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We are interested in the dynamic fragmentation event produced in shock-melted
metals called micro-spalling. Global energetic approach is briefly reviewed. It pro-
vides a general modelling framework that leads to realistic fragment-size predictions.
But the actual physical mechanisms involved remain poorly understood. We attempt
to explore the conditions under which cavitation, i.e. nucleation and growth of mi-
crovoids, may be responsible for fragmentation. This cavitation process is described
by means of a hollow sphere model whose matrix is made of liquid tin.
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1. Introduction

When a pressure wave produced by high-velocity impact, high-explosive
detonation or laser irradiation reflects from the free surface of a metallic sample,
strong tensile stresses are generated and can lead to the well-known spallation
fracture by nucleation, growth and coalescence of voids (ductile behaviour) or
cracks (brittle behaviour). In the case of intense shock-wave loading the metal
is melted (see Fig. 1, left); then, due to the relative loss of dynamic tensile
strength, a fragmentation process takes place in the liquid state. According to
the schematic illustration of this process given in Fig. 1 (right), the fragmented
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Fig. 1. Pressure–Temperature phase diagram of tin derived from Buy et al. [3] and Mabire

[12] (left). The states reached upon shock compression lie on the Hugoniot curve (thick solid
line); isentropic release paths from states 1 and 2 are plotted in dotted lines. Melting may be
achieved in release (1) or on compression (2). Schematic illustration of the target evolution
after micro-spall initiation: fragmentation (a), expansional flight of the debris cloud (b), then

impact on a distant wall (c) (right).

liquid metal expands as a low-density cloud of fine droplets which may later
impact a distant wall.

Spallation and dynamic fragmentation of solids have been widely studied in
the past, both theoretically and experimentally. An overview of these works is
given by Davison et al. [5] and Antoun et al. [2]. Comparatively very scarce
data can be found as yet about how the failure and fragmentation process evolves
when the sample has been previously melted. Experimental evidence of such a
phenomenon has been performed by Andriot et al. [1] where it has been re-
ferred to as microspalling. More recently it has been observed on tin (Holtkamp

et al. [10]) and on lead (Zhiembetov et al. [20]) submitted to explosive loadings.
An experimental investigation of microspall in tin samples under laser-driven
shocks has been performed by De Rességuier et al. [13]. Time-resolved ve-
locity measurements and flash-radiography are usually performed during such
experiments and provide global information and large-scale images of the debris
cloud. But neither the detailed structure of the cloud nor the physical mecha-
nisms responsible for its creation are totally understood.

The preliminary theoretical investigations presented in this paper are part of
a current program aiming at physically and thermodynamically consistent mod-
elling of the micro-spalling process (i.e. creation, expansion and re-collection of
the debris cloud, see Fig. 1, right). They focus on modelling of the dynamic
fragmentation of liquid metals (phase (a) in Fig. 1, right) and are applied to
tin for quantitative illustration. Global energetic approaches provide a general
modelling framework that can produce realistic fragment-size predictions. An
example of such an approach is briefly reassessed in Sec. 2. However, global
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energy balance does not bring any information concerning the actual mecha-
nisms involved in this fragmentation process. An attempt to identify and de-
scribe those mechanisms is presented next (Sec. 3). Assuming that cavitation
leads to fragmentation, the cavitation stages, namely nucleation and growth of
a voids population, are described by means of the problem of a hollow sphere
whose matrix is made of melted metal and submitted to a prescribed expansion.
The corresponding results are further discussed in Sec. 4, where the cavitational
fragmentation regime is quantified and where some thermodynamic aspects (dis-
sipation) are considered.

2. Global energetic approach for dynamic fragmentation

2.1. Model formulation

Global energetic approach is here considered in order to provide fragment-
size predictions, which are crucial for further investigation of the cloud impact
process (phase (c) in Fig. 1, right). This approach has been discussed in details
by Grady [9] and applied to spallation and dynamic fragmentation of both the
solid (brittle or ductile) and liquid media.

A liquid domain is considered, submitted to a uniform expansion defined
by a constant dilatation rate D = −ρ̇/ρ. Fragmentation is assumed to occur
when the available energy becomes greater than the energy required to create
fragments of diameter s and to be dissipated in this manner. This statement is
written by Grady [9] as an inequality which involves the physical properties of
liquids listed in Table 1 in case of tin:

(2.1) U + T ≥ ΦΓ + Φv

with

(2.2) U =
1

2
KD2t2, T =

1

120
ρD2s2, ΦΓ = 6γ/s, Φv = ηD ,

where U stands for the potential elastic energy density regarding volumet-
ric expansion with the strain rate D (the material being carried into tension

Table 1. Physical properties of liquid tin used for numerical application of global
energetic approach (Sec. 2) and hollow sphere study (Sec. 3).

