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A theoretical analysis is made for the steady two-dimensional post-stagnation-
point flow of an incompressible viscous fluid over a stretching vertical sheet in its own
plane. The stretching velocity, the free stream velocity and the surface temperature
are assumed to vary linearly with the distance from the stagnation point. The govern-
ing partial differential equations are transformed into a coupled system of ordinary
differential equations, which is then solved numerically by a finite-difference method.
Results are presented in terms of the skin friction coefficient and local Nusselt num-
ber, along with a selection of velocity and temperature profiles. It was shown that for
both cases of a fixed surface (ε = 0) and a stretching surface (ε 6= 0), dual solutions
exist for the assisting flow (positive values of the buoyancy parameter λ), besides that
usually reported in the literature for the opposing flow (λ < 0). It was also found
that for the assisting flow, a solution exists for all values of λ (> 0), while for the
opposing flow, a solution exists only if the magnitude of the buoyancy parameter is
small.

Notations

a, b, c constants,
Cf skin friction coefficient,
f dimensionless stream function,
g acceleration due to gravity,

Grx local Grashof number,
k thermal conductivity,

Nux local Nusselt number,
Pr Prandtl number,
qw local heat flux,

Rex local Reynolds number,
T fluid temperature,
Tw surface temperature,
T∞ ambient temperature,
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u, v velocity components along the x and y directions, respectively,
U∞ free stream velocity along the x-axis far from the stretching sheet,
Uw velocity of the stretching surface,
V∞ free stream velocity along the y-axis far from the stretching sheet,
x, y Cartesian coordinates along the surface and normal to it, respectively.

Greek Letters

α thermal diffusivity,
β thermal expansion coefficient,
ε velocity ratio parameter,
η similarity variable,
λ buoyancy or mixed convection parameter,
θ dimensionless temperature,
µ dynamic viscosity,
ν kinematic viscosity,
ρ fluid density,
τw wall shear stress,
ψ stream function.

Subscripts

w condition at the stretching sheet,
∞ condition far away from the stretching sheet.

Superscript

′ differentiation with respect to η.

1. Introduction

The structure of the flow near a stagnation-point is a fundamental
topic in fluid dynamics and it has attracted many investigations during the past
several decades because of its wide industrial and technical applications such as
cooling of electronic devices by fans, cooling of nuclear reactors during emer-
gency shutdown, heat exchangers placed in a low-velocity environment, solar
central receivers exposed to wind currents, and many hydrodynamic processes.
Hiemenz [1] was the first to study the two-dimensional stagnation-point flow
and obtained an exact similar solution of the governing Navier–Stokes equa-
tions. Since then many investigators have considered various aspects of such
flow and obtained similarity solutions. The numerical solution reveals the onset
of a wall-vorticity layer, which is a prototype of an “exact” boundary layer dis-
tinguished by the absence of the usual boundary layer approximation. In pure
forced convection the stagnation point flow results from a two-dimensional flow
impinging on a surface at right angle and flowing thereafter symmetrically about
the stagnation line. In mixed convection the flow and thermal fields are no longer
symmetric with respect to the stagnation line. In addition, the local heat trans-
fer rate and the local shear stress can be significantly enhanced or diminished
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in comparison to the pure forced convection flow. The combined forced and free
convection (mixed convection) flow is important when the buoyancy forces due
to the temperature difference between the surface and the free stream become
large, which in turn significantly affected the flow and the thermal fields. Ra-

machandran et al. [2] studied laminar mixed convection in two-dimensional
stagnation flows around heated surfaces by considering both cases of an arbi-
trary wall temperature and arbitrary surface heat flux variations. They found
that a reverse flow develops in the buoyancy opposing flow region, and dual solu-
tions are found to exist for a certain range of the buoyancy parameter. This work
was then extended by Devi et al. [3] for unsteady case, and by Lok et al. [4] for
a vertical surface immersed in a micropolar fluid. Dual solutions were found to
exist by these authors for a certain range of the buoyancy parameter. Takhar

et al. [5] studied unsteady mixed convection flow of a viscous incompressible,
electrically conducting fluid in the vicinity of a stagnation-point adjacent to
a heated vertical surface. Both the constant wall temperature and constant heat
flux conditions were considered. However, the existence of dual solutions was
not reported in that paper.

