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This paper concerns the rigid-plastic modelisation of a f.c.c. single crystal, deforming
by crystallographic slip, under large strain. Adopting the plane single crystal model,
which corresponds to a true two-dimensional evolution of a real three-dimensional
crystal, the activity of slip systems and the plastic indetermination, due to multiplicity
of solutions, are studied according to the rate-independent Schmid law or the rate-
dependent Bingham law. To promote a more general situation of potential multiple
slip and therefore of potential indeterminacy, the biaxial loading is investigated. Based
on this model and the Bingham slip law, the indeterminacy problem is surmounted,
by adopting the geometrical analysis in the strain rate space and it is proved that the
linear viscoplastic analysis is a new way of solving the indeterminacy problem.
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Notations

F deformation gradient tensor,
P plastic transformation tensor,
R lattice rotation tensor,
L velocity gradient tensor,
D strain rate tensor,
W rotation rate tensor,

D strain rate tensor rotated in the crystallographic configuration,

W rotation rate tensor rotated in the crystallographic configuration,
T Cauchy stress tensor,

T Cauchy stress tensor rotated in the crystallographic configuration,

N
s

the s-th “pseudo slip” system,
α̇s shear strain rate on the “pseudo slip” system (s),
σs resolved shear stress on the “pseudo slip” system (s),
τc critical resolved shear stress,

x̄1, x̄2, x̄3 space coordinates in the crystallographic frame,
θ orientation of the laboratory frame.
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1. Introduction

Most materials, nowadays used, are polycrystalline aggregates defined by
microstructure and crystallographic texture. Under such circumstances, it is use-
ful to describe the macroscopic behavior of a particular piece of material, as an
average of the microscopic behavior, which has been taken over the constituent
grains. The single crystal therefore should play an important role in describing
the deformation behavior of metallic materials and in understanding the mi-
crostructure and texture effect on mechanical properties during the industrial
processes.

The single crystal behavior has been widely studied. The quantitative de-
scription of plastic flow by crystallographic slip may be traced back to early
works of [1–4]. Constitutive equations for elasto-plastic behaviour of ductile
single crystals from the standpoint of modern continuum mechanics were first
formulated by [5] and [6], and extended to finite deformation by [7–13].

In these formulations, if the mechanics of single crystal is clearly formulated,
many problems have not been completely solved. For instance, in the classical
rate-independent theory, the limitation stems essentially from a loss of unique-
ness of the mode of slip, corresponding to the choice of active slip systems [14]
and [15]. This is a well-known difficulty in rate-independent crystalline plasticity
that has also been of particular concern, for example, in texture analyses. The
prediction of texture in single crystals or polycrystals requires a precise specifi-
cation of the slip mode to calculate lattice and grain rotation. To overcome this
well-known indetermination problem, the comparison between rate-sensitive and
rate-insensitive behaviour is also an important issue.

For single crystal plasticity models, the studies in three dimensions seldom
lead to analytical solutions. However, this is desirable because it puts into evi-
dence the role played by the various factors influencing the deformation: sets of
active slip systems, lattice rotation and strain hardening.

To bypass this complexity, typically, an analysis in two dimensions has been
widely overviewed in different papers and used for gaining a greater physical
insight. [11] and [16] used idealized symmetry double-slip models, obtained an
analytical solution for bifurcation of a shear band in ductile single crystal un-
der uniaxial tension and proved that shear banding is possible with positive
hardening.

In another work, based on the double-slip kinematics, Dafalias [17] inte-
grated analytically the Clements equation [18] and obtained the ODF expres-
sion. This was used to describe the related texture development. Also, it has been
shown that it could be possible to obtain exact analytical expression describing
the stress-strain response and the yield-surface evolution of a polycrystal under
general large plane deformation.
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Another plane single crystal model was proposed by [19] and [20], corre-
sponding to a single crystal when solicited in a material symmetry plane (in
cubic metals, a {100} or {110} one). This model, which is presented in the
formalism of large deformations, is based on the fact that the material plane
remains an element of symmetry throughout the loading strain path. The full
advantage of such two-dimensional model is its ability and simplicity to describe
some forming process and can be directly used, for example, to study the me-
chanical behaviour of grains in a rolled sheet with a Cube, Goss or Copper orien-
tations. In the framework of this model, simple shear, biaxial stretching [21] and
the uniaxial tension [22], have already been investigated, for assessing the plas-
tic spin and the texture analysis and the dependence of the threshold of strain
localization on a combination of crystal rotation and strain hardening effects.

