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The velocity field and the associated tangential stress corresponding to the flow
of a generalized second-grade fluid between two infinite coaxial circular cylinders, are
determined by means of the Laplace and Hankel transforms. At time t = 0, the fluid
is at rest and at t = 0+ the cylinders suddenly begin to rotate about their common
axis with a constant angular acceleration. The solutions that have been obtained
satisfy the governing differential equations and all the imposed initial and boundary
conditions. The similar solutions for a second-grade fluid and Newtonian fluid are
recovered from our general solutions. The influence of the fractional coefficient on the
velocity of the fluid is also analyzed by graphical illustrations.
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1. Introduction

In many fields, such as food industry, drilling operations, polymer chemical in-
dustry and bio-engineering, the fluids, either synthetic or natural, are mixtures
of different stuffs such as water, particles, oils, red cells and other long-chain
molecules. Generally, the viscosity function varies non-linearly with the shear
rate and the elasticity is felt through elongational effects and time-dependent
effects. In these cases, the fluids have been treated as viscoelastic fluids. Because
of the difficulty to suggest a single model, which exhibits all properties of vis-
coelastic fluids, they cannot be described as simply as Newtonian fluids. For this
reason, many models or constitutive equations have been proposed and most of
them are empirical or semi-empirical.

The second-grade fluids are the common, non-Newtonian viscoelastic fluids
in industrial fields, such as polymer solutions. The ordinary linear constitutive
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model for a second-grade fluid has the following form:

(1.1) τ(t) = µε(t) + E
dε(t)
dt

,

where τ is the stress, ε is the strain, µ is the viscosity coefficient and E is
the viscoelasticity constant. This mathematical model provides a reasonable
qualitative description, however, it is not satisfactory from a quantitative view-
point (see Caputo and Mainardi [1]).

Several authors [2–4] suggested that integral-order models for viscoelastic
materials seem to be inadequate from both the qualitative and quantitative point
of view. At the same time, they proposed fractional-order laws of deformation
for modelling the viscoelastic behavior of real materials.

Caputo and Mainardi [1] formulated the following fractional-order model:

(1.2) σ(t) + a
dασ

dtα
= mε(t) + b

dαε

dtα
; 0 < α ≤ 1,

where α, a, m and b are constants which depend on the nature of material. This
model includes the classical law when α = 1, a = 0, m = µ and b = E. Bagley
and Torvik [5, 6] and Rogers [7] have shown that law (1.2) is very useful for
modeling of most viscoelastic materials. In addition to experimental findings,
they proved that the four-parameter model (1.2) seems to be satisfactory for
most real materials.

Bagley and Torvik [5, 6], Koeller [8], Xu and Tan [9, 10] proposed
the fractional derivative approach to viscoelasticity in order to describe the
properties of numerous viscoelastic materials. They suggest the general form of
the model as

(1.3) σ(t) = E0ε(t) + E1D
β
t [ε(t)],

where Dβ
t [ε(t)] is defined by [11]

(1.4) Dβ
t [ε(t)] =

1
Γ (1 − β)

d

dt

t∫
0

ε(τ)
(t − τ)β

dτ ; 0 < β < 1,

where Γ (·) is the Gamma function.
According to the molecular theory for dilute polymer solutions due to

Rouse [12], the stress is

(1.5) σ(t) = µsD
1
t [ε(t)] +

[
3
2
(µ0 − µs)nkT

]1/2

D
1/2
t [ε(t)],
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where n is the number of molecules per unit volume of the polymer solution, k is
the Boltzmann constant, T is the absolute temperature, µs is the steady-flow
viscosity of the solvent in the solution and µ0 is the steady-flow viscosity of the
solution. Thus, the Rouse theory provides us the presence of fractional derivative
along with the first derivative of classical viscoelasticity in the relation between
stress and strain for some polymers. Ferry et al. [13] modified the Rouse theory
in concentrated polymer solutions and polymer solids with no cross-linking and
obtained that

(1.6) σ(t) =
(

3µρRT

2M

)1/2

D
1/2
t [ε(t)],

where M is the molecular weight, ρ is the density, µ is the viscosity and R is
the universal gas constant.

