
Arch. Mech., 60, 3, pp. 263–279, Warszawa 2008

SIXTY YEARS OF THE ARCHIVES OF MECHANICS

Spatial estimates concerning the harmonic vibrations

in rectangular plates with voids

I.-D. GHIBA

“Octav Mayer” Mathematics Institute
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This paper studies the spatial behaviour of the amplitude of a harmonic vibration
in a rectangular plate of Mindlin type, made of a homogeneous and isotropic elastic
material with voids. Provided the frequency of vibration is lower than the critical
value, some appropriate measures are introduced relating the amplitude of resulting
harmonic vibration, and the corresponding first-order differential inequalities are es-
tablished under mild conditions on the elastic coefficients. The case of a semi-infinite
plate is also studied and some Phragmén–Lindelöf alternatives are established.

1. Introduction

In [1] Nunziato and Cowin have presented a general theory of elastic ma-
terials with voids. In this theory, the bulk density is written as a product of
two fields, the matrix material density field and the volume fraction field. This
representation introduces an additional degree of kinematic freedom and it was
employed previously by Goodman and Cowin [2] to develop a continuum the-
ory of granular materials. The linear theory of elastic materials with voids has
been developed by Cowin and Nunziato [3]. The first investigations in the
theory of thermoelastic materials with voids are due to Nunziato and Cowin
[1] and Ieşan [4]. The intended applications of the theory concern geological
materials and manufactured porous materials. A presentation of this theory can
be found in [5] and [6].

The classical Kirchhoff’s theory of bending of elastic plates neglects the ef-
fects of transverse shear forces. Mindlin [7] and Reissner [8] (see also [9])
developed the theories of elastic plates which take into consideration the effect
of transverse shear forces. The time-harmonic oscillations in elastic and thermoe-
lastic plates of Mindlin type were studied by Schiavone and Constanda [10]
and Schiavone and Tait [11]. In [12] Ciarletta studies the spatial behaviour
of the transient and steady-state solutions in thin plates with shear deforma-
tion. Some methods to study the spatial behaviour of the transient solutions in
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bending of Mindlin-type thermoelastic plates was presented by D’Apice and
Chiriţă [13] and by D’Apice [14].

Using the Nunziato-Cowin theory, Scarpetta [15] and B̂ırsan [16] estab-
lished the equations of bending of elastic and thermoelastic plates with voids.
The existence and uniqueness of solutions in equilibrium and dynamic bend-
ing theory of elastic plates with voids were established in [17]. Some results
concerning the steady-state solutions for thermoelastic porous plates were pre-
sented in [18].

In the present paper we study the spatial behaviour of the solutions de-
scribing harmonic vibrations in the bending theory of Mindlin-type rectangular
finite (semi-infinite) plates with voids. First, we consider a finite rectangular
plate made of a homogeneous and isotropic porous elastic material, constrained
on the lateral sides and one of the ends, and the other end is subjected to bound-
ary data which are time-harmonic with angular frequency ω. For the study of
spatial behaviour of the amplitude of vibration that takes place in the plate,
we introduce two appropriate measures and then we establish, for each of them,
a first-order differential inequality, provided the frequency of the harmonic vi-
bration is lower than the barrier frequency. The integration of these differential
inequalities furnishing some estimates describes the exponential decay of the
amplitude. The results are extended to a semi-infinite rectangular plate. The
measures and methods used are inspired by the studies [12, 19, 20] in classical
elasticity and termoelasticity, and by the paper [21–24] in linear porous elas-
ticity. Our study includes the class of materials with negative Poisson’s ratio
(see Lakes [25, 26]). This type of materials have interesting proprieties such
as high energy absorption and fracture resistance and possible applications of
these materials were presented in the papers [27–29].

2. Formulation of problem

Throughout this paper we consider the region S× [−h0/2, h0/2] of the physi-
cal space R3, where S is a domain in R2 whose boundary ∂S is a closed Lyapunov
curve and 0 < h0 = constant ≪ diamS. We call this region a plate with the
thickness h0.