The present paper deals with biaxial extension. Our main objective is a the-
oretical study of slip systems activity and crystal orientation evolution, in the
rate-independent or rate-dependent behaviour. This is essential to analyse the
intriguing influence of the anisotropic development and the straining path on
the plastic spin.

Firstly, as a comparison basis, part of the calculations is presented with the
Schmid law and uniform strain hardening in the biaxial extention test. Based on
the plane projective representation in strain space [21], the geometrical analysis
is used for determining the sets of active slip systems in terms of the lattice
orientation and the strain path loading.

Secondly, the choice for the rate-sensitive behaviour has been followed for
solving the ambiguities within the frame of rate-independent plasticity. In fact,
many numerical solutions have been developed [23–24] with a power law rela-
tionship between the resolved shear stress and the rate slip. However, if such laws
may be quite successful in many cases, they are not satisfactory because they do
not take into account the core of the Schmid law, namely the existence of a crit-
ical resolved shear stress below which a slip system cannot be activated. The
linear Bingham law [25], on the contrary, is representative of a rate-dependent
Schmid law, and permits a complete resolution of the equations. In this paper,
the Bingham law is used for solving the encountered indetermination problem,
caused by the rate-independent plasticity.

2. Mechanical framework

2.1. Plane single crystal

A single crystal is a three-dimensional anisotropic material. In general, a two-
dimensional strain states will result in a three-dimensional stress and vice-versa.
This difficulty is usually skipped by considering some fictitious two-dimensional
crystal (double slip model ([11, 26] and [27]).
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However, if the 3D single crystal is considered in one of its symmetry planes,
then plane stress and plane strain are compatible resulting in a true two-dimen-
sional model: “The plane single crystal” which is defined by the kinematical
equations

F = RP,

ṖP−1 =
m∑
s

α̇sNs
,

where F, P and R respectively denote the deformation gradient, the plastic
transformation and the lattice rotation tensors, while Ns is the plane pseudo-
slip system, defined in the crystallographic (isoclinic) configuration, which rep-
resents the symmetric contribution of two systems symmetric to ṖP−1 ([19–21],
[28–29]).

The velocity gradient L, strain rate D = (L)S and rotation rate W = (L)A

then result as
L = ḞF−1 = ṘRT + RṖP−1RT ,

D = RTDR =
m∑
s

α̇s(Ns)S ,(2.1)

W = RTWR = RT Ṙ +
m∑
s

α̇s(Ns)A,(2.2)

where suffix ( )S and ( )A respectively denote the symmetric and skew-symmetric
part of any tensor and where a superimposed bar denotes tensors rotated in the
crystallographic configuration.

The applied resolved shear stress on any (s) pseudo-slip system can be written
as

σs = TNs, T = RTTR,

where T is the usual Cauchy stress tensor observed in the laboratory frame and
T is the corresponding tensor in the crystallographic frame.

In this plane case, the lattice rotation R and the Cauchy stress tensor T are
given by

R =

⎡
⎣ cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

⎤
⎦ , RT Ṙ = θ̇

⎡
⎣ 0 1 0
−1 0 0
0 0 0

⎤
⎦ , T =

⎡
⎣σ1 τ 0

τ σ2 0
0 0 0

⎤
⎦;

θ defines the plane rotation between laboratory frame and crystallographic
frame. The isoclinic stress tensor T is defined as

T 11 =
σ1 + σ2

2
+

σ1 − σ2

2
cos(2θ) − τ sin(2θ),

T 22 =
σ1 + σ2

2
− σ1 − σ2

2
cos(2θ) + τ sin(2θ),
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T 12 =
σ1 − σ2

2
sin(2θ) + τ cos(2θ).

These kinematic equations (2.1) and (2.2), are completed by N slip laws
relating, on each slip system, the slip rate α̇s to the resolved shear stress σs.
Two cases will be considered in the following:

• Schmid’s slip law
α̇s ≥ 0 if σs = τc,

α̇s = 0 if |σs| ≤ τc,(2.3)

α̇s ≤ 0 if σs = −τc.

