G(z), Θ(z)] exp(ikx + ikyy + nt),

where k = (k2
x+k2

y)
1/2 is the resultant wave number, kx and ky are real constants

and n is the stability parameter which is, in general, a complex constant. The
solution of the stability problem requires the knowledge of specifications of the
state for each k.

For solutions having dependence of the form (3.6), Eqs. (3.1)–(3.4) take the
form

(an + 1)[H1p1n − (D2 − k2)]Θ = (an + H1)W − (an + 1)δ̄G,(3.7)

(D2 − k2)[(an2 + Fn) − (an + 1)(1 + K1)(D2 − k2)]W(3.8)

= (an + 1)[−Rk2Θ + K1(D2 − k2)G − 2ΩDZ],

[(an2 + Fn) − (an + 1)(D2 − k2)(1 + K1)]Z = 2ΩDW,(3.9)

[�1n + 2A − (D2 − k2)]G = −A(D2 − k2)W,(3.10)
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where

A =
K1

C ′
0

, �1 = j̄2
A

K1
, D =

d

dz
,

∂

∂t
= n,

L2 = a
∂

∂t
+ 1 = an + 1, L1 = a

∂2

∂t2
+ F

∂

∂t
= an2 + Fn.

The boundary conditions (2.24) transform to

(3.11) W = D2W = D2G = Θ = 0 at z = 0 and z = 1.

Eliminating Θ,Z and G from (3.7)–(3.10), we get

(3.12) (D2 − k2)[(an2 + Fn) − (an + 1)(1 + K1)(D2 − k2)]2

× [H1p1n − (D2 − k2)][�1n + 2A − (D2 − k2)]W

= −Rk2[(an2 + Fn) − (an + 1)(1 + K1)(D2 − k2)]

× {(an + H1)(�1n + 2A − (D2 − k2)) + δ̄A(D2 − k2)(an + 1)}W
− K1A(D2 − k2)2[H1p1n − (D2 − k2)][(an2 + Fn)

− (an + 1)(1 + K1)(D2 − k2)]W − 4Ω2[H1p1n − (D2 − k2)]

× [�1n + 2A − (D2 − k2)]D2W [H1p1n − (D2 − k2)]

× (an + 1)[�1n + 2A − (D2 − k2)]D2W.

Using the boundary conditions (3.5), we can show that all the even-order
derivatives of W must vanish on the boundaries, therefore the proper solution
for W characterizing the lowest mode is

(3.13) W = A sin πz,

where A is a constant.
Substituting this solution in Eq. (3.12), leads to the dispersion relation

(3.14) b[(an2 + Fn) + (an + 1)(1 + K1)b]2[H1p1n + b][�1n + 2A + b]

= Rk2[(an2 + Fn) + (an + 1)(1 + K1)b]2{(an + H1)(�1n + 2A + b)

− δ̄Ab(an + 1)}+ K1Ab2[H1p1n + b][(an2 + Fn) + (an + 1)(1 + K1)b]

− 4Ω2π2[H1p1n + b][�1n + 2A + b],

where b = π2 + k2.
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4. Case of overstability

Here we consider the possibility whether instability can arise as oscillations of
increasing amplitude, i.e. as overstability. We discuss the possibility of whether
the instability may occur as overstability. Put n = ini, it being remembered
that n may be complex. Since for overstability we wish to determine the critical
Rayleigh number for the onset of overstability, it suffices to find conditions for
which (3.8) will admit a solution with ni real.

Substituting n = ini in Eq. (3.14), the real and imaginary parts of (3.14),
yield

(4.1) Rk2C1 = C2

and

(4.2) Rk2C3 = C4,

where the terms represented by (C1 − C4) are given in the Appendix.
Eliminating R between Eqs. (4.1) and (4.2), we get

(4.3) n8
i A5 + n6

i A4 + n4
i A3 + n2

i A2 + A1 = 0,

where the coefficients (A1)–(A5) are given in the Appendix.
It is evident from the Eq. (4.3) that oscillatory modes will not be present

for all values of parameters. For example, in the absence of coupling between
spin and heat flux (δ̄ = 0), rotation (Ω = 0) and in the absence of suspended
particles (a = 0 = f = h1), Eq. (4.3) allows only ni = 0 and so overstable
solution will not take place if

K1p1 < 2.