We assume that B is the interior of the right cylinder defined above, and
that it is filled with an isotropic and homogeneous, linearly elastic material with
voids.

We choose a rectangular Cartesian system Ox1x2x3 so that the plane Ox1x2

is its middle plane. The Latin subscripts are understood to range over the inte-
gers 1, 2, 3, whereas Greek subscripts are confined to the range 1, 2; summation
over repeated subscripts is implied and comma followed by a subscript is used
to denote partial derivative with respect to the corresponding Cartesian coordi-
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nate. Moreover, we use a superposed dot to denote partial differentiation with
respect to time. We also consider a fixed time T > 0.

Let ρ be the bulk mass density and χ the equilibrated inertia [2] in the
reference state.

In the bending theory of Mindlin-type plates with voids, the displacements
u and the change in volume fraction ϕ can be written in the form [15, 16]

(2.1)

uα = x3vα(x1, x2, t),

u3 = v3(x1, x2, t),

ϕ = x3ψ(x1, x2, t) in B × (0, T ).

The equations of motion for elastic plates with voids in the bending theory
[15, 16], in absence of the external body loads, are the following:

(2.2)

Nβα,β −Nα3 = ρh2v̈α,

Nβ3,β = ρv̈3,

Hα,α +G−H3 = ρχh2ψ̈ in S × (0, T ),

where h2 = h2
0/12. For the meaning of the functions Nβi, Hi and G which appear

in the above relations, we refer to [9, 10] and [16].
For elastic porous plates made from an isotropic and homogeneous material,

we have the following constitutive equations:

(2.3)

Nαβ = h2[λvγ,γδαβ + µ(vα,β + vβ,α) + βψδαβ ],

Nα3 = µ(vα + v3,α),

Hβ = αh2ψ,β , H3 = αψ,

G = −h2(βvγ,γ + ξψ) in S × [0, T ],

where λ, µ, α, β and ξ are constitutive constants and δij is the Kronecker’s delta.
The internal energy density E per unit area of the middle plane, associated

with the kinematic fields vi and ψ, is defined by

(2.4) 2E = h2
[
λvα,αvβ,β + µ(vα,β + vβ,α)vα,β + 2βvα,α + ξψ2

]

+ αh2ψ,βψ,β + αψ2 + µ(vα + v3,α)(vα + v3,α),

and it is positive definite if

(2.5) µ > 0, α > 0, λ+ µ > 0, ξ >
β2

λ+ µ
.
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In this paper we will not impose all these inequalities. More precisely, the first
two inequalities will be assumed, while the last two will be changed.

In what follows we assume that

(2.6) S = {(x1, x2) ∈ R
2; x1 ∈ [0, L], x2 ∈ [0, l]}, l > 0, L > 0.

To the Eqs. (2.2) we add the initial conditions

(2.7) vr = a0
r, v̇r = b0r, ψ = c0, ψ̇ = d0, in S × {0}

and the boundary conditions

(2.8)

vr(x1, 0, t) = 0, vr(x1, l, t) = 0,

ψ(x1, 0, t) = 0, ψ(x1, l, t) = 0, x1 ∈ [0, L],

vr(L, x2, t) = 0, vr(0, x2, t) = w̃(x2) exp(−iωt),

ψ(L, x2, t) = 0, ψ(0, x2, t) = φ̃(x2) exp(−iωt), x2 ∈ [0, l],

where w̃r and φ̃ are prescribed continuous functions, ω is a positive definite
constant and i is the imaginary unit, that is i =

√
−1.