• Viscoplastic law of Bingham type

(2.4) σs = (τc + µ|α̇s|) sgn(α̇s)

with the same critical shear stress τc for all systems.
Together, the kinematical relations (2.1), (2.2) and slip law ((2.3) or (2.4)),

provide N +4 equations which, for a prescribed deformation history F, will give
N +4 unknowns which are N slip rates α̇s, 3 components of stress (T 11, T 22, T 12)
and the lattice rotation θ̇.

2.2. The f.c.c.P2 plane single crystal

The f.c.c.P2 model is the plane single crystal corresponding to a plane stress
and strain state in the {110} planes. In this case the crystallographic frame
(x̄1, x̄2, x̄3) is chosen

x̄1 = [001], x̄2 = [11̄0], x̄3 = [110].

The corresponding pseudo-slip systems are summarized in Table 1. This table
is obtained by noting that, under plane stress and strain, two true systems
disappear (because the corresponding resolved shear stress vanishes) and ten
remaining true systems can be symmetrized into five plane pseudo-slip systems.
For further details, the reader is referred to [19] and [21].

Finally, for this model the kinematical relations (2.1) and (2.2) become

D11 =
1√
6
(α̇3 + α̇4 − α̇5 − α̇2),

D22 =
1√
6
(α̇5 − α̇4),(2.5)

D12 =
1

4
√

3
(2α̇1 + α̇2 + α̇3 + α̇4 + α̇5),



368 K. Merabet et al.

Table 1. f.c.c.P2 single crystal.

True systems
(Bishop and Hill

notation)

Pseudo
system (s) Pseudo-slip N

s
Resolved shear σs

(a3,−b3) 1 N
1

=
1

2
√

3

»
0 0
2 0

–
σ1 =

T 12√
3

(−a2,−b1) 2 N
2

=
1

2
√

3

»−√
2 0

1 0

–
σ2 =

T 12 −
√

2 T 11

2
√

3

(−a1,−b2) 3 N
3

=
1

2
√

3

»√
2 0

1 0

–
σ3 =

T 12 +
√

2T 11

2
√

3

(d2,−d1) 4 N
4

=
1

2
√

3

»√
2 2

−1 −√
2

–
σ4 =

T 12 +
√

2(T 11 − T 22)

2
√

3

(c1,−c2) 5 N
5

=
1

2
√

3

»−√
2 2

−1
√

2

–
σ5 =

T 12 −
√

2(T 11 − T 22)

2
√

3

W12 = θ̇ + ωp,(2.6)

with
ωp =

1
4
√

3
(3α̇4 + 3α̇5 − 2α̇1 − α̇2 − α̇3).

For the given kinematics, we then have to solve Eqs. (2.5) and (2.6) for
eight unknowns; five slip rates α̇s and three components (T 11, T 22, T 12), while
the lattice spin θ̇ is obtained afterwards from the relation (2.6). Of course, it is
not possible to obtain the five α̇s from the three Eqs. (2.5). However, it will be
convenient to solve these three equations in the following form:

α̇1 =
√

3
2

(
3D12 − ωp − ξ

)
,

α̇2 =
√

3
2

[ξ −
√

2(D11 + D22)],

α̇3 =
√

3
2

[ξ +
√

2(D11 + D22)],(2.7)

α̇4 =
√

3
2

(D12 + ωp −
√

2 D22),

α̇5 =
√

3
2

(D12 + ωp +
√

2 D22),

which gives α̇s in terms of D and two indeterminate quantities ξ and ωp.
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2.3. Strain rate representation

The CFCP2 rigid plastic model case has been analysed in [19] for a rate-in-
dependent behaviour. An appropriate geometric representation of the strain rate
is obtained by starting from the three-dimensional space (Y1, Y2, Y3) defined as

(2.8) Y1 = D11, Y2 = D22, Y3 =
√

2D12

and remarking that, for a rate-independent material, it is only the direction of
the corresponding vector which is meaningful. It is then convenient to represent
this space by two parallel planes, for instance the planes Y3 = ±1. In this repre-
sentation, one direction in the strain rate space is represented by one point, with
the exception of the directions in the (Y1, Y2) plane, corresponding to Y3 = 0,
which are rejected to infinity (projective geometry). This diagram is constructed
from the yield polyhedron [19] corresponding to the condition σs = ±τc for the
five pseudo-slip systems defined in Table 1. Each node in this diagram corre-
sponds to the activity of one system. For instance, the node 1+ (Y1 = Y2 = 0
in the Y3 = +1 plane) corresponds to σ1 = +τ0, the node 5− (in the Y3 = −1
plane) corresponds to σ5 = −τ0. . . etc. Similarly, each segment corresponds to
the activity of two systems (1+ and 5+ on the segment 1+5+) and each surface
— to the activity of three or more systems. This diagram is presented in Fig. 1
and the reader is referred to [19] and [21] for a precise construction.