Property Symbol Value Unit

Reference mass density ρ0 6500 kg · m−3

Bulk modulus K 40 GPa

Bulk speed of sound c0 =
p

K/ρ0 2480 m · s−1

Surface tension γ 0.5 N · m−1

Dynamic (Newtonian) viscosity η 10−3 Pa · s
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P = −KDt). T is the fraction of the total kinetic energy actually available for
fragmentation. This fraction of the total amount of kinetic energy has been con-
sidered by Grady [8] who defined it as the local kinetic energy. ΦΓ denotes the
energy associated with the creation of new surfaces and is proportional to the
surface energy γ currently identified as the surface tension in the case of liquids.
Viscosity dissipation Φv appears to play no significant role in Eq. (2.1) for liquid
metals whose viscosity η is about 10−3 Pa·s.

The upper bound for fragment of the size s at time t is given through a
horizon condition:

(2.3) s ≤ 2c0t.

Assuming an energy-limited fragmentation, inequalities (2.1) and (2.3) are re-
placed by equalities. If viscous dissipation is neglected, one obtains simple ana-
lytical expressions for fragment size s, critical tension Ps and time to failure ts:

(2.4) s =

(

45γ

ρ0D2

)1/3

, Ps =

(

45

8
ρ2
0c

2
0γD

)1/3

, ts =
1

c0

(

45γ

8ρ0D2

)1/3

.

2.2. Numerical application and discussion

Realistic critical stress Ps and fragment-size s are predicted (Fig. 2, left). The
latter is compared to scanning electron microscopy observations of tin droplets
recovered after laser-shock experiments (Fig. 2, right) where dilatation rate D is
estimated from 107 to 108 s−1. The theoretical predictions match the observed
fragment-sizes that range from 1 to 10 micrometers. Additional efforts have to

Fig. 2. (a) Fragment-size s and critical tensile stress Ps derived from Eq. (2.4) for
properties of liquid tin reported in Table 1. (b) Tin droplets generated upon laser shock
then re-solidified on polycarbonate shield. The detailed experimental setup is described by

De Rességuier et al. [13].
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be pursued to acquire more precise experimental data about fragments sizes.
Recent work by Signor et al. [17] is concerned with this problem.

Time to failure ts ranges from 0.14 ns (D = 108 s−1) to 60 ns (D = 104 s−1).
These values are particularly small. Actually one should mention that ts does
not correspond to the moment when complete fragmentation is achieved, it
defines rather the time when fragmentation becomes energetically possible. More
time may be required during which irreversible mechanisms will lead to entire
fragmentation and the stored energy available will be dissipated.

The above global approach does not describe the fragmentation phenomenon
at a microscopic level. Energy terms expressed in Eqs. (2.1)–(2.2), especially
viscous dissipation, are only a rough approximation of this complex dissipative
process. In the next section we attempt to identify and describe more precisely
the actual physical mechanisms involved during the fragmentation process.

3. Dynamic cavitation of melted metals. Hollow sphere scheme

3.1. Introduction

3.1.1. Motivations. Experimental results of Stebnovskii [18] and Zhiembetov

et al. [20] indicate that fragmentation in liquids is achieved through a cavita-
tion process, i.e. nucleation and growth of a whole voids population that reaches
a critical volume fraction (or porosity f ∽ 0.6 − 0.8). Here we attempt to de-
termine whether the initial porosity (that results from micro-voids or bubbles)
can increase significantly and lead to fragmentation of a liquid metal subjected
to strong impulsive loading. The ultimate stage of fragmentation is assumed to
occur during a geometric coalescence process that appears when voids enter into
contact. Thus if cavitation is actually responsible for fragmentation, we can estab-
lish a fragmentation criterion based on a critical porosity fc estimated between
0.6 and 0.8. Remember that a similar cavitation process is also observed during
spallation of ductile metals (see [2, 5, 16]), i.e. materials that exhibit fluid-like
properties.

We attempt to describe this complex cavitation process, i.e. voids growth,
in a simplified manner through the problem of a hollow sphere in expansion.
The main question to be answered is: according to a given prescribed loading,
does the porosity reach a sufficient level to admit that cavitation is responsible
for fragmentation?

3.1.2. Physical meaning of the hollow sphere model. The hollow sphere model has
been widely used to model shock-induced effects such as dynamic compaction
of porous media [4] and especially ductile damage and fracture by spallation
[11, 16]. The present work is an attempt to explore the ability of such a model
to provide quantitative data about the cavitation process in melted materials.
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The main hypothesis underlying this modelling scheme is that the hollow
sphere pattern is assumed to be representative of voids growth in a volume V
within the sample, where kinematical and thermodynamic state is sufficiently
uniform (Fig. 3). This tacitly implies that all voids in the sub-domain V evolve
in the same manner.

Fig. 3. Illustration of hypotheses underlying the hollow sphere model applied to the description
of the micro-spalling fragmentation phenomenon.