It is easy to see that

(2.9)
vr(x1, x2, t) = Vr(x1, x2, t) + wr(x1, x2) exp(−iωt),

ψ(x1, x2, t) = Ψ(x1, x2, t) + φ(x1, x2) exp(−iωt),

where (Vr, Ψ) absorbs the initial conditions and satisfies the null boundary con-
ditions and the Eqs. (2.2) and (2.3), while (wr, φ) satisfies the boundary value
problem consisting of the field equations:

(2.10)

Sβα,β − Sα3 = −ρh2ω2wα,

Sβ3,β = −ρω2w3,

Tα,α + Γ − T3 = −ρh2χω2φ,

where

(2.11)

Sαβ = h2[λwγ,γδαβ + µ(wα,β + wβ,α) + βφδαβ],

Sα3 = µ(wα + w3,α),

Tβ = αh2φ,β , T3 = αφ

Γ = −h2(βwγ,γ + ξφ),
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and of the boundary conditions

(2.12)

wr(x1, 0) = 0, wr(x1, l) = 0,

φ(x1, 0) = 0, φ(x1, l) = 0, x1 ∈ [0, L],

wr(L, x2) = 0, wr(0, x2) = w̃(x2),

φ(L, x2) = 0, φ(0, x2) = φ̃(x2), x2 ∈ [0, l].

From (2.10) and (2.11) we deduce the following partial differential equations
for the functions wr and φ:

(2.13)

h2[µ∆wα + (λ+ µ)wγ,γα + βφ,α] − µ(wα + w3,α) = −ρh2ω2wα,

µ(∆w3 + wγ,γ) = −ρω2w3,

αh2φ,γγ − βh2wγ,γ − (h2ξ + α)φ = −ρχh2ω2φ.

Next, we study the decay estimates for the amplitude (wr, φ) of the steady-
state vibration, satisfying Eqs. (2.13) under the boundary conditions (2.12), for
the classes of material for which

(2.14) µ > 0, α > 0, λ+ 2µ > 0, ξ > 2β2 min

(
1

2λ+ 3µ
,

1

λ+ 2µ

)
.

3. First estimate

In this section we will establish two results which describe the spatial be-
haviour of the amplitude of the considered vibration under the following as-
sumption:

(3.1) µ > 0, α > 0, 2λ+ 3µ > 0, ξ >
2β2

2λ+ 3µ
.

In order to analyse the spatial behaviour under the above hypotheses con-
cerning the constitutive constants of the material, we write the basic Eqs. (2.13)1
in the form

(3.2) Mβα,β − Sα3 = −ρh2ω2wα,

where

(3.3) Mβα = h2[µwα,β + (λ+ µ)wγ,γδαβ + βφδαβ].

We associate with the amplitude of the steady-state vibration the cross-
sectional functional

(3.4) K(x1) = −
l∫

0

(M̄1αwα +M1αw̄α + S̄13w3 + S13w̄3 + T̄1φ+ T1φ̄)dx2

for every x1 ∈ [0, L], where the superposed bar denotes a complex conjugate.
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Let us define the following quantities:

(3.5)

km = min

{
µ,

1

2

(
ξ + 2λ+ 3µ−

√
[ξ − (2λ+ 3µ)]2 + 8β2

)}
,

kM = max

{
µ,

1

2

(
ξ + 2λ+ 3µ+

√
[ξ − (2λ+ 3µ)]2 + 8β2

)}
,

and the barrier frequency

(3.6) ω1=min

{
π

l

√
km

2ρ
,
π2h

2l

√
kmµ

ρ(kmh2π2+µl2)
,

1

lh

√
l2h2km+α(l2 + π2h2)

ρχ

}
.

Theorem 1. Suppose that the hypothesis (3.1) holds true and ω < ω1. The
functional K(x1) represents an acceptable measure of the solution that satisfies
the following exponential decay estimate

(3.7) 0 ≤ K(x1) ≤ K(0) exp(−σx1)

for every x1 ∈ [0, L], where the positive constant σ depends on the constitutive
constants λ, µ, ξ, α, β, thickness h0 and width l of the plate.

P r o o f. By direct differentiation in (3.4), we get

(3.8) K ′(x1) = −
l∫

0

(M̄1α,1wα +M1α,1w̄α + S̄13,1w3 + S13,1w̄3

+ T̄1,1φ+ T1,1φ̄+ M̄1αwα,1 +M1αw̄α,1

+ S̄13w3,1 + S13w̄3,1 + T̄1φ,1 + T1φ̄,1)dx2.