For each value of D the representative point, in these planes, describes the
curve when Y1 and Y2 change, which gives the active systems.

Fig. 1.

3. The biaxial extension

Now we shall focus our attention on the biaxial extension which is defined as

F =

⎡
⎣ eε 0 0

0 eρε 0
0 0 e−(1+ρ)ε

⎤
⎦ , L =

⎡
⎣ 1 0 0

0 ρ 0
0 0 −(1 + ρ)

⎤
⎦E,
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where E = ε̇ is the stretching rate and ρ is the strain ratio defined in the range
−1 ≤ ρ ≤ 1.

The component W12 of W is constantly zero (W12 = 0) and the strain rate
D in the three-dimensional space (Y1, Y2, Y3) is

Y1 =
(

1 + ρ

2
+

1 − ρ

2
cos(2θ)

)
E,

Y2 =
(

1 + ρ

2
− 1 − ρ

2
cos(2θ)

)
E,(3.1)

Y3 =
(√

2
1 − ρ

2
sin(2θ)

)
E,

and it depends on the lattice rotationθ which is unknown.

3.1. The plastic analysis

According to (3.1), biaxial extension is given in the projective geometric
representation Y3 = ±1, described above, by the following equations:

(3.2)

Y1 = ±
√

2
2

{
A(ρ)

1
sin(2θ)

+
1

tan(2θ)

}
,

Y2 = ±
√

2
2

{
A(ρ)

1
sin(2θ)

− 1
tan(2θ)

}
,

symbol + if Y3 = +1 with sin(2θ) ≥ 0 and symbol − if Y3 = −1 with sin(2θ) ≤ 0.
Here A(ρ) = (1 + ρ)/(1 − ρ) with 0 ≤ A(ρ) ≤ ∞.

For each value of ρ, the relations (3.2) define, in terms of θ, the strain rate
curve in the plane (Y1, Y2). The biaxial analysis follows from the superposition of
this curve, representing the prescribed kinematics, with the constitutive diagram
of Fig. 1, which characterizes the considered plane single crystal. The results are
presented in Fig. 2. For ρ = −1, this case corresponds to the stretching biaxial
test, which is mostly studied in [21]. For ρ �= −1, according to the values of ρ
and θ, two situations may be encountered:

• an apex which corresponds to 3 pseudo-slip active systems; in this case
there is no slip indetermination and the rotation is completely determi-
nated;

• an apex which corresponds to 4 pseudo-slip active systems leading to the
slip indetermination (3 equations from D (2.5) for 4 unknown slip rate α̇s).

In this analysis we shall concentrate on the particular case of the apex with 4
slip systems. Precisely, as shown in [19], for a CFCP2 rigid-plastic model used
here, this variety of apexes corresponds to activation of systems 2, 3, 4 and 5 and
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Fig. 2.

nonactivation of system 1 with α̇1 = 0. The kinematic relation (2.7) then allows
the determination of the four unknown slip rates α̇2, α̇3, α̇4, α̇5 as functions of
one quantity which for instance can be taken as the spin ωp occurring in

(3.3)

α̇2 =
√

3
2

[
−ωp + 3D12 −

√
2

(
D11 + D22

)]
,

α̇3 =
√

3
2

[
−ωp + 3D12 +

√
2

(
D11 + D22

)]
,

α̇4 =
√

3
2

(
ωp + D12 −

√
2D22

)
,

α̇5 =
√

3
2

(
ωp + D12 +

√
2D22

)
.

The plastic spin, and therefore the lattice spin θ̇ by (2.6), remain indetermi-
nate, except for the activity condition of each apex. For instance, for 2−3+4+5−

combination, this activity condition is written as

α̇2 ≤ 0, α̇3 ≥ 0, α̇4 ≥ 0, α̇5 ≤ 0,

which reduces to the following inequalities representing the infinity solution
for ωp

(3.4)
|ωp − 3D12| ≤

√
2(D11 + D22),

|ωp + D12| ≤ −√
2D22.