We consider a hollow sphere with internal and external radii, respectively
denoted a and b in the current configuration (a0 and b0 in the reference ini-
tial one). With respect to the hypothesis expressed above and illustrated in
Fig. 3, b0 can be interpreted as the mean half-length between two neighbour-
ing activated sites. With this definition of b0, the ratio f = a3/b3 stands for
the actual (or physical) porosity, i.e. voids volume fraction. These sites are ini-
tial defects or local heterogeneities where voids are nucleated during the first
stage of expansion. Although the data concerning microscopic state of shock-
melted metals are still scarce, it seems that thermal inhomogeneities may play
the role of potential sites of cavitation. According to this interpretation b0 would
probably be affected by strain-rate or shock-pressure. But such investigation
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lies outside the scope of the present paper, limited to a parametric study over
a large range of b0. The obtained results will be discussed with respect to this
interpretation for b0. The initial internal radius a0 is not attached to a physi-
cal void initially present in the melted metal. But singular effects (due to vis-
cosity in particular) do not allow to choose a0 = 0 in the framework of the
hollow sphere model. Instead, a0 is chosen in such a way that the initial poros-
ity f0 is sufficiently small so that the material can be considered as initially
intact.

Actually this modelling suggests the existence of three distinct length scales
as illustrated in Fig. 3. X denotes the characteristic length of the target and/or
the pressure wave. Actually, the sample (or target) has to be considered as
a structure whose length scale is defined by X. The second length scale x defines
the domain where the applied loading can be assumed to be approximately
uniform. This volume is also supposed to contain a great number of defects or
nucleation sites spaced about b0. Separation scale rule rigorously implies that
b0 ≪ x ≪ X. This is greatly restrictive in the case of strong transient loading
like shock-waves because x may be of the order of structural defects, i.e. of b0.
Such considerations have to be pointed out but their rigorous examination lies
beyond the scope of the present work. These questions have been discussed in
details by Dragon and Trumel [7], in the context of application regarding
spallation damage of ductile metals.

3.1.3. Description of the cavitation process. Hollow sphere expansion is decom-
posed here into two successive phases that lead to two distinct problems. During
phase 1 (0 ≤ t ≤ τ), the hollow sphere is subjected to the applied loading which
consists in a constant macroscopic dilatation rate D prescribed on the outer
boundary (Table 2). During phase 2 (t > τ), the hollow sphere evolves in free
inertial expansion due to the kinetic energy acquired during phase 1.

Table 2. Typical shock loading parameters.

Loading No. 1 2

Correponding experimental configuration plate impact laser shocks
Dilatation rate D (s−1) 106 108

Loading duration τ (s) 2 · 10−7 2 · 10−9

For the sake of simplicity, the applied loading is defined by only two constant
scalar parameters (dilatation rate D and duration τ) which are expected to
represent the dynamic conditions encountered in application. The present study
is restricted to two sets (D, τ) reported in Table 2. Each one is associated
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with a typical shock experiment for which approximative length scale X can
be assessed. Millimetric samples are usually used in plate impact experiments
(loading case No. 1), whereas laser shocks (loading case No. 2) are performed
on targets of a few hundreds micrometers in thickness.

One should mention that the actual loading, to which a material element
within the target is subjected, results from waves interaction and may be affected
by stress relaxation induced by voids growth. The choice of the suitable loading
that has to be prescribed as a boundary condition to the hollow sphere pattern
is not trivial for such highly dynamic events.

3.2. Phase 1: prescribed expansion

3.2.1. Formulation. Displacement field proposed by Denoual and Diani [6]
allows to account for homogenous dilatation state in the liquid matrix:

(3.1) r(r0, t)
3 = ϕ(t)[r30 + ω(t)], a ≤ r ≤ b,

where ϕ = ρ0/ρ denotes a dilatation factor and ω stands for volume increase
of the cavity. The useful kinematical quantities (e.g. velocity, acceleration and
strain rate tensor dij) are derived from Eq. (3.1).

Compressibility effect influences mainly the nucleation stage i.e. the begin-
ning of phase 1 ; a0 is chosen very small (but not zero) so avoiding non-physical
singularities. But as it is stated below, compressibility does not affect further
porosity evolution as long as b0 is sufficiently small.

The hollow sphere matrix is supposed to be a compressible and viscous
liquid which stands for melted tin. Its constitutive equation results from the
stress tensor partition into an isotropic/conservative part (pressure) and a devi-
atoric/dissipative part (Newtonian viscous stress), i.e. σij = −Pδij + τij . With
the displacement field in Eq. (3.1), one obtains:

σij = K ln

(

ρ0

ρ

)

δij + 2η

(

dij −
1

3
dkkδij

)

(3.2)

= K lnϕ δij +
4

3
η
ϕω̇

r3





−1 0 0
0 1/2 0
0 0 1/2



 .