Thus, the fractional calculus approach to viscoelasticity for the study of
viscoelastic material properties is justified, at least for polymer solutions and
for polymer solids without cross-linking.

For a second-grade fluid, the Cauchy stress tensor T is given by the consti-
tutive equation [14, 15]

T = −pI + µA1 + α1A2 + α2A2
1,(1.7)

where p is the pressure, I is the unit tensor, µ is the dynamic viscosity, α1 and α2

are the normal stress moduli and A1 and A2 are the kinematic tensors defined
by

A1 = gradv + (gradv)T ,(1.8)

A2 =
dA1

dt
+ A1(gradv) + (gradv)TA1,(1.9)

where d/dt denotes the material time derivative, v is the velocity field and grad
is the gradient operator.

If the second-grade fluid given by Eq. (1.7) is compatible with thermody-
namics, then the material moduli must meet the following restrictions [16]:

(1.10) µ ≥ 0, α1 ≥ 0 and α1 + α2 = 0.

For a generalized second-grade fluid, Eq. (1.7) still holds but A2 is defined
as follows [5, 18–20]

(1.11) A2 = Dβ
t A1 + A1(gradv) + (gradv)TA1,

and Dβ
t is the Riemann–Liouville fractional calculus operator defined by (1.4).

For β = 1, we have D1
t f(t) = df(t)/dt and hence Eq. (1.11) is reduced to

Eq. (1.9).
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In this paper, we study the motion of a generalized second-grade fluid
between two infinite concentric circular cylinders, both cylinders are rotating
around their common axis (r = 0), with constant angular accelerations. We
have obtained the velocity field and the resulting shear stress by means of the
Laplace and Hankel transforms.

Making β = 1, respectively, β = 1 and α1 = 0 in our general solutions, we
obtain the velocity field and the resulting shear stress corresponding to the flow
of second-grade fluids, respectively, Newtonian fluids, performing the same mo-
tions. By using the graphical illustrations, we have studied the effect of fractional
derivative on the velocity field.

2. Rotational flow between concentric cylinders

Let us consider an incompressible second-grade fluid at rest in an annular
region between two straight circular cylinders of radii R1 and R2 (> R1), as
shown in Fig. 1. At time t = 0+, both cylinders suddenly begin to rotate about
their common axis, with constant angular accelerations. Owing to the shear,
the fluid is gradually moved and its velocity in cylindrical coordinates (r, θ, z)
is given by [15, 20, 21]

v = v(r, t) = ω(r, t)eθ,(2.1)

where eθ is the transverse unit vector. For these flows, the constraint of incom-
pressibility is automatically satisfied.

Fig. 1. Flow geometry.

Based on the above suppositions, the constitutive equation of generalized
second-grade fluid, corresponding to this motion is

τ(r, t) = (µ + α1D
β
t )

(
∂

∂r
− 1

r

)
ω(r, t),(2.2)
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where τ(r, t) = Srθ(r, t) is the shear stress which is different from zero. In absence
of body forces and a pressure gradient in the axial direction, the balance of linear
momentum leads to the following equation:

ρ
∂ω(r, t)

∂t
=

(
∂

∂r
+

2
r

)
τ(r, t),(2.3)

where ρ is the constant density of the fluid.
Eliminating τ from Eqs. (2.2) and (2.3), we get the governing equation

(2.4)
∂ω(r, t)

∂t
= (ν + αDβ

t )
(

∂2

∂r2
+

1
r

∂

∂r
− 1

r2

)
ω(r, t); r ∈ (R1, R2), t > 0,

where ν = µ/ρ is the kinematic viscosity, and α = α1/ρ is the fractional vis-
coelastic constant. Consequently, the velocity field corresponding to this motion
does not depend upon the material module α2.

We consider the initial and boundary conditions

ω(r, 0) = 0,(2.5)

ω(R1, t) = R1Ω1t, ω(R2, t) = R2Ω2t for t > 0.(2.6)

To solve this problem, we shall use as in [21, 22] the Laplace and Hankel trans-
forms.