Using (3.1), the relation (3.4)2 impose that D22 ≤ 0. According to the sign
of D12, three solutions are possible and the set of different slip rates combinations
is given as:
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• For D12 ≥ 0 or sin(2θ) ≥ 0, only the following set is possible:

S1 = {(2−3+4+5−), (3+4+5−), (2−3+5−)}.
• For D12 ≤ 0 or sin(2θ) ≤ 0, only the following set is possible:

S2 = {(2−3+4+5−), (2−4+5−), (2−3+4+)}.
It should be noted that for S1 and S2 the difficulty subsists in the choice of
the corresponding combination. Consequently, to select the active slip systems
we use in this work the usual criterion of the Taylor principle of minimum of
the internal plastic work dissipation ω̇ which, in the isotropic hardening case,
is defined as

ω̇ =
∑

τc|α̇s|,
which gives, by using (3.3), for each combination of S1 or S2

ω̇ =
√

6τcD11.

We obtain the same plastic work dissipation for all possible solutions. This
shows that the proposed criterion, generally, is not adequate for solving the
indeterminacy problem encountered in the case of rate-independent behaviour.

3.2. The viscoplastic analysis

The viscoplastic Bingham law (2.4) takes on the three different linear ana-
lytical forms according to the value of σs and α̇s:

(3.5)

+ σs = τc + µα̇s α̇s ≥ 0,

0 |σs| ≤ τc α̇s = 0,

− σs = −τc + µα̇s α̇s ≤ 0,

each of them being characterized by one equality and one inequality.
The activity regime is therefore defined by the activity from +, 0 or −,

assumed for each of the five slip systems. Each activity regime can easily be
analysed by solving the linear system obtained from (3.5) and the appropriate
equality (2.7). The corresponding inequality can then be used for assessing the
validity range of this particular regime.

The essential problem therefore is the determination of the activity regime
associated with each deformation rate. More generally, the behaviour of the
viscoplastic single crystal remains true in the plastic case for small rates and
the relative part of viscous contribution increases with the strain rate. In this
case the viscoplastic solution is the same as in the plastic case, corresponding
to a succession of plastic regimes.



Biaxial extension of a plane single crystal 373

In the following, we shall focus our attention on the plastic regimes in the
Bingham law framework for analysing the encountered indetermination prob-
lem. Let us now come back to the slip indetermination problem obtained in
the above plastic case. The plastic analysis showed the potential activation of
four systems 2−3+4+5− with the associated indetermination. Therefore, we shall
introduce the viscoplastic analysis by the 0 − + + − regime; with obvious no-
tations: system 1 not activated, systems 2 and 5 in – mode and systems 3 and
4 in + mode.

Combining (3.5) and (3.3), the corresponding linear system is written as

α̇1 =
√

3
2

(3D12 − ωp − ξ) = 0,

α̇2 =
√

3
2

(ξ −
√

2(D11 + D22)) =
1
µ

(σ2 + τc),

α̇3 =
√

3
2

(ξ +
√

2(D11 + D22)) =
1
µ

(σ3 − τc),(3.6)

α̇4 =
√

3
2

(D12 + ωp −
√

2D22) =
1
µ

(σ4 − τc),

α̇5 =
√

3
2

(D12 + ωp +
√

2 D22) =
1
µ

(σ5 + τc).

The solution gives:
• The stress component T 12:

T 12 = 6µD12.

• The plastic and lattice spin

ωp = D12, θ̇ = −D12.

• The pseudo-slip

α̇2 =
√

3
2

(2D12 −
√

2(D11 + D22)),

α̇3 =
√

3
2

(2D12 +
√

2(D11 + D22)),

α̇4 =
√

3
2

(2D12 −
√

2 D22),

α̇5 =
√

3
2

(2D12 +
√

2 D22).
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These relations must be completed by the validity conditions

α̇2 ≤ 0, α̇3 ≥ 0, α̇4 ≥ 0, α̇5 ≤ 0, σ1 =
∣∣∣∣T 12√

3

∣∣∣∣ ≤ τc.