The spatial (Eulerian) form of the equation of balance of linear momentum is
written with respect to the spherical symmetry of the present problem:

(3.3)
∂σrr

∂r
+

2

r
(σrr − σθθ) = ρr̈.
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By using the constitutive relation (3.2), Eq. (3.3) is integrated from a to b with
a traction-free boundary at r(t) = a(t):

(3.4) K lnϕ =
4

3
η

ω̇

a3
0 + ω

+

b
∫

a

ρr̈dr.

The detailed expression for
∫ b
a ρr̈dr does not appear in Eq. (3.4) but can be

derived from Eq. (3.1).
The velocity ḃ at r(t) = b(t) is connected with a given macroscopic dilatation

rate D:

(3.5) D = 3
ḃ

b
=

ω̇

b30 + ω
+
ϕ̇

ϕ
.

Initial conditions of the problem are ϕ(0) = 1, ω(0) = 0, ϕ̇(0) = D and ω̇(0) = 0.
One notices that the hollow sphere is not initially at rest. The initial conditions
have to be compatible with the boundary condition (3.5) which requires a non-
zero initial velocity. The choice ϕ̇(0) = D and ω̇(0) = 0 corresponds to the
instantaneous response due to the bulk elasticity of the liquid matrix.

3.2.2. Results. After solving the differential equations system (3.4)–(3.5), one
can compute from ω(t) and ϕ(t) the “macroscopic” pressure Pmacro = −σrr(b, t)
and the porosity f = a(a0, t)

3/b(b0, t)
3.

Examples of evolution of these quantities during the beginning of the pre-
scribed expansion (phase 1 ) are given in Fig. 4 for loading case No. 1. An

Fig. 4. Evolution of the macroscopic pressure (left) and porosity (right) during the beginning
of the hollow sphere expansion. These results are obtained with the properties of liquid tin in
Table 1 (except the dashed curves that correspond to η = 2.10−3 Pa.s) and with the dilatation

rate of loading No. 1 in Table 2.
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important feature of this stage can be observed when inertial effects are negligible
or neglected, i.e. when

∫

V ρr̈dv = 0 in Eq. (3.4). These cases are referred to as
quasi-static in Fig. 4. During the first stage of expansion, liquid matrix stores
elastic energy without increase of the void size. Then one observes a significant
growth of cavity size (and of corresponding porosity) followed by a pressure drop.
In quasi-static regime the cavity “explodes” for the maximal pressure attained
Pc = −σrr(b, tc) = Pmacro(tc) with Ṗmacro(tc) = 0. This strong increase of
the cavity size may be seen as the true cavitation incipience. This phenomenon
occurs rapidly and largely before the end of the applied loading (tc ≪ τ). Finally,
the cavity growth supports alone the prescribed expansion: porosity evolution
is comparable to the one obtained for an incompressible displacement field. As
illustrated in Fig. 4, viscous stress has a stabilizing effect that leads to a delay
of the explosion mentioned above.

Fig. 5. Quasi-static cavitation pressure Pc as a function of prescribed dilatation rate D and
initial porosity f0. These results are obtained with the physical properties (reference mass
density ρ0, bulk modulus K and dynamic viscosity η) of liquid tin reported in Table 1. The
two reference loadings indicated in Table 2 considered in this paper correspond to the two

thick curves.

Quasi-static cavitation pressure Pc has been computed for a large range of
dilatation rate D and initial porosity f0. The results, obtained with the physical
properties of liquid tin (Table 1), are reported in Fig. 5. Although cavitation
pressure cannot be defined for a strictly intact liquid (Pc does not reach a plateau
when f0 → 0) it can be estimated, at a given dilatation rate D, by the mean
value taken over a range of low initial porosity, e.g. from 10−12 to 10−10. The
resulting values lie between 10 and 1000 MPa. Cavitation pressure may be seen
as a threshold at which the failure mechanisms are initiated. In this way the
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obtained values seem realistic in comparison to Grady’s critical pressures Ps

which are shown as crosses in Fig. 5.
When inertial effects are taken into account and not negligible, the cav-

ity growth is slowed down and accompanied by oscillations around the incom-
pressible evolution. Such effect is mainly governed by b0 which defines the total
amount of mass involved in each cavitation pattern. For b0 ≤ 10−7 m quasi-static
and dynamic solutions are quite similar (solid curves in Fig. 4). This is not at
all the case for b0 ≥ 10−6 m (Fig. 4 and Fig. 6, left) because oscillations become
important and are not damped by viscous stress. But when porosity evolution
is observed for a time scale of the order of τ (Fig. 6, right), all the curves evolve
in a similar way, i.e. close to incompressible solution, and oscillations may be
neglected. Thus we can assume that the further evolution of porosity in free iner-
tial expansion during phase 2 for t ≥ τ occurs in an incompressible regime. This
corresponds to a particular case of the displacement field given in Eq. (3.1) with
ϕ = 1. Furthermore we will assume that the initial conditions for the problem
of phase 2 are given by the incompressible solution of the problem of phase 1
at t = τ . This incompressible solution defines the global tendency around which
the computed compressible solutions oscillate as shown in Fig. 6. In the follow-
ing these assumptions are referred to as the ”incompressibility” hypothesis. This
hypothesis is not valid any more when b0 becomes greater than about 5. 10−5 m
for loading case No. 1 (an example is given for b0 = 10−4 m that corresponds
to the dashed curve in Fig. 6, right) or greater than about 10−6 m for loading
case No. 2. In these cases the induced oscillations become so important that