All of the above-mentioned investigations considered that the flow impinges
normal to a vertical or horizontal surface at rest. The stagnation-point flows to-
wards a surface which is moved or stretched, have been considered for example
by Chiam [6, 7], Mahapatra and Gupta [8, 9] and Nazar et al. [10, 11]. The
fluid dynamics due to a stretching surface is important in extrusion processes.
The production of sheeting material arises in a number of industrial manufactur-
ing processes and includes both metal and polymer sheets. Examples include the
cooling of an infinite metallic plate in a cooling bath, the boundary layer along
the material handling conveyers, the aerodynamic extrusion of plastic sheets, the
boundary layer along a liquid film in condensation processes, paper production,
glass blowing, metal spinning and drawing of plastic films. The quality of the
final product depends on the rate of heat transfer at the stretching surface.

In this paper, we present an analysis which may be regarded as an extension
of the work of Ramachandran et al. [2], by considering external flow impinge-
ment normal towards the stretching vertical surface. The boundary and external
flow velocities as well as the surface temperature are assumed to vary linearly
with the distance from the stagnation-point. The governing partial differential
equations are first transformed into ordinary differential equations using similar-
ity variables and then they are solved numerically by a finite-difference method.

2. Mathematical formulation

Consider a mixed convection boundary layer flow near the stagnation-point
on a vertical, heated, linearly stretching sheet in a viscous and incompressible
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Fig. 1. Physical model and coordinate system.

viscous fluid, as shown in Fig. 1. Cartesian coordinates (x, y) are taken such
that the x-axis is measured along the sheet oriented in the upward or down-
ward direction and the y-axis is normal to it. It is assumed that the stretching
velocity is given by Uw(x) = ax, and the velocity distribution in frictionless
potential flow in the neighbourhood of the stagnation point at x = y = 0 is
given by U∞(x) = bx, V∞(y) = −by, while the surface temperature is in the
form Tw(x) = T∞ + cx, where a, b and c are positive constants. For Fig. 1(a),
the x-axis points upwards in the direction of the stretching surface such that the
external flow and the stretching surface induced flow (in the boundary layer)
and the thermal buoyant flow assist each other (assisting flow). On the other
hand, for Fig. 1(b), the x-axis points vertically downwards in the direction of
the stretching surface, but in this case the external flow and the stretching sur-
face induce flow and the thermal buoyant flow oppose each other (opposing
flow). Under these assumptions and the Boussinesq approximation, the govern-
ing two-dimensional Navier–Stokes and energy equations are (see Ramachan-

dran et al. [2]):

∂u

∂x
+
∂v

∂y
= 0,(2.1)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(

∂2u

∂x2
+
∂2u

∂y2

)

± gβ(T − T∞),(2.2)

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(

∂2v

∂x2
+
∂2v

∂y2

)

,(2.3)

u
∂T

∂x
+ v

∂T

∂y
= α

(

∂2T

∂x2
+
∂2T

∂y2

)

,(2.4)
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subject to the boundary conditions

(2.5)
u = Uw(x), v = 0, T = Tw(x) at y = 0,

u → U∞(x), v = V∞(y), T → T∞ as y →∞,

where u and v are the velocity components along the x- and y-axes, respectively,
p is the pressure in the flow field, g is the acceleration due to gravity, α is the
thermal diffusivity of the fluid, ν is the kinematic viscosity, β is the coefficient
of thermal expansion and ρ is the fluid density. The last term on the right-hand
side of Eq. (2.2) represents the influence of the thermal buoyancy force on the
flow field, with “+” and “−” signs pertaining to the buoyancy assisting and the
buoyancy opposing flow regions, respectively.

Further, we eliminate the pressure p from Eqs. (2.2) and (2.3) by cross-
differentiation and introduce the stream function ψ defined as u = ∂ψ/∂y and
v = −∂ψ/∂x, which satisfy the continuity equation (2.1). Thus we get the
following equation:

(2.6)
∂ψ

∂y

∂

∂x

(

∇2ψ
)

− ∂ψ

∂x

∂

∂y

(

∇2ψ
)

= ν∇4ψ ± gβ ∂T
∂y

,

subject to the boundary conditions

(2.7)

ψ = 0,
∂ψ

∂y
= Uw(x) at y = 0,

∂ψ

∂y
→ U∞(x),

∂ψ

∂x
→ −V∞(y) as y →∞.