Combining (2.8), the first four inequalities become in the (Y1, Y2, Y3) space

Y3 − Y1 − Y2 ≤ 0,

Y3 + Y1 + Y2 ≥ 0,

Y3 − Y2 ≥ 0,

Y3 + Y2 ≤ 0,

and the last conditions require

|sin(2θ)| ≤ τc√
3(1 − ρ)µE

,

what will be satisfied for µE → 0.
So in the projective geometric representation Y3 = ±1 we obtain

±1 − Y1 − Y2 ≤ 0,

±1 + Y1 + Y2 ≥ 0,

±1 − Y2 ≥ 0,

±1 + Y2 ≤ 0,

where the corresponding domain limit is represented in Fig. 3.

Fig. 3.
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In the 0−++− regime this is the unique solution, but other regimes should
be also investigated, in particular the regimes with three active systems which
give rise to the limiting values in (3.4) and Fig. 3.

Let us consider for instance the viscoplastic regime 00 + +− corresponding
to the non-activation of systems 1 and 2. The second equation in (3.6) has then
to be replaced by α̇2 = 0, so that the solution now is

T 12 = 3µ(4D12 −
√

2(D11 + D22)),

T 11 = 3µ(−4D12 + 3
√

2(D11 + D22)) + 2
√

3τ0,

ωp = 3D12 −
√

2(D11 + D22),

θ̇ = −3D12 +
√

2(D11 + D22),

α̇3 =
√

3
2

(2
√

2(D11 + D22)),

α̇4 =
√

3
2

(4D12 − 2
√

2 D22 −
√

2 D11),

α̇5 =
√

3
2

(4D12 −
√

2 D11),

with the validity conditions

α̇3 ≥ 0, α̇4 ≥ 0, α̇5 ≤ 0,

σ1 =
∣∣∣∣T 12√

3

∣∣∣∣ ≤ τc, σ2 =
∣∣∣∣T 12 −

√
2T 11

2
√

3

∣∣∣∣ ≤ τc,

which give the following inequalities:

2
√

2(D11 + D22) ≥ 0,

4D12 − 2
√

2 D22 −
√

2 D11 ≥ 0,

4D12 −
√

2 D11 ≤ 0,

µ
√

3
2

|4D12 − 2
√

2 D22 −
√

2 D11| ≤ τ0,

|µ2
√

3[2D12 −
√

2(D22 + D11)] − τ0| ≤ τ0.

The 5th condition is satisfied when µE → 0, and the other inequalities reduce
the (Y1, Y2, Y3)-space to
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(3.7)

Y1 + Y2 ≥ 0,

2Y3 − 2Y2 − Y1 ≥ 0,

2Y3 − Y1 ≤ 0,

Y3 − Y1 − Y2 ≥ 0.

The relations (3.7)1 and (3.7)4 mean that Y3 ≥ 0, so the corresponding domain
limit is represented in the plane Y3 = +1 (Fig. 4).

Fig. 4.

3.3. The adjusted plane projective

Other regimes can be analysed in the same way, leading to the entirely dif-
ferent limit domain constructed in Fig. 5, which corresponds to the new activ-
ity diagram in the strain-rate space. For each domain the associated rotation

Fig. 5.
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Table 2. Lattice rotation rate in terms of the system activity.

Zone Rotation rate

2−3+4+5− θ̇ = −D12

3+4−5+ θ̇ = −3D12 +
√

2
`
D11 + D22

´
2−3+4+ θ̇ = D12 +

√
2D22

2−4+5− θ̇ = −3D12 −
√

2
`
D11 + D22

´
2−3+4−5+ θ̇ = −D12

3+4−5− θ̇ = −3D12 +
√

2
`
D11 + D22

´
2−3+4− θ̇ = D12 +

√
2D22

2−4−5+ θ̇ = −3D12 −
√

2
`
D11 + D22

´
2−3+5+ θ̇ = D12 −

√
2D22

1+2+4+ θ̇ = D12 +
√

2D22

1+3+5+ θ̇ = D12 −
√

2D22

1−2−4− θ̇ = D12 +
√

2D22

1−2−5− θ̇ = D12 −
√

2D22

rate is summarized in Table 2. When the strain rate is imposed, this diagram
gives the complete determination of the pseudo-slip systems.