Fig. 6. Porosity evolution during phase 1 for liquid tin (physical properties listed in Table 1),
loading case No. 1 (Table 2) and b0 ranging from 10−7 to 10−4 m. On the left, only the
beginning of the prescribed loading is visible (0 ≤ t ≤ 0.05τ). On the right, all the loading

duration is shown (0 ≤ t ≤ τ).
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the cavity growth significantly differs from the incompressible one. For extreme
values of b0 (higher than 10−4 m for loading No. 1 and 3.10−6 m for loading
No. 2), cavity hardly begins to grow for the loading time interval τ due to in-
ertial resistance. These values correspond to the cases where b0 is of the order
of X, i.e. the characteristic length scale of the sample (Fig. 3). Separation scale
rule is not satisfied any more.

When the“incompressiblity”hypothesis is valid, the porosity reached at t = τ
is about 0.2, that is less than the critical value fc (∼ 0.6−0.8) at which fragmen-
tation is assumed to occur. Thus, the crucial question to answer is now: owing
to the kinetic energy acquired during the phase 1 (which is mainly governed
by b0), does the porosity reach the critical value during the phase 2?

3.3. Phase 2: inertial expansion

3.3.1. Formulation. According to the conclusions established in the previous sec-
tion for phase 1, we reformulate here a second hollow sphere problem.

The new displacement field is the incompressible counterpart of Eq. (3.1)
with ϕ = 1,

(3.6) r(r0, t)
3 = r30 + ω(t).

The new boundary conditions are prescribed as a form of traction given at
the inner and outer radii. Actually this is the second reason that explains why
the phase 2 is treated with an incompressible displacement field. Indeed the
compressible one (3.1) is not appropriate to the boundary value problem with
two prescribed tractions. As phase 2 corresponds to a free expansion, r = b is
a traction-free boundary. At r = a the prescribed traction stands for surface ten-
sion effects. Surface tension has been neglected during phase 1 because the initial
‘nucleus’ cavity introduced within the hollow sphere pattern does not represent
a physical cavity initially contained in the melted metal. Thus, assigning surface
tension effects to this initial cavity has no physical meaning and might prema-
turely lead to its collapse. But it is difficult to state when the cavity becomes
a ‘physical’ cavity and when the surface tension effects have to be taken into
account. Consequently, they have been disregarded during phase 1. This choice
is equivalent to considering the whole phase 1 as a sort of prolonged nucleation.
For the phase 2 related to inertial expansion the boundary conditions are:

(3.7) σrr(r = b, t) = 0, σrr(r = a, t) = 2γ/a.

Equation of motion is integrated between a and b:

(3.8) σrr(r = b, t)− σrr(r = a, t) +

b
∫

a

2

r
(σrr − σθθ)dr =

b
∫

a

ρr̈dr.
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One finally obtains the following second-order ordinary differential equation in ω:

(3.9) −2γ

a
+

4

3
ηω̇

(

1

a3
− 1

b3

)

= ρ0

[

ω̈

3

(

1

a
− 1

b

)

+
ω̇2

18

(

1

b4
− 1

a4

)]

.

The new initial conditions at t = τ result from the incompressible solution
ω∗ to the hollow sphere problem for phase 1. It is obtained by solving Eq. (3.5)
with ϕ = 1 and ϕ̇ = 0 as follows:

(3.10) ω∗(τ) = b30[exp(Dτ)− 1], ω̇∗(τ) = b30 D exp(Dτ).

3.3.2. Results. Porosity evolution is explored for the physical properties of liquid
tin (Table 1), for the two reference loading cases (Table 2) and for b0 ranging
from 10−8 to 10−4 m. After t = τ the cavity size and porosity continue to
increase and reach their maximum values when viscosity and surface tension
effects have consumed the kinetic energy available, as illustrated in Fig. 7 (left).
Then the cavity may collapse due to surface tension.

Fig. 7. Free inertial expansion of the hollow sphere (phase 2 ). On the left, examples of porosity
evolution after t = τ for the loading case No. 1 (Table 2) and the corresponding approximation
using the parabolic form described in Appendix A. On the right is displayed the maximal
porosity reached for the respective loading cases and the values of b0. The computed results
(filled symbols) and those derived from the parabolic approximation (empty symbols) show

a good agrement for the lower values of b0.