The presence of suspended particles, coupling between spin and heat flux
and rotation bring overstability in the system.

For stationary convection i.e. ni = 0 and in the presence of coupling between
spin and heat fluxes (δ̄ �= 0), Eq. (4.1) reduces to

(4.4) R =
b4(1 + K1)2 + A(2 + K1)b3(1 + K1)2 + 4π2Ω2b + 8π2Ω2A

k2(1 + K1){2H1A + b(1 − δ̄A)
.

In the absence of rotation (Ω = 0) and that of between spin and heat fluxes
(δ̄ = 0), Eq. (4.4) further reduces to

(4.5) R =
(1 + K1)2b4 + A(2 + K1)(1 + K1)b3

k2(1 + K1){2b + H1A)
,

the result derived by Sharma and Kumar [17].
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In the absence of rotation (δ̄ = 0), and in the absence of suspended particles
(a = 0 = f = h1), Eq. (4.3) further reduces to

(4.6) R =
(1 + K1)2b4 + b3A(2 + K1)(1 + K1)

k2(2A + b)
,

the result derived by Pe’rez Garcia and Rubi [18].
For Newtonian viscous fluid and in absence of the suspended particles i.e.

δ̄ = 0 = K1 = C ′
0 = a = f = h1 = 0, Eq. (4.6) further reduces to

(4.7) R =
b3

k2
,

which is in good agreement with earlier result by Chanrasekhar [4].

5. Discussion and conclusions

Equation (4.3) has been examined numerically using the Newton–Raphson
method through the Fortran 77. Then, we have plotted the variation of Rayleigh
number with wave numbers using Eq. (4.1) satisfying Eq. (4.3) for overstable
case, and Eq. (4.4) for stationary case for the fixed permissible values of the
dimensionless parameters A = 0.5, δ̄ = 1, p1 = 5, F = 1.005, H1 = 1.01, a = 10,
K1 = 1 and �1 = 1. Figures 1 and 2 correspond to three different values of the
rotation parameter i.e. Ω = 20, 16 rev. per minute, respectively.

Fig. 1. The variation of Rayleigh number with wave number for A = 0.5, δ̄ = 1, p1 = 5,
F = 1.005, H1 = 1.01, a = 10, K1 = 1, l1 = 1 and Ω = 20 rev/min.
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Fig. 2. The variation of Rayleigh number with wave number for A = 0.5, δ̄ = 1, p1 = 5,
F = 1.005, H1 = 1.01, a = 10, K1 = 1, l1 = 1 and Ω = 16 rev/min.

Figures 1, 2 show that Rayleigh number increases with increase in the rota-
tion parameter, depicting thereby the stabilizing effect of rotation parameter.

Figures 3, 4 correspond to two values of micropolar coefficient κ = 0.5
and 1.0, respectively, accounting for dynamic microrotation viscosity. Figures 3
and 4 show that the Rayleigh number for the stationary convection and for
the case of overstability, decrease with the increase in micropolar coefficient κ
implying thereby the destabilizing effect of dynamic microrotation viscosity.

Fig. 3. The variation of Rayleigh number with wave number for δ̄ = 1 p1 = 5, F = 1.005,
H1 = 1.01, a = 10, K1 = 1, l1 = 1, Ω = 20 rev/min and κ = 0.5.
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Fig. 4. The variation of Rayleigh number with wave number for δ̄ = 1, p1 = 5, F = 1.005,
H1 = 1.01, a = 10, K1 = 1, l1 = 1, Ω = 20 rev/min and κ = 1.0.