Equations (2.4) and (2.6) can be transformed to the corresponding ordinary
differential equations by the following transformation (see Ramachandran

et al. [2] or Chen [12]):

(2.8) η =

(

U∞

νx

)1/2

y, ψ = (νxU∞)1/2 f(η), θ(η) =
T − T∞
Tw − T∞

.

Substituting (2.8) into Eqs. (2.4) and (2.6), and integrating once the resulting
equation from (2.6) with the corresponding boundary conditions, we obtain that
the functions f(η) and θ(η) are given by the following coupled two ordinary
differential equations:

f ′′′ + ff ′′ + 1− f ′2 + λθ = 0,(2.9)

1

Pr
θ′′ + fθ′ − f ′θ = 0,(2.10)

where primes denote differentiation with respect to η, λ = ±Grx /Re2
x (“±”

has the same meaning as in Eq. (2.2)) is the buoyancy or mixed convection
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parameter, Pr = ν/α is the Prandtl number, Grx = gβ(Tw − T∞)x3/ν2 is the
local Grashof number and Rex = U∞x/ν is the local Reynolds number. Here,
λ > 0 corresponding to the assisting flow, λ < 0 corresponding to the opposing
flow and λ = 0 corresponds to the forced convection flow. The transformed
boundary conditions are:

(2.11)
f(0) = 0, f ′(0) = ε, θ(0) = 1,

f ′(η)→ 1, θ(η)→ 0 as η →∞,

where ε = Uw/U∞ is the velocity ratio parameter.
We note that when ε = 0 (static surface), Eqs. (2.9)–(2.11) reduce to those

of Ramachandran et al. [2] for the case of an arbitrary surface temperature
with n = 1 in their paper.

The physical quantities of interest are the skin friction coefficient Cf and the
local Nusselt number Nux, which are defined as

(2.12) Cf =
τw

ρU2
∞/2

, Nux =
xqw

k(Tw − T∞)
,

where the wall shear stress τw and the local heat flux qw are given by

(2.13) τw = µ

(

∂u

∂y

)

y=0

, qw = −k
(

∂T

∂y

)

y=0

,

with µ and k being the dynamic viscosity and thermal conductivity, respectively.
Using the similarity variables (2.5), we obtain

(2.14)
1

2
Cf Re1/2

x = f ′′(0), Nux /Re1/2
x = −θ′(0).

3. Solution procedure

3.1. Finite-difference method

To solve the transformed differential equations (2.9) and (2.10) subject to
the boundary conditions (2.11), Eqs. (2.9) and (2.10) are first converted into
a system of five first-order equations, and the difference equations are then ex-
pressed using central differences. For this purpose, we introduce new dependent
variables p(η), q(η), s(η) = θ(η) and t(η) so that Eqs. (2.9) and (2.10) can be
written as

f ′ = p,(3.1)

p′ = q,(3.2)

s′ = t,(3.3)
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q′ + fq + 1− p2 + λs = 0,(3.4)

1

Pr
t′ + ft− ps = 0.(3.5)

In terms of the new dependent variables, the boundary conditions (2.11) are
given by

(3.6)
f(0) = 0, p(0) = ε, s(0) = 1,

p(η)→ 1, s(η)→ 0 as η →∞.

We now consider the segment ηj−1ηj , with ηj−1/2 as the midpoint, which is
defined as below:

(3.7) η0 = 0, ηj = ηj−1 + hj , ηJ = η∞,

where hj is the ∆η-spacing and j = 1, 2, · · · , J is a sequence number that
indicates the coordinate location. The finite-difference approximations to the
ordinary differential equations (3.1)–(3.5) are written for the midpoint ηj−1/2 of
the segment ηj−1ηj . This procedure gives

fj − fj−1

hj
=
pj + pj−1

2
= pj−1/2,(3.8)

pj − pj−1

hj
=
qj + qj−1

2
= qj−1/2,(3.9)

sj − sj−1

hj
=
tj + tj−1

2
= tj−1/2,(3.10)

qj − qj−1

hj
+ (fq)j−1/2 + 1− (p2)j−1/2 + λsj−1/2 = 0,(3.11)

1

Pr

tj − tj−1

hj
+ (ft)j−1/2 − (ps)j−1/2 = 0.(3.12)

Rearranging of expressions (3.8)–(3.12) gives

fj − fj−1 −
1

2
hj (pj + pj−1) = 0,(3.13)

pj − pj−1 −
1

2
hj (qj + qj−1) = 0,(3.14)

sj − sj−1 −
1

2
hj (tj + tj−1) = 0,(3.15)
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(3.16) qj − qj−1 +
1

4
hj(fj + fj−1)(qj + qj−1) + hj −

1

4
hj(pj + pj−1)

2

+
1

2
λhj(sj + sj−1) = 0,

(3.17)
1

Pr
(tj − tj−1)+

1

4
hj(fj + fj−1)(tj + tj−1)−

1

4
hj(pj +pj−1)(sj + sj−1) = 0.