This behaviour is mainly governed by b0. On the Fig. 7 (right) the maximal
porosity reached (or porosity achieved at t = 10τ if no maximum is encountered
before) for varying b0 is reported. Three domains can be distinguished. (i) The
non-cavitational regime is observed for low b0 values (b0 ≤ b0c). Porosity does



336 L. Signor et al.

not evolve because cavity collapses almost instantaneously. The maximal poros-
ity fmax is close to porosity at t = τ . (ii) During the transition regime fmax

increases progressively with b0. (iii) In the cavitational fragmentation regime
fmax systematically exceeds 0.8 before t = 10τ . These conclusions are observed
for both loading cases. The curves in Fig. 7 (right) are shifted towards lower
values of b0 when the dilatation rate increases.

An analytical criterion that predicts b0c, i.e. the separation between the non-
cavitational regime and the transition regime, can be established. It is derived
from a parabolic form that aims to fit the computed porosity evolution dur-
ing phase 2. The details of this calculation are reported in Appendix A. The
corresponding results are included in Fig. 7.

Finally one should remind that neither the ”incompressibility” assumption
nor the separation scale rule are valid for the highest b0 values. The correspond-
ing maximal porosities reported in Fig. 7 must be disregarded because, actually,
cavitation may not reach a significant amount of void volume fraction in such
cases. On the other hand, very low b0 values have also been explored. The frame-
work of continuum mechanics for this length scale may be a debatable point.

4. Discussion

4.1. Role of cavitation in fragmentation

Cavitation in a liquid subjected to intense dynamic expansion has been in-
vestigated by means of the hollow sphere model in order to assess if cavitation
may be responsible for fragmentation. A particular attention is paid to the pa-
rameter b0 (outer radius of the hollow sphere that stands for the half-length
between two activated sites of cavitation) which preponderantly influences the
cavitation process. Based on the study of the two cavitation stages (phases 1
and 2 ), the domain, for which one can assert that cavitation is responsible for
fragmentation (fmax ≥ fc ∽ 0.6− 0.8), is defined for each loading by rectangles
in Fig. 7. This range of values for b0 is similar to the fragment size s predicted
by the global energetic approach (Sec. 2).

Future work will concern the identification of b0. Better understanding of the
shock-induced melting process, both theoretically and experimentally, should
provide data concerning the spatial distribution of the probable thermal inho-
mogeneities that may play the role of cavitation nuclei. Moreover, observation
of recovered targets after laser-shock experiments may give new insights into the
cavitation process (see De Rességuier et al. [14, 15]).

Cavitation has been inferred here to be the most probable failure mechanism
responsible for fragmentation. But in the framework of the hollow sphere model,
any other mechanism, such as decohesion, is disregarded. Voids coalescence may
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also occur prematurely (for f < fc ∽ 0.6 − 0.8) by voids linking, e.g. through
a kind of shear-banding process. A more rigorous treatment of the problem of
hollow sphere expansion should have included a stability analysis which could
provide some insight to predict such a phenomenon.

4.2. Energy dissipation during cavitation

The cavitation process is now discussed from an energetic viewpoint aiming
at establishing a link with the global energetic approach (Sec. 2). Solving of two
hollow sphere problems (Sec. 3) allows to compute the total amount of energy
exchanged and dissipated during the cavitation process, i.e. 0 ≤ t ≤ tm where
tm denotes the time when the maximal porosity is reached (or tm = 10τ if no
maximum is encountered before 10τ). Definitions that allow to establish the
energy balance are reported in Appendix B. Here we focus on the dissipative
mechanisms that accompany the cavitation process and contribute to fragmen-
tation. These are viscous dissipation and creation of surface which are described
by the quantities Φv(0−τ) , Φv(τ−tm) and ΦΓ (τ−tm) defined in Appendix B. This
notation aims at establishing of a direct comparison with the global energetic
approach by comparing the hollow sphere expansion results to the correspond-
ing estimation of Φv and ΦΓ (now denoted Φv(Grady) and ΦΓ (Grady) for clarity)
expressed in Eqs. (2.1)–(2.2).

The comparison at stake suggests a thermodynamic re-interpretation of the
purely mechanical hollow sphere problem where the relevant energy balance
may be related to the kinetic energy theorem [19]. Irreversible (viscous) stresses
obviously give rise to a bulk dissipation which is denoted ϕv. Surface tension acts
like an external force prescribed as a boundary condition to the hollow sphere
pattern. But regarding the cavitating media, it corresponds to the stored energy
that is recoverable as long as void growth remains stable and coalescence does
not occur. When a given threshold (e.g. a critical porosity) is reached, this stored
energy is dissipated during the coalescence of neighbouring voids from which the
final fragments result. Thus, although the quantity ΦΓ (τ−tm) does not represent
the entire dissipated energy before effective fragmentation, this notation has
been adopted to put forward the link with its counterpart ΦΓ (Grady).

Since the cavitation process depends on b0, energy — b0 plots are given in
Fig. 8 (loading case No. 1) and Fig. 9 (loading case No. 2). To correctly interpret
these plots, it is necessary to keep in mind the conclusions established in the
previous sections.