4. Illustration

Using the adjusted activity diagram, for each value of ρ we determine a com-
pletely different activity system in terms of θ. As an illustrative example, we start
from the axisymmetric deformation corresponding to ρ = −1/2. Using (3.1), this
strain test is defined, in the strain rate space (Y1, Y2, Y3), by

Y1 =
1
4
(1 + 3 cos(2θ))E,

Y2 =
1
4
(1 − 3 cos(2θ))E,

Y3 = +
3
√

2
4

(sin(2θ))E.

The corresponding curves in the adjusted plane projective representation are
given in Fig. 6. When θ varies from 0 to π, the resulting systems activity are
summarized in Table 3 with:
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tan(2θ1) =
−√

2A +
√

3 − A2

A +
√

2
√

3 − A2
, tan(2θ2) =

2
√

2A +
√

9 − A2

−A + 2
√

2
√

9 − A2
,

tan(2θ3) =
√

1 − A2

A
, tan(2θ4) =

2
√

2A +
√

1 − A2

A − 2
√

2
√

1 − A2
, tan(2θ5) =

√
2A√

1 − 2A2
.

Fig. 6.

Table 3. Systems activity in axisymmetric strain: ρ = −1/2.

Active systems Activity conditions Slip rates

0
2−3+4+5− −σ2 = σ3 = σ4 = −σ5 = τ0 α̇2 ≤ 0, α̇3 ≥ 0, α̇4 ≥ 0, α̇5 ≤ 0

θ1

2−3+4+ −σ2 = σ3 = σ4 = τ0 α̇2 ≤ 0, α̇3 ≥ 0, α̇4 ≥ 0,
θ2

1+3+4+ σ1 = σ3 = σ4 = τ0 α̇1 ≥ 0, α̇3 ≥ 0, α̇4 ≥ 0
θ3

1+3+5+ σ1 = σ3 = σ5 = τ0 α̇1 ≥ 0, α̇3 ≥ 0, α̇5 ≥ 0
θ4

3+4−5+ σ3 = −σ4 = σ5 = τ0 α̇3 ≥ 0, α̇4 ≤ 0, α̇5 ≥ 0
θ5

2−3+4−5+ −σ2 = σ3 = −σ4 = σ5 = τ0 α̇2 ≤ 0, α̇3 ≥ 0, α̇4 ≤ 0, α̇5 ≥ 0
π − θ5

2−4−5+ −σ2 = σ3 = σ4 = τ0 α̇2 ≤ 0, α̇3 ≥ 0, α̇4 ≥ 0,
π − θ4

1−2−4− σ1 = σ3 = σ4 = τ0 α̇1 ≥ 0, α̇3 ≥ 0, α̇4 ≥ 0
π − θ3

1+2−5− σ1 = σ3 = σ5 = τ0 α̇1 ≥ 0, α̇3 ≥ 0, α̇5 ≥ 0
π − θ2

2−3+5− σ3 = −σ4 = σ5 = τ0 α̇3 ≥ 0, α̇4 ≤ 0, α̇5 ≥ 0
π − θ1

2−3+4+5− −σ2 = σ3 = σ4 = −σ5 = τ0 α̇2 ≤ 0, α̇3 ≥ 0, α̇4 ≥ 0, α̇5 ≤ 0
π
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Using the Tables 3 and 2 and the Eq. (2.6), we obtain easily the value of
θ̇

E
=

dθ

dε
in each zone. The results are plotted in Fig. 7. This shows that the

rotation stabilizes at three orientation limits: θ = θs, θ = 0, θ = π − θs, with
tan(2θs) = 2

√
2.

Fig. 7.

In the second illustrative example, a plane strain with ρ = 0 is considered,
for which the strain rate components (Y1, Y2, Y3) are defined by

Y1 =
1
2
(1 + cos(2θ))E, Y2 =

1
2
(1 − cos(2θ))E, Y3 = +

√
2

2
(sin(2θ))E.

Similarly to axisymmetric test, when θ goes from 0 to π, the resulting sys-
tem’s activity is summarized in Table 4 with tan(2θ6) = 2

√
2.

Table 4. Systems activity in axisymmetric strain: ρ = 0.