Equations (3.13)–(3.17) are imposed for j = 1, 2, 3, . . . , J , and the trans-
formed boundary layer thickness ηJ is to be sufficiently large so that it is beyond
the edge of the boundary layer. The boundary conditions are

(3.18)
f0 = 0, p0 = ε, s0 = 1,

pJ = 1, sJ = 0.

3.2. Newton’s method

To linearize the nonlinear system (3.13)–(3.17), we use Newton’s method, by
introducing the following expressions:

(3.19)
f

(k+1)
j = f

(k)
j + δf

(k)
j , p

(k+1)
j = p

(k)
j + δp

(k)
j , q

(k+1)
j = q

(k)
j + δq

(k)
j ,

s
(k+1)
j = s

(k)
j + δs

(k)
j , t

(k+1)
j = t

(k)
j + δt

(k)
j ,

where k = 0, 1, 2, . . . . We then insert the left-hand side expressions in place of
fj , pj , qj , sj and tj into Eqs. (3.13)–(3.17) and drop the terms that are quadratic
in δf (k), δp(k), δq(k), δs(k) and δt(k). This procedure yields the following linear
system (the superscript k is dropped for simplicity):

δfj − δfj−1 −
hj

2
(δpj + δpj−1) = (r1)j−1/2 ,(3.20)

δpj − δpj−1 −
hj

2
(δqj + δqj−1) = (r2)j−1/2 ,(3.21)

δsj − δsj−1 −
hj

2
(δtj + δtj−1) = (r3)j−1/2 ,(3.22)

(3.23) (a1)jδqj + (a2)jδqj−1 + (a3)jδfj + (a4)jδfj−1 + (a5)jδpj

+ (a6)jδpj−1(a7)jδsj + (a8)jδsj−1 = (r4)j−1/2,

(3.24) (b1)jδtj + (b2)jδtj−1 + (b3)jδfj + (b4)jδfj−1 + (b5)jδpj + (b6)jδpj−1

+ (b7)jδsj + (b8)jδsj−1 = (r5)j−1/2,
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where

(3.25)

(a1)j = 1 +
1

2
hjfj−1/2, (a2)j = (a1)j − 2,

(a3)j =
1

2
hjqj−1/2, (a4)j = (a3)j ,

(a5)j = −hjpj−1/2, (a6)j = (a5)j ,

(a7)j =
1

2
λhj , (a8)j = (a7)j ,

(b1)j =
1

Pr
+

1

2
hjfj−1/2, (b2)j = (b1)j −

2

Pr
,

(b3)j =
1

2
hjtj−1/2, (b4)j = (b3)j ,

(b5)j = −1

2
hjsj−1/2, (b6)j = (b5)j ,

(b7)j = −1

2
hjpj−1/2, (b8)j = (b7)j ,

and

(r1)j−1/2 = −fj + fj−1 + hjpj−1/2,

(r2)j−1/2 = −pj + pj−1 + hjqj−1/2,

(r3)j−1/2 = −sj + sj−1 + hjtj−1/2,(3.26)

(r4)j−1/2 = −(qj − qj−1)− hj(fq)j−1/2 − hj + hj(p
2)j−1/2 − λhjsj−1/2,

(r5)j−1/2 = − 1

Pr
(tj − tj−1)− hj(ft)j−1/2 + hj(ps)j−1/2.

The boundary conditions (3.18) become

(3.27)
δf0 = 0, δp0 = 0, δs0 = 0,

δpJ = 0, δsJ = 0,

which just express the requirement for the boundary conditions to remain con-
stant during the iteration process.