Figures 5, 6 correspond to two values of micropolar coefficient γ′ = 1.0
and 1.4, respectively, accounting for the coefficient of angular viscosity, which
show that the Rayleigh number for the stationary convection and for the case
of overstability, decrease with the increase in micropolar coefficient γ′, implying
thereby the destabilizing effect of the coefficient of angular viscosity. Thus there
is a competition between the large enough stabilizing effect of rotation param-
eter and the destabilizing effect of the micropolar coefficients. The presence of
coupling between thermal and micropolar effects, rotation parameter and sus-

Fig. 5. The variation of Rayleigh number with wave number for A = 0.5, δ̄ = 1, p1 = 5,
F = 1.005, H1 = 1.01, a = 10, l1 = 1, Ω = 20 rev/min and γ′ = 1.0.
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Fig. 6. The variation of Rayleigh number with wave number for A = 0.5, δ̄ = 1, p1 = 5,
F = 1.005, H1 = 1.01, a = 10, l1 = 1, Ω = 20 rev/min and γ′ = 1.4.

pended particles, may bring overstability in the system. It is also noted from
the Fig. 1, that the Rayleigh number for overstability case is always less than
the Rayleigh number for the stationary convection, for a fixed wave numbers.
However, the reverse may also happen for certain wave numbers, what has been
depicted in Figures 2, 3, 4, 5 and 6 for Ω = 16, κ = 0.5, 1.0 and γ′ = 1.0, 1.4,
respectively.

Appendix

C1 = an4
i �1 − n2

i {a2b2(1 − δ̄A) + a2b2(1 + K1) + H1�1ab(1 + K1)

+ abF (1 − δ̄A)} + {b2(1 + K1) − δ̄AH1b
2(1 + K1) + H1b

2A(1 + K1)},

C2 = −H1p1�1a
2n6

i + n4
i (2a2b3 + H1p1�1b{H1p1F (1 + K1)2A}) − n2

i

`
ab5(1 + K1)

+ b4{(1 + K1)2A + 4a(�1 + H1p1)} − b3{H1p1�1(2 + K1) + H1p1a2A(1 + K1) + 2aH1p1�1}
− K1Ab3{H1p1 + a(1 + H1p1)} + b2{H1p1�1(1 + K1) + 2AF − 4π2Ω2H1p1�1}

´

+ b5(1 + K1)
2 + Ab4(2 + K1) − (1 + K1) + 4π2Ω2b2 + 8π2Ω2Ab,

C3 = 〈−2a2n2
i A − an2

i b − H1�1an2
i + δ̄Abn2

i a
2 − aFn2

i �1 + 2FH1A + H1bF − δ̄AbF − a2n2
i �1b

+ 2H1abA + H1ab2 − δ̄Aab2 − a2n2
i �1bK1 + 2H1AabK1ab2H1K1 − δ̄Ab2K1 + 2abA + ab2

+ H1�1b − δ̄aAb2 + 2abAK1 + ab2K1 + H1�1K1 − δ̄AbK
1 − H1p1n

2
i K1Ab2H1p1K1Ab3

+ H1p1K
2
1Ab3 + FK1Ab3 + aK1Ab4 − 8π2Ω2AH1p1 − 4H1p1bπ

2Ω2 − 4π2Ω2b�1〉,
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C4 = −2H1p1Fn2
i A − H1p1Fn2