Φv(Grady) and ΦΓ (Grady) are also reported in Fig. 8 and Fig. 9. As concluded in
Sec. 2, this estimate of viscous dissipation is largely negligible. But the present
study reveals that Φv(Grady) underestimates the actual viscous dissipation: in
particular Φv(0−τ) is largely greater than Φv(Grady). Some comments are useful
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Fig. 8. Energy dissipated per unit volume during the hollow sphere expansion for loading case
No. 1. The total amount of energy dissipated Φtot(0−tm) is divided into three parts: viscous
dissipation Φv(0−τ) during phase 1, viscous dissipation Φv(τ−tm) during phase 2 and creation
of surface ΦΓ(τ−tm) during phase 2. The corresponding values estimated in the global energetic

approach are also reported as Φv(Grady) and ΦΓ(Grady).

Fig. 9. A plot similar to that of Fig. 8 but for the loading case No. 2.
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on Φv(0−τ) dependence on b0 in Fig. 8 and Fig. 9. When inertial effects are neg-
ligible (b0 → 0), Φv(0−τ) reaches a plateau which corresponds to the quasi-static
solution (Φv(0−τ) → Φv(0−τ) quasi-static). As b0 increases, the induced oscillations
lead to an additionnal amount of viscous dissipation. For larger b0 values, voids
growth is slowed down and less dissipation is observed.

During phase 2, surface energy is predominant (ΦΓ (τ−tm) ≫ Φv(τ−tm)). Be-
fore the cavitational fragmentation regime (b0 for which fmax ≤ 0.8 in Fig. 7),
both ΦΓ (τ−tm) and Φv(τ−tm) increase with b0 since the corresponding maximal
porosity reached also increases. For higher b0, the maximal porosity reached re-
mains almost constant. As a result, since viscous dissipation is proportional to
the volume of the hollow sphere, the corresponding amount of energy dissipated
per unit volume Φv(τ−tm) reaches a plateau. Regarding the surface energy per
unit volume, ΦΓ (τ−tm) is found to be inversely proportional to b0.

Here we focus on the range of b0 where cavitation can lead to fragmentation
(domains defined by rectangles in Fig. 7). In this case Φv(0−τ) and ΦΓ (τ−tm) are
quite comparable. But the total amount of energy Φtot(0−tm) remains lower than
the surface energy ΦΓ (Grady) that results from the global energetic criterion. This
is mainly due to the fact that ΦΓ (τ−tm) is an underestimate of the actual surface
energy required for fragmentation. The two reasons for this are: (i) surface ten-
sion has been neglected during phase 1 and (ii) the hollow sphere model does
not account for the ultimate stage of coalescence (during which new surfaces
are still created). The new estimate of viscous dissipation Φv(0−τ), included in
the energetic fragmentation criterion defined by Eqs. (2.1)–(2.2), does not affect
significantly fragment size predictions.

5. Conclusion

Micro-spalling is a dynamic fragmentation phenomenon that occurs in shock-
melted metals. Global energetic approach provides realistic fragment-size pre-
dictions. But the actual mechanisms involved in this fragmentation process are
ignored by this global approach. In this paper we attempt to identify and de-
scribe the possible predominant mechanism. On the basis of experimental re-
sults, cavitation, i.e. nucleation and growth of voids, is assumed to be the most
probable failure mechanism.

The growth of a whole voids population is described by means of the hol-
low sphere scheme involving two specific stages of sphere expansion. We then
establish the domain for which cavitation can (or cannot) be responsible for
fragmentation. The corresponding evolution is governed preponderantly by b0
which stands for the half-distance between two nucleated sites.

The hollow sphere study presented here is a preliminary modelling attempt
that aims at bringing new insight into this specific fragmentation process which
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needs yet to be better understood. It provides an improved and quantitative
understanding about the role of cavitation during the fragmentation process.
Both experimental and theoretical efforts have to be pursued to investigate
furthermore this phenomenon.

Appendix A. Non-cavitation criterion

We attempt to fit the solution of the problem 2, i.e. of the free inertial
expansion (in terms of porosity evolution f(t), illustrated in Fig. 7, left), with
the following parabolic form F (t):

(A.1) f(t) ≈ F (t) = A+Bt+ Ct2.

The first constraint corresponds to the initial conditions of phase 2 at t = τ
given in Eq. (3.10). If f∗(t) denotes the porosity evolution for an incompressible
hollow sphere submitted to a dilatation rate D , one obtains:

(A.2) f∗(τ) = 1 + (f0 − 1) exp(−Dτ) ≈ 1− exp(−Dτ).
Thus F (τ) = f∗(τ) and Ḟ (τ) = ḟ∗(τ) lead to:

(A.3) A = f∗(τ)− ḟ∗(τ)τ + Cτ2, B = ḟ∗(τ)− 2Cτ.

Porosity evolution during phase 2 results mainly from the competition between
inertial effects and surface tension. Based on dimensional considerations, C is
chosen to take the following form in which c is a dimensionless constant:

(A.4) C = c · γ/(ρ0b
3
0).