2.1. Calculation of the velocity field

Applying the Laplace transform to Eqs. (2.4) and (2.6) and using the
Eq. (2.5), we obtain the following ordinary differential equation [17]:

(2.7) (ν + αqβ)
[
∂2ω(r, q)

∂r2
+

1
r

∂ω(r, q)
∂r

− ω(r, q)
r2

]
− qω(r, q) = 0,

where the image function ω(r, q) =
∫ ∞
0 ω(r, t)e−qtdt of ω(r, t) has to satisfy the

conditions

(2.8) ω(R1, q) =
R1Ω1

q2
, ω(R2, q) =

R2Ω2

q2
,

where q is the transform parameter.
We denote by ωH(rn, q) =

∫ R2

R1
rω(r, q)B1(rrn)dr the Hankel transform of

the function ω(r, q), where

B1(rrn) = J1(rrn)Y1(R2rn) − J1(R2rn)Y1(rrn),
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and rn are the positive roots of the transcendental equation B1(R1r) = 0, and
J1(·) and Y1(·) are Bessel functions of order one of the first and second kind.
Applying the Hankel transform to Eq. (2.7), taking into account the conditions
(2.8) and using the following relations:

(2.9)
d

dr
[B1(rrn)] = rn[J0(rrn)Y1(R2rn) − J1(R2rn)Y0(rrn)] − 1

r
B1(rrn)

and

(2.10) J0(z)Y1(z) − J1(z)Y0(z) = − 2
πz

;

now we find that

(ν +αqβ)
{

2[R2Ω2J1(R1rn) − R1Ω1J1(R2rn)]
πq2J1(R1rn)

− r2
nωH(rn, q)

}
− qωH(rn, q) = 0,

or equivalently

(2.11) ωH(rn, q) =
2[R2Ω2J1(R1rn) − R1Ω1J1(R2rn)]

πJ1(R1rn)
ν + αqβ

q2[q + αr2
nqβ + νr2

n]
.

Equation (2.11) can be written in the following equivalent form:

(2.12) ωH(rn, q) = ω1H(rn, q) + ω2H(rn, q),

where

(2.13) ω1H(rn, q) =
2

πr2
n

R2Ω2J1(R1rn) − R1Ω1J1(R2rn)
J1(R1rn)

1
q2

,

and

(2.14) ω2H(rn, q) = − 2
πr2

n

R2Ω2J1(R1rn) − R1Ω1J1(R2rn)
J1(R1rn)

× 1
q[q + αr2

nqβ + νr2
n]

.

The inverse Hankel transforms of the functions ω1H and ω2H are

(2.15) ω1(r, q) =
Ω1R

2
1(R

2
2 − r2) + Ω2R

2
2(r

2 − R2
1)

(R2
2 − R2

1)r
1
q2

,

and

(2.16) ω2(r, q) =
π2

2

∞∑
n=1

r2
nJ2

1 (R1rn)B1(rrn)
J2

1 (R1rn) − J2
1 (R2rn)

ω2H(rn, q).
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Now, we find that the function ω(r, q) has the form

(2.17) ω(r, q) =
Ω1R

2
1(R

2
2 − r2) + Ω2R

2
2(r

2 − R2
1)

(R2
2 − R2

1)r
1
q2

− π
∞∑

n=1

J1(R1rn)[R2Ω2J1(R1rn) − R1Ω1J1(R2rn)]B1(rrn)
J2

1 (R1rn) − J2
1 (R2rn)

1
q[q + αr2

nqβ + νr2
n]

.

We introduce the notation

(2.18) F (q) =
1

q[q + αr2
nqβ + νr2

n]
,

and rewrite Eq. (2.18) in the equivalent form

(2.19) F (q) =
q−1−β

(q1−β + αr2
n) + νr2

nq−β
=

∞∑
k=0

(−νr2
n)k q−1−β−kβ

(q1−β + αr2
n)k+1

.