i b
2 − Fb2�1n

2
i + 2H1p1n

4
i a

2bA + H1p1n
4
i a

2b2 + �1n
4
i a

2b2

+ 2H1p1�1n
4
i aFb − 4Aab2n2

i − 2aFb3n2
i − 2H1p1b

3n2
i A − H1p1n

2
i ab2 − n2

i �1n
2
i ab4

− 2H1p1n
2
i AaK2

1b3 − H1p1n
2
i b

4aK2
1 − ab4�1n

2
i K

2
1 − H1p1n

2
i b

34AK1 − 2H1p1n
2
i b

4K1

+ 2H1p1n
2
i b

3A + H1p1b
4 + b4�1 + H1p1AK2

1b3 + H1p1K
2
1b4 + 4H1p1K1b

3A + 2H1p1b
4

+ 2K1b
4�1 − H1p1�1K1b

3 + 4H1p1�1K1b
3an2

i + 4Ab4 + 2b5a + 8Aab4K1 + 4ab5K1

− 2H1p1�1b
2n2

i a + 4Aab3 + 2ab4 − H1p1�1K1b
22an2

i + 4Aab3K1 + 2b4aK1

+ 4H1p1b
2A + 2H1p1b

3 + 2b3�1 + 4H1p1b
2AK1 + 2H1p1b

3K1 + 2b3K1�1,

A5 = −a2�1{1 + H1p1(1 + K1)} + H1p1δ̄A + bH1p1�
2
1(1 + K1),

A4 = b2{2�1a
2(�1 + H1p1δ̄A) + F (1 − δ̄A)}

+ b3{2H1p1�
2
1(1 + K1) + 1(1 + K1)〈H1p1(1 − δ̄A)�1F δ̄A〉 + 2AH1(2 − δ̄A)

− K1A{H1p1(1 − δ̄A) − �1F δ̄A} + 2Aa(F − aK1)} + b22Aa(1 + K1){H1p1(F − aK1)

+ a�1{�1 + H1p1F} + b{�1 + H1p1(1 − δ̄A) + aF�1(H1 − 1)}} + b{H1p1�
2
1(1 − K1)

3H

− Hp1a(1 + K1) + 4π2Ω2�1F (H1p1(F δ̄ − δ̄ − aK1) − �1)}
+ {H1p1�

2
1F − �1(�1F + aH1p1δ̄A) + 4Ω2a2H1p1�

2
1(1 − K1)},

A3 = b6{�1F (�1a+H1(1− δ̄A))+2a2(1− δ̄A)F�1}+b5{2aF�21(1+K1){H1p1(1− δ̄A)−aF�1δ̄A}
− 2K1A{H1p1(1 − δ̄A) − F�1}} + b4{(F�1 + H1p1δ̄A)(2F�1(1 + K1)

2 − �1F (�1 + H1p1δ̄A))

+ 4AH1p1(1 + K1){(2 − δ̄A) + (1 + K1)
2F�1(1 − δ̄A)} − 4K1A

2H1p1{F�1(H1p1(2 − δ̄A)

− δ̄A) + (H1 − 1) + (�21F + (1 − δ̄A)a)}} + b3{(F�1(1 + K1)(F�1 + H1p1δ̄A)

+ a�1F (1 + K1)(F δ̄A) − H1p1(F δ̄ − δ̄ − aK1)) − K1AH1p1

2
F�1 − H1p1(1 − δ̄A)

− K1A(1 + K1)
2{H1p1(1 − δA) − F�1} + 4π2Ω2�1{−(2(H1p1 + F�1)

+ H1p1a�1) − (1 − δ̄A)F}} + b2{2H1p1(1 + K1)
2(2 − δ̄A)F2A2

(1 + K1)
2(2 − K1p1) + 4A2H1F�1(H1 − 1) + 4π2Ω2{H1p1(1 + K1)(1 − δ̄A)

− F�1δ̄A(1 + K1)}} + {4A2H1p1a(1 + K1)
2 + 4Ω2π2a2(F�1p1(�1

+ H1p1) + (1 + K1)2H1p1A((2 − δ̄A) − �1ap1)) + 16Ω2π2A2H1p1(1 + K1)},

A2 = b7{(1 − δ̄A)aH1p1} + b6{F�(1 + K1){H1p1(1 − δ̄A) + �1F δ̄A} + 4AH1p1(1 − δ̄A)}
+ b5{2aF�21(1 + K1){H1p1(1 − δ̄A) − aF�1δ̄A} − 2K1A{H1p1(1 − δ̄A) − F�1}}

+ b5{2Fa(1 + K1)
2(1 − δ̄A) + 2AH1p1 (1 + K1)(2 − δ̄A)

+ F�1(1 + K1)
2(a�1 + H1p1) + 2A2H1�1(2 − K1p1) + 4A2H1F (1 + K1)δ̄A}

+ b4{2a(1 + K1)
2{H1p1(1 − δ̄A)�1F δ̄A} + 4A(1 + K1)

2(2 − δ̄A)

+ 2AH1p1F (1 + K1)
2(1 − δ̄A) + H1p1�

2
1F (1 + K1)