3.3. Block-elimination method

The linearized difference equations (3.20)–(3.24) can be solved by the block-
elimination method as outlined by Na [13] and Cebeci and Bradshaw [14],
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since the system has block-tridiagonal structure. Commonly, the block-tridia-
gonal structure consists of variables or constants, but here an interesting feature
can be observed that it consists of block matrices. In a matrix-vector form,
Eqs. (3.20)–(3.24) can be written as

(3.28) Aδ = r

where

A =































[A1] [C1]

[B2] [A2] [C2]

. . .

. . .

. . .

[BJ−1] [AJ−1] [CJ−1]

[BJ ] [AJ ]































,

δ =



















[δ1]

[δ2]

...

[δJ−1]

[δJ ]



















and r =



















[r1]

[r2]

...

[rJ−1]

[rJ ]



















.

The elements of the matrices are as follows:

[A1] =





















0 0 1 0 0

−1

2
h1 0 0 −1

2
h1 0

0 −1

2
h1 0 0 −1

2
h1

(a2)1 0 (a3)1 (a1)1 0

0 (b2)1 (b3)1 0 (b1)1





















,(3.29)

[Aj ] =























−1

2
hj 0 1 0 0

−1 0 0 −1

2
hj 0

0 −1 0 0 −1

2
hj

(a6)j (a8)j (a3)j (a1)j 0

(b6)j (b8)j (b3)j 0 (b1)j























, 2 ≤ j ≤ J,(3.30)
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[Bj ] =





















0 0 −1 0 0

0 0 0 −1

2
hj 0

0 0 0 0 −1

2
hj

0 0 (a4)j (a2)j 0

0 0 (b4)j 0 (b2)j





















, 2 ≤ j ≤ J,(3.31)

[Cj ] =



















−1

2
hj 0 0 0 0

1 0 0 0 0

0 1 0 0 0

(a5)j (a7)j 0 0 0

(b5)j (b7)j 0 0 0



















, 1 ≤ j ≤ J − 1,(3.32)

[δ1] =

















δq0

δt0

δf1

δq1

δt1

















, [δj ] =

















δpj−1

δsj−1

δfj

δqj

δtj

















, 2 ≤ j ≤ J,(3.33)

and

(3.34) [rj ] =

















(r1)j−1/2

(r2)j−1/2

(r3)j−1/2

(r4)j−1/2

(r5)j−1/2

















, 1 ≤ j ≤ J.

To solve Eq. (3.28), we assume that A is nonsingular and it can be factorized as

(3.35) A = LU,

where

L =





















[α1]

[B2] [α2]

. . .

. . . [αJ−1]

[BJ ] [αJ ]




















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and

U =























[I] [Γ1]

[I] [Γ2]

. . .

. . .

[I] [ΓJ−1]

[I]























,

where [I] is a 5 × 5 identity matrix, while [αi] and [Γi] are 5 × 5 matrices in
which the elements are determined by the following equations:

[α1] = [A1] ,(3.36)

[A1] [Γ1] = [C1] ,(3.37)

[αj ] = [Aj ]− [Bj ] [Γj−1] , j = 2, 3, . . . , J,(3.38)

[αj ] [Γj ] = [Cj] , j = 2, 3, . . . , J − 1.(3.39)

Substituting Eq. (3.35) into Eq. (3.28), we obtain

(3.40) LUδ = r.

If we define

(3.41) Uδ = W,

Eq. (3.40) becomes

(3.42) LW = r,

where

W =

















[W1]

[W2]
...

[WJ−1]

[WJ ]

















,

and [Wj ] are 5×1 column matrices. The elements of W can be determined from
Eq. (3.41) by the following relations:

[α1] [W1] = [r1] ,(3.43)

[αj ] [Wj ] = [rj ]− [Bj ] [Wj−1] , 2 ≤ j ≤ J.(3.44)
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When the elements of W have been found, Eq. (3.41) gives the solution for δ

in which the elements are found from the following relations:

[δJ ] = [WJ ] ,(3.45)

[δj ] = [Wj ]− [Γj ] [δj+1] , 1 ≤ j ≤ J − 1.(3.46)

Once the elements of δ are found, Eqs. (3.20)–(3.24) can be used to find the
(k+1)th iteration in Eq. (3.19). These calculations are repeated until the conver-
gence criterion is satisfied. In laminar boundary layer calculation, the wall shear
stress parameter q(0) is commonly used as the convergence criterion [15]. This
is probably because in boundary layer calculations, it is found that the greatest
error usually appears in the wall shear stress parameter. Thus, this convergence
criterion is used in the present study. Calculations are stopped when

(3.47) |δq(k)
0 | < ǫ1,

where ǫ1 is a small prescribed value. In this study, ǫ1 = 0.00001 is used, which
gives about four decimal places accuracy for most of the predicted quantities as
suggested in [14, 15].