In order to determine the inverse Laplace transform of the function ω(r, q), we
will use the following formulae [23]:

L−1

{
1
qa

}
=

ta−1

Γ (a)
; a > 0,

L−1

{
qb

(qa − d)c

}
= Ga,b,c(d, t)

=
∞∑

j=0

Γ (c + j)dj

Γ (c)Γ (j + 1)
t(c+j)a−b−1

Γ [(c + j)a − b]
, Re(ac − b) > 0.

So we find that the velocity field ω(r, t) has the following form:

(2.20) ω(r, t) =
Ω1R

2
1(R

2
2 − r2) + Ω2R

2
2(r

2 − R2
1)

(R2
2 − R2

1)r
t

− π
∞∑

n=1

J1(R1rn)[R2Ω2J1(R1rn) − R1Ω1J1(R2rn)]B1(rrn)
J2

1 (R1rn) − J2
1 (R2rn)

×
∞∑

k=0

(−νr2
n)kG1−β,−1−β−kβ,k+1(−αr2

n, t),
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or, equivalently

(2.21) ω(r, t) =
Ω1R

2
1(R

2
2 − r2) + Ω2R

2
2(r

2 − R2
1)

(R2
2 − R2

1)r
t

− π
∞∑

n=1

J1(R1rn)[R2Ω2J1(R1rn) − R1Ω1J1(R2rn)]B1(rrn)
J2

1 (R1rn) − J2
1 (R2rn)

×
∞∑

j,k=0

(−νr2
n)k(−αr2

n)jΓ (k + j + 1)
Γ (k + 1)Γ (j + 1)

t(1−β)j+k+1

Γ [(1 − β)j + k + 2]
.

2.2. Calculation of the shear stress

The shear stress τ(r, t) is obtained from Eqs. (2.2) and (2.17). Applying the
Laplace transform to Eq. (2.2) we find

(2.22) τ(r, q) = (µ + α1q
β)

(
∂

∂r
− 1

r

)
ω(r, q).

Now, differentiating Eq. (2.17) with respect to r and replacing the values of
∂ω(r, q)/∂r and that of ω(r, q) itself in Eq. (2.22), we get

(2.23) τ(r, q) =
2R2

1R
2
2(Ω2 − Ω1)

(R2
2 − R2

1)r2

(
µ

1
q2

+ α1
1

q2−β

)

+ π
∞∑

n=1

[
2
r
B1(rrn) − rnB(rrn)

]
J1(R1rn)[R2Ω2J1(R1rn) − R1Ω1J1(R2rn)]

J2
1 (R1rn) − J2

1 (R2rn)

×
∞∑

j,k=0

(−νr2
n)k(−αr2

n)jΓ (k + j + 1)
Γ (k + 1)Γ (j + 1)

[
µ

1
q(1−β)j+k+2

+ α1
1

q(1−β)j+k+2−β

]
,

where
B(rrn) = J0(rrn)Y1(R2rn) − J1(R2rn)Y0(rrn).

Applying inverse Laplace transform to the image function τ(r, q), we find the
shear stress

(2.24) τ(r, t) =
2R2

1R
2
2(Ω2 − Ω1)

(R2
2 − R2

1)r2

(
µt +

α1t
1−β

Γ (2 − β)

)

+ π
∞∑

n=1

[
2
r
B1(rrn) − rnB(rrn)

]
J1(R1rn)[R2Ω2J1(R1rn) − R1Ω1J1(R2rn)]

J2
1 (R1rn) − J2

1 (R2rn)

×
∞∑

j,k=0

(−νr2
n)k(−αr2

n)jΓ (k+j+1)
Γ (k + 1)Γ (j + 1)

[
µ

t(1−β)j+k+1

Γ [(1−β)j+k+2]
+α1

t(1−β)j+k+1−β

Γ [(1−β)j+k+2−β]

]
.
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3. Limiting case (β = 1)

Assuming β = 1 in Eq. (2.20) we obtain the velocity field

(3.1) ω(r, t) =
Ω1R

2
1(R

2
2 − r2) + Ω2R

2
2(r

2 − R2
1)