2 + 4A2�1FH1p1(1 + K1)(1 + K1)
22�1

+ H1p1 − δ̄A − 4π2Ω2{2(1 − δ̄A) + aF�1(�1 + H1p1δ̄A)}}
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+ b3{H1p1�
2
1a(1 + K1)

2(2 − K1p1)H1p1�1(1 + K1)
2 + {a�21 − (2 − δ̄A)}

+ {�1(F δ̄ − δ̄ − aK1)a + (1 − δ̄A)} + H1p1(H1 − 1)(1 − δ̄A) − H1p1�1(1 + K1)(3 − δ̄A)

− H1p1A(1 + K1){3�1 − 2{1 − δ̄A}} − K1Aa{−(1 + K1)(2F�1(1 + H1p1)

+ H1p1(1 − δ̄A)) + H1p1a�1{F�1 + (1 − δ̄A)(�1F + (1 + K1))}
+ (F�21 + (1 − δ̄A)) + 4A2(H1p1 + F�1) + H1p1A((1 − δ̄A) − H1p1)

+ 4Ω2π2{2AF�1(2�1 + 2H1p1a) − 2δ̄Aa − 2a�1(1 + K1)δ̄A

+ H1p1(1 + K1)(F�1 + 2(1 − δ̄A))}}} + b2{8A2H1p1{H1p1(2Aa + F�1)

− H1p1a(1 − δ̄A)} + (1 + K1)
2H1A{H1p1a(1 − δ̄A) − F�1(H1p1 + F�1)}4A(1 + K1)

+ H1p1(1 − K1)
2(2 + F�1) + (1 − K1)

2(2F�1 + 1) + (δ̄ − aK1)H1F�1

− 4A2(1 − K1)
2FA�1 − 4(1 + K1) − K1A{4AH1p1H1p1(1 − K1) + H1p1

+ (1 − δ̄A) + 2Aa(1 + K1)
2(2 − δ̄A)(H1 − 1) + 4π2Ω2{2A(1 + K1)a(2 − δ̄A)(2 + H1p1)

− F�1 + H1p1�1a(H1 − 1)(1 − δ̄A) + F�21}}} + b{H1p1Aa(1 − K1) + 4Ω2H1A
2F�1},

and

A1 = b7{(1 − K1)(1 − δ̄A)H1F} + b6{2A(1 + K1)
2H1a(2 − δ̄A)(H1 − 1)

+ (1 + K1){H1p1�1(1 − δ̄A)a − F�1δ̄A} + H1F�1(2Aa + �1δ̄A)

− K1A(1 + K1)
2(H1p1(1 − δ̄A) − a�1F ) − 4π2Ω2(1 − δ̄A)Fa}

+ b5{H1p1F (1 − K1){H1p1 + �1 − F�1} + 2AH1p1(1 − K1)
2(2 − δ̄A)

+ 2A2(1 − K1)
2(2 − K1p1) + 2AH1F{(2 − δ̄A) − K1F�1{H1p1(1 − δ̄A) − F�1}}

+ 4π2Ω2{(1 − K1)
2a((1 − δ̄A)(H1p1 − 1) − Fa�1)}} + b4{H1p12Aa(1 + K1)

2(H1 − 1)

+ 4A2H1p1(1 − K1)(2 − δ̄A) + F�12Aa2(2 − δ̄A) + H1F�1(1 − K1){H1p1(1 − δ̄A)}
+ H1F (2A)�21(1 + K1)(1 − δ̄A) − (H1p1(1 − δ̄A) − F�1) + H1F�1p1A

2(2 − K1p1)

+ H1p1 + (H1p1 − 1) + H1F�21a
2(1 − δ̄A)(H1 − 1) + 4π2Ω2F�1(1 − δ̄A) − �1δ̄A

+ (H1p1(2 − δ̄A + 4A2(1 + K1)aF ))} + b3{H1p1Aa(1 + K1)

+ {4AH1p1(1 + K1) + H1p1 + (1 − δ̄A)} + (2 − δ̄A)(H1 − 1)

+ 4π2Ω22A(1 − K1)a} + b2{H1p1Aa(1 + K1)
2(2 + F�1) + (1 + K1)

2(2F�1 + 1)}.
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