The present method has a second-order accuracy, unconditionally stable and
is easy to be programmed, thus making it highly attractive for production use.
The only disadvantage is the large amount of once-and-for-all algebra needed to
write the difference equations and to set up their solutions [16].

4. Results and discussion

The step size ∆η in η, and the position of the edge of the boundary layer η∞
have to be adjusted for different values of the parameters to maintain accuracy.
In this study, the values of ∆η between 0.001 and 0.1 were used, depending on
the values of the parameters used, in order that the numerical values obtained
should be independent of ∆η chosen, at least to four decimal places. However,
a uniform grid of ∆η = 0.01 was found to be satisfactory for a convergence
criterion of 10−5 which gives accuracy to four decimal places, in nearly all cases.
On the other hand, the boundary layer thickness η∞ between 4 and 50 was chosen
where the infinity boundary condition is achieved. To assess the accuracy of the
present method, comparison with the previously reported data available in the
open literature is made. The comparisons for the values of the skin friction
coefficient f ′′(0) and the local Nusselt number −θ′(0) are shown in Tables 1
and 2 respectively, and they are found to be in a very good agreement. The
present method is unconditionally stable and has been successfully used by the
present authors to solve various problem in fluid mechanics and heat transfer
(cf. [17–19]).
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Table 1. Values of f ′′(0) for various values of Pr when ε = 0 (for upper branch
solution).

Ramachandran Lok et al. [4] Present results
Pr et al. [2]

λ = −1 λ = 1 λ = −1 λ = 1 λ = −1 λ = 1

0.7 0.6917 1.7063 0.691693 1.706376 0.6917 1.7063

7 0.9235 1.5179 0.923528 1.517952 0.9235 1.5179

20 1.0031 1.4485 1.003158 1.448520 1.0031 1.4485

40 1.0459 1.4101 1.045989 1.410094 1.0459 1.4101

60 1.0677 1.3903 1.067703 1.390311 1.0677 1.3903

80 1.0817 1.3774 1.081719 1.377429 1.0817 1.3774

100 1.0918 1.3680 1.091840 1.368070 1.0918 1.3680

Table 2. Values of −θ′(0) for various values of Pr when ε = 0 (for upper branch
solution).

Ramachandran Lok et al. [4] Present results
Pr et al. [2]

λ = −1 λ = 1 λ = −1 λ = 1 λ = −1 λ = 1

0.7 0.6332 0.7641 0.633269 0.764087 0.6332 0.7641

7 1.5403 1.7224 1.546374 1.722775 1.5403 1.7224

20 2.2683 2.4576 2.269380 2.458836 2.2683 2.4576

40 2.9054 3.1011 2.907781 3.103703 2.9054 3.1011

60 3.3527 3.5514 3.356338 3.355404 3.3527 3.5514

80 3.7089 3.9095 3.713824 3.914882 3.7089 3.9095

100 4.0097 4.2116 4.015974 4.218462 4.0097 4.2116

To conserve space, we consider the Prandtl number unity throughout the pa-
per, except for comparison with the previously investigated cases. From
Tables 1 and 2, it can be seen that for both the assisting and opposing flow
cases, as Pr increases, the local Nusselt number increases and it leads to a de-
crease in the thickness of the thermal region near the fixed surface. The reverse
trend is seen for the skin friction coefficient, which decreases as Pr increases
when the flow is assisted (λ > 0). This is due to the increased velocity caused
by the assisting buoyancy forces. However, it increases with Pr when the flow is
opposing (λ < 0).