(R2
2 − R2

1)r
t

− π

∞∑
n=1

J1(R1rn)[R2Ω2J1(R1rn) − R1Ω1J1(R2rn)]B1(R1rn)
J2

1 (R1rn) − J2
1 (R2rn)

×
∞∑

k=0

(−νr2
n)kG0,−2−k,k+1(−αr2

n, t),

corresponding to an ordinary second-grade fluid, performing the same motion.
Similarly, from (2.24) we obtain the associated shear stress

(3.2) τ(r, t) =
2R2

1R
2
2(Ω2 − Ω1)

(R2
2 − R2

1)r2
(µt + α1)

+ π
∞∑

n=1

[
2
r
B1(rrn) − rnB(rrn)

]
J1(R1rn)[R2Ω2J1(R1rn) − R1Ω1J1(R2rn)]

J2
1 (R1rn) − J2

1 (R2rn)

×
∞∑

j,k=0

(−νr2
n)k(−αr2

n)jΓ (k + j + 1)
Γ (k + 1)Γ (j + 1)

[
µ

tk+1

Γ (k + 2)
+ α1

tk

Γ (k + 1)

]
.

The above relations can be simplified if we use the following relations:

∞∑
k=0

(−νr2
n)kG0,−2−k,k+1(−αr2

n, t) =
∞∑

k=0

(−νr2
n)k

∞∑
j=0

(−αr2
n)jΓ (k+j+1)

Γ (k + 1)Γ (j + 1)
tk+1

Γ (k+2)

=
∞∑

k=0

(−νr2
n)ktk+1

Γ (k + 2)
1

(1 + αr2
n)k+1

= − 1
νr2

n

∞∑
k=0

1
(k + 1)!

(
− νr2

nt

1 + αr2
n

)k+1

=
1

νr2
n

[
1 − exp

(
− νr2

nt

1 + αr2
n

)]
.

As a result, we find that the velocity field (3.1) has the form

(3.3) ω(r, t) =
Ω1R

2
1(R

2
2 − r2) + Ω2R

2
2(r

2 − R2
1)

(R2
2 − R2

1)r
t

−π

ν

∞∑
n=1

J1(R1rn)[R2Ω2J1(R1rn)−R1Ω1J1(R2rn)]
J2

1 (R1rn)−J2
1 (R2rn)

B1(rrn)
r2
n

[
1−exp

(
− νr2

nt

1+αr2
n

)]
,
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and the shear stress (3.2) has the form

(3.4) τ(r, t) =
2R2

1R
2
2(Ω2 − Ω1)

(R2
2 − R2

1)r2
(µt + α1) + π

∞∑
n=1

[
2
r
B1(rrn) − rnB(rrn)

]

× J1(R1rn)[R2Ω2J1(R1rn) − R1Ω1J1(R2rn)]
J2

1 (R1rn) − J2
1 (R2rn)

×
{

µ

νr2
n

[
1 − exp

(
− νr2

nt

1 + αr2
n

)]
+

α1

1 + αr2
n

exp
(
− νr2

nt

1 + αr2
n

)}
.

Equations (3.3) and (3.4) are identical with those obtained by Fetecau et al.
[20, Eqs. (3.12) and (3.16) for λ → 0]. Making α → 0 in Eqs. (3.3) and (3.4),
the similar solutions corresponding to the Newtonian fluid, performing the same
motion, are recovered. Making Ω1 = 0 and Ω2 = Ω or Ω1 = Ω and Ω2 = 0 in
Eqs. (2.20) and (2.24), we obtain the velocity field and the adequate shear stress
corresponding to the flow between two cylinders, one of them being at rest.