An analytical approximation Fmax of the actual maximal porosity reached fmax

can be defined from Eqs. (A.1)–(A.3)–(A.4):

(A.5) fmax ≈ Fmax = A− B2

4C
.

A good agreement is obtained with c = −4.8 for b0 values ranging from the
non-cavitational regime to the beginning of the transition regime (see Fig. 7).

The criterion Fmax ≤ 1.1F (τ) provides the domain for which cavitation
does not evolve significantly after the end of the applied loading. This criterion
is analytically expressed by using the approximate parabolic form established
above:

(A.6)
(ρ0b

3
0)

γ
· D

2 exp(−Dτ)
1− exp(Dτ)

≤ 0.4c.

The critical value b0c corresponds to the larger value of b0 that satifies in-
equality (A.6) when the other parameters are fixed. These critical values are
3.42 µm for loading case No. 1 and 0.16µm for loading case No. 2, and are
indicated in Fig. 7 (right) by vertical lines.
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Appendix B. Energetic interpretation of the hollow sphere model

B.1. Preliminary remarks

In this purely mechanical study, the energy balance corresponds to the kinetic
energy theorem for the domain of the hollow sphere (see [19], p. 67):

Ṫ = Pi + Pe,(B.1)

T =

∫

Dt

1

2
ρv2dv,(B.2)

Pi = −
∫

Dt

σijdijdv,(B.3)

Pe =

∫

St

tivids+

∫

Dt

ρfividv.(B.4)

St (respectively Dt) denotes the position of the boundary (the domain) S (D)
of the hollow sphere at time t. Ṫ defines the material derivative of the kinetic
energy T .

The following quantities are involved in Eq. (B.1):
• During phase 1 : the rate of change of kinetic energy Ṫ , the power of

internal forces Pi, i.e. the rate of work of reversible stresses (pressure) U̇
and the rate of work of irreversible (viscous) stresses ϕv (Pi = U̇ + ϕv),
plus the power of external forces Pe (where body forces are neglected).
• During phase 2 : the rate of change of kinetic energy Ṫ , the power of

internal forces Pi, i.e. the rate of work of irreversible (viscous) stresses ϕv

(Pi = ϕv) and the power of external forces Pe, which are here the effects
of surface tension acting on the inner radius ϕΓ (Pe = ϕΓ ).

Here we focus on the dissipative mechanisms that accompany the cavitation
process and contribute to fragmentation, i.e. viscous dissipation and creation of
surface. The balance is not detailed below; only the terms related to dissipative
mechanisms are developed.

B.2. Viscous dissipation during phase 1

(B.5) ϕv =

b
∫

a

−τijdij 4πr2 dr,

where τij and dij can be deduced from Eq. (3.2).
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In order to compare this quantity with the estimate expressed in Eqs. (2.1)–
(2.2), the total amount of energy dissipated during phase 1 is computed per
unit volume, according to the following expression:

(B.6) Φv(0−τ) =

τ
∫

0

ϕv

V
dt,

where V =
4

3
πb3 is the total volume of the hollow sphere.

B.3. Viscous dissipation and creation of surface during phase 2

(B.7) ϕv =

b
∫

a

−τijdij 4πr2 dr, ϕΓ =
2γ

a
vr(a, t) 4πa2

where vr is derived from Eq. (3.6):

(B.8) vr(r, t) =
ω̇(t)

3r2
.

The corresponding rates are integrated per unit volume between τ and tm (time
when the maximal porosity is reached or tm = 10τ if no maximum is encountered
before):

(B.9) Φv(τ−tm) =

tm
∫

τ

ϕv

V
dt, ΦΓ (τ−tm) =

tm
∫

τ

ϕΓ

V
dt.
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17. L. Signor, T. De Rességuier, G. Roy, A. Dragon, F. Llorca, Fragment-size predic-
tion during dynamic fragmentation of shock-melted tin. Recovery experiments and model-
ing issues, [in:] Fifteenth Topical Conference on Shock Compression of Condensed Matter,
M.L. Elert, M.D. Furnish, R. Chau, N. Holmes, J. Nguyen [Eds.], 593–596, 2007.

18. S.V. Stebnovskii, Experimental investigation of pulsed stretching of cavitating media,
J. Appl. Mech. Tech. Phys., 39, 5, 758–761, 1998.

19. R. Temam, A. Miranville, Mathematical modeling in continuum mechanics, 2nd Edi-
tion, Cambridge University Press, 2005.

20. A.K. Zhiembetov, A.L. Mikhaylov, G.S. Smirnov, Experimental study of explosive
fragmentation of metal melts, [in:] Twelfth Topical Conference on Shock Compression of
Condensed Matter, M.D. Furnish, Y.M. Gupta, J.W. Forbes [Eds.], 547–550, 2001.

Received December 4, 2007; revised version June 6, 2008.