The variations of the skin friction coefficient f ′′(0) and the local Nusselt num-
ber −θ′(0) with buoyancy parameter λ for ε = 0 and ε = 0.1 are shown in Figs. 2
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x (= −θ′(0)) as a function of λ for ε = 0 and ε = 0.1.

and 3, respectively. These figures show that it is possible to obtain dual solutions
of the similarity equations (2.9)–(2.11) for the assisting flow (λ > 0), as well as
for the opposing flow (λ < 0) that have been reported by Ramachandran et al.
[2], Devi et al. [3] and Lok et al. [4]. For λ > 0, there is a favourable pressure gra-
dient due to the buoyancy forces, which results in the flow being accelerated and
consequently there is a larger skin friction coefficient than in the non-buoyant
case (λ = 0). For negative values of λ, there is a critical value λc, with two solu-
tion branches for λ > λc, a saddle-node bifurcation at λ = λc and no solutions
for λ < λc. Based on our computations, λc = −2.364 for ε = 0 and λc = −2.612
for ε = 0.1. The boundary-layer separates from the surface at λ = λc, where
f ′′(0) < 0, a different result from the classical boundary-layer theory where sep-
aration occurs when f ′′(0) is zero. This observation is in agreement with the
cases reported by Ramachandran et al. [2], Devi et al. [3], Lok et al. [4],
Schneider and Wasel [20], and Sears and Telionis [21], who suggested that
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the name “separation” should not be given to vanishing wall-shear. Moreover,
Figs. 2 and 3 show that the flow separation is delayed if the sheet is stretched.
Further, it should be mentioned that the existence of dual solutions in mixed
convection boundary layer flow was pointed out by Afzal and Hussain [22]
and Hoog et al. [23]. As discussed by Afzal and Hussain [22], it seems plau-
sible that depending on the manner in which the temperature field is imposed,
one or the other dual solutions could be approached after different adjustment
phases, causing the solution in the vicinity of the separation region to be dual.

We identify the upper and lower branch solutions in the following discussion
by how they appear in Fig. 2, i.e. the upper branch solution has higher val-
ues of f ′′(0) for a given λ than the lower branch solution. As shown in Fig. 3,
for the upper branch solutions, the heat transfer rate increases with λ since
the skin friction increases, whereas for the lower branch solutions, it becomes
discontinuous and unbounded at λ = 0. It is not possible to determine which
solution would occur in practice since a stability analysis has not been done.
However, we expect the upper branch solution to be stable and physically rele-
vant, whereas the lower branch is unstable and not physically relevant, since it
is the only solution for the case λ = 0 (cf. Fig. 3). The saddle-node bifurcation
at λ = λc corresponds to a change in the (temporal) stability of the solution
and, unless there is a change in stability on the upper branch for λ 6= λc, the
saddle-node bifurcation gives a change in stability from stable (upper branch)
to unstable (lower branch). Although the lower branch solutions seem to deprive
of physical significance, they are nevertheless of interest so far as the differential
equations are concerned. Similar results may arise in other situations where the
corresponding solutions have more realistic meaning (see Ridha [24]).

Figures 4 and 5 respectively present some samples of velocity and temper-
ature profiles for λ = −1 (opposing flow), while the corresponding profiles for
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Fig. 4. Velocity profiles f ′(η) for ε = 0 and ε = 0.1 when λ = −1 (opposing flow).
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Fig. 8. Velocity profiles f ′(η) for different values of ε when λ = 1 (for the upper branch
solution).

λ = 1 (assisting flow) are presented in Figs. 6 and 7. As seen in Figs. 4–7, the
boundary conditions (2.11) are satisfied, which support the results presented in
Tables 1 and 2 as well as Figs. 2 and 3, besides supporting the dual nature of
the solutions to the boundary-value problem (2.9)–(2.11). The velocity profiles
for different values of ε for the upper branch solution when λ = 1 are presented
in Fig. 8. This figure shows that the velocity increases with the velocity ratio
parameter ε (= Uw/U∞), and the velocity gradient at the surface is larger for
smaller values of ε, which is consistent with the results presented in Fig. 1.

5. Conclusions

The problem of mixed convection flow near a two-dimensional stagnation-
point on a vertical, continuously stretching sheet immersed in an incompressible
viscous fluid has been investigated. Similarity solutions were obtained for the
Navier–Stokes and energy equations, and the effects of the buoyancy and velocity
ratio parameters on the flow field and heat transfer characteristics, for the case of
Prandtl number unity, have been discussed. Results were presented for both the
assisting and opposing flow regions. A new feature to emerge from the present
investigation is the existence of dual solutions for the assisting flow, besides for
the opposing flow that is usually reported in the literature. We also found that
the flow separation from the surface was delayed if the sheet is stretched. It was
also shown that solutions do not exist for the opposing flow if the magnitude of
the buoyancy parameter is larger than the specific critical value.
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