4. Conclusion and numerical results

In this paper we have established exact solutions for the velocity field and
shear stress, corresponding to the flow of a generalized second-grade fluid be-
tween two concentric circular cylinders. The motion is produced by the two
cylinders which at time t = 0+ begin to rotate around their common axis with
angular velocities Ω1t and Ω2t. The solutions, obtained by means of Laplace
and Hankel transforms, are presented, in integral and series forms, in terms of
the generalized G-function, and satisfy all the imposed initial and boundary
conditions. For β = 1 or β = 1 and α = 0, similar solutions for the ordinary
second-grade fluids, respectively, Newtonian fluids are recovered. The velocity
field and adequate shear stress corresponding to the flow between two cylinders,
one of them being at rest, are obtained as particular cases of our general solu-
tions. Assuming Ω1 = 0 and Ω2 = Ω in Eqs. (2.20), for instance, we obtain the
velocity field

(4.1) ω(r, t) =
ΩR2

2(r
2 − R2

1)
(R2

2 − R2
1)r

t − πR2Ω
∞∑

n=1

J2
1 (R1rn)B1(rrn)

J2
1 (R1rn) − J2

1 (R2rn)

×
∞∑

j,k=0

(−νr2
n)k(−αr2

n)jΓ (k + j + 1)
Γ (k + 1)Γ (j + 1)

t(1−β)j+k+1

Γ [(1 − β)j + k + 2]
,

corresponding to the flow between cylinders, the inner cylinder being at rest.
Finally, the numerical results are given to illustrate the influence of the

fractional parameter β on the velocity ω(r, t). In all figures we considered
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Fig. 2. Velocity profiles ω(r) for different values of the fractional coefficient β.
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Fig. 3. Time variation of the velocity.
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Fig. 4. Velocity profiles for different values of parameters α1 and β.

R1 = 1, R2 = 4, Ω1 = 3, Ω2 = 1.5. The profiles of the velocity corre-
sponding to the motion of the Newtonian fluid (curve ωN(r)), second-grade
fluid (curve ωSG(r))) and generalized second-grade fluid (curves ω(r), ω1(r),
ω2(r) and ω3(r)), are plotted for different values of time t and fractional coef-
ficient β.

In Fig. 2, with ρ = 1260, α1 = 11.34 and µ = 1.48, the profiles of the ve-
locity are plotted for fractional coefficient β ∈ {0.1, 0.3, 0.5}. It is clear from
these figures that the velocity of the fluid increases when the fractional coeffi-
cient decreases. Moreover, in these cases, the influence of β is stronger near the
boundary of the domain. The generalized second-grade fluid flows faster than
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Fig. 5. Velocity profiles for different values of coefficients µ and β.

the second-grade and Newtonian fluids. Figure 3 depicts the histories of the
velocity field ω(r, t) at the positions r = {1.3, 2.5, 3.8} for t ∈ [0, 10] and the
same values of the fractional coefficient which are used in Fig. 2.

Figure 4 is drawn for ρ = 1260, µ = 1.48, α1 ∈ {30, 100} and β ∈ {0.2, 0.4}.
The influence of the fractional coefficient on the velocity is not modified, the
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Fig. 6. Velocity profiles for different values of coefficients ρ and β.

characteristics of the flow being similar to those of the previous cases. How-
ever, we note that the modification in the value of material constant α1 leads to
a significant modification in the velocity value. The second-grade fluid with frac-
tional derivative flows much faster than the second-grade one and this difference
is significant at higher values of the time t.

In Fig. 5, we consider ρ = 1260, α1 = 60, µ ∈ {0.5, 10} and β ∈ {0.2, 0.4}.
It is easy to see that the three fluids maintain the previous flow properties. It is
important to note that the variation of the material constant µ has a significant
influence on the flow speed. For higher values of µ, speeds differ significantly
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from the point of view of their values. Again, these differences are larger for
higher values of the time t.

Figure 6 is drawn for α1 = 60, µ = 2, ρ ∈ {760, 1900} and β ∈ {0.2, 0.4}. The
flow maintains the above general character it should be mentioned that, in case
of lower values of the density ρ, velocity increases when the fractional coefficient
decreases and the differences are higher for higher values of t. The units of the
parameters in Figs. 2–6 are SI units and the roots rn have been approximated
by nπ/(R2 − R1) [24].
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