Active systems Activity conditions Slip rates

0
2−3+5+ −σ2 = σ3 = σ5 = τ0 α̇2 ≤ 0, α̇3 ≥ 0, α̇5 ≥ 0

π − θ6

2−3+4−5+ −σ2 = σ3 = −σ4 = σ5 = τ0 α̇2 ≤ 0, α̇3 ≥ 0, α̇4 ≤ 0, α̇5 ≥ 0
π + θ6

2−3+4− −σ2 = σ3 = −σ4 = τ0 α̇2 ≤ 0, α̇3 ≥ 0, α̇4 ≤ 0
π
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The corresponding rate
θ̇

E
=

dθ

dε
is plotted in Fig. 8. In this case the rotation

stabilizes at two orientation limits θ = θs and θ = π − θs, with tan(2θs) = 2
√

2.

Fig. 8.

Finally, to complete the illustrative example, we analyse the case of strain
test with ρ = 1/2. In this case, when θ goes from 0 to π, solely the regime
2−3+4−5+ is potentially active and corresponds to one orientation limit θ = 0.
The curve θ̇/E = dθ/dε is plotted in Fig. 9.

Fig. 9.
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In Figs. 10, 11 and 12 we illustrate, for a given straining path ρ and initial
orientation θ0, the lattice rotation in terms of the strain ε. The obtained results,
which in fact do not depend on the hardening, show clearly that these two
parameters θ0 and ρ have an important influence on the stabilized rotation.

Fig. 10.

Fig. 11.

Generally, different situations may be encountered, according to the θ0 and ρ

values. For −1 ≤ ρ < 0 and 0 < ρ ≤ 1 − √
3/2

1 +
√

3/2
, the lattice orientation stabilizes
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Fig. 12.

at three asymptotic values θ = 0, θ = θs and θ = π − θs, with

tan(2θs) =
√

2A +
√

2
√

3 − 2A2

2A −√
3 − 2A2

.

For ρ = 0, the stabilization at θ = 0 disappears at remaining two angle limits

θ = θs and θ = π − θs, with tan(2θs) = 2
√

2. For ρ ≥ 1 − √
3/2

1 +
√

3/2
, only one

orientation limit becomes possible θ = 0.

5. Conclusion

In this paper the rigid-plastic single crystal, with or without isotropic hard-
ening, is investigated. Our analysis is focused on the critical question corre-
sponding to the slip systems activity and the indetermination problem due to
the multiplicity of solutions.

Based on the plane single crystal model and the linear Bingham slip law, this
problem is surmounted, by adopting the geometrical analysis in the strain rate
space. The adjusted diagram activity is introduced, which determines a unique
set of active slip systems. This proves that the linear viscoplastic analysis can
be used as a new way for solving the indeterminacy problem.

As illustration, the biaxial extension is studied and the complete analyti-
cal solution of single crystal behavior is obtained. In particular, the analytical
description of the plastic spin is introduced. The lattice orientation and the
straining path have an important influence on the plastic spin evolution. Differ-
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ent situations may be encountered, according to the strain path and the initial
lattice orientation value. But in any case, this lattice rotation always stabilizes
at a limit value resulting in a stabilized behavior for the crystal.

From this analysis, it is advisable to note the complexity of the plastic spin
equation formulated phenomenologically, for representing different aspects of
a single crystal. It must take into account, for a given structure, the orientation
and the solicitation path.

All of these calculations, which are performed in the framework of simple
plane model, remain valid in the three-dimensional case. The plane single crys-
tal model represents a reasonable compromise between the mathematical sim-
plicity and the physical relevance for the analysis of some basic problems in the
mechanics of single crystal.

Acknowledgements

This research is supported partially by the Morocco National Center for
Scientific and Technique Research: PROTARS III Program N̊ D48/20 and SPI
04/06. The anonymous reviewers are gratefully acknowledged for theirs sugges-
tions and valuable comments.

References

1. G.I. Taylor and C.F. Elam, The distortion of an aluminum crystal during a tensile test,
Proc. Royal Soc. London A 102, 643–667, 1923.

2. G.I. Taylor and C.F. Elam, The plastic extension and fracture of aluminum single
crystals, Proc. Royal Soc. London A 108, 28–51, 1925.

3. G.I. Taylor, Plastic strain in metals J. Institute of Metals, 62, 307–324, 1938.

4. G.I. Taylor, Analysis of plastic strain in cubic crystal, Stephen Timoshenko 60th An-
niversary, McMillan Co., New York, 218–224, 1938.
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