From (3.2) and (2.10)2 we deduce that

(3.9)

M1α,1 = −M2α,2 + µ(wα + w3,α) − ρh2ω2wα,

S13,1 = −S23,2 − ρω2w3,

T1,1 = −T2,2 + αφ+ βh2wγ,γ + ξh2φ− ρh2χω2φ,

and hence, using integration by parts, the lateral boundary conditions (2.12)1−4

and the relations (2.11) and (3.3), the relation (3.8) can be written in the form

(3.10) K ′(x1) = −2

l∫

0

{
h2
[
µwα,βw̄α,β + (λ+ µ)wγ,γw̄ρ,ρ + β(φw̄ρ,ρ + φ̄wρ,ρ)

+ ξφφ̄
]
+ µ(wα + w3,α)(w̄α + w̄3,α) + αh2φ,αφ̄,α + αφφ̄

− ρω2h2wαw̄α − ρω2w3w̄3 − ρω2h2χφφ̄
}
dx2.
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Let us introduce the following bilinear form:

(3.11) F(a,b) =
1

2
{(λ+ 2µ)(a1b̄1 + ā1b1 + a2b̄2 + ā2b2) + (λ+ µ)(a1b̄2

+ ā1b2 + a2b̄1 + ā2b1) + β[ā3(b1 + b2) + a3(b̄1 + b̄2)

+ b̄3(a1 + a2) + b3(ā1 + ā2)] + ξ(a3b̄3 + ā3b3)},
for every a = {a1, a2, a3} and b = {b1, b2, b3}, and we define the quadratic form

(3.12)

F1 = (λ+ 2µ)(w1,1w̄1,1 + w2,2w̄2,2) + (λ+ µ)(w1,1w̄2,2 + w̄1,1w2,2)

+ ξφφ̄+ β[φ̄(w1,1 + w2,2) + φ(w̄1,1 + w̄2,2)],

F2 = µ(w1,2w̄1,2 + w2,1w̄2,1),

in the variables w1,1, w2,2, φ and, respectively, w1,2, w2,1.
In view of the assumptions (3.1) we can say that the quadratic forms F1 and

F2 are positive definite quadratic forms.
The eigenvalues of the matrix associated to the quadratic form F1 are

(3.13)

k1 = µ,

k2 =
1

2

(
ξ + 2λ+ 3µ+

√
[ξ − (2λ+ 3µ)]2 + 8β2

)
,

k3 =
1

2

(
ξ + 2λ+ 3µ−

√
[ξ − (2λ+ 3µ)]2 + 8β2

)
.

Clearly, we have the inequalities

(3.14) km(wαβw̄αβ + φφ̄) ≤ F1 + F2 ≤ kM (wαβw̄αβ + φφ̄),

where km and kM , defined by the relations (3.5), are the lowest and the largest
characteristic values, respectively, of the matrix associated to the quadratic
form F1.

Thus, we have the inequality

(3.15) −K ′(x1) ≥ 2

l∫

0

{kmh
2(wα,1w̄α,1 + w1,2w̄1,2 + w2,2w̄2,2 + φφ̄)

+ µ(wα + w3,α)(w̄α + w̄3,α) + αh2φ,αφ̄,α + αφφ̄

− ρω2h2wαw̄α − ρω2w3w̄3 − ρω2h2χφφ̄}dx2.

Now, on the basis of the boundary conditions (2.12)1−4, the Wirtinger’s inequal-
ity holds

(3.16)

l∫

0

wr,2w̄r,2dx2 ≥ π2

l2

l∫

0

wrw̄rdx2, r = 1, 2, 3 (not summed for r).
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Ciarletta [12] established, in view of inequality (3.16) for r = 2, an inequality
of the following type

(3.17) E ≥ a2

2

l∫

0

(
w2,2w̄2,2 +

π2

2(a2π2 + l2)
w3,2w̄3,2

)
dx2,

where a ∈ R and

(3.18) E =

l∫

0

[a2w2,2w̄2,2 + (w2 + w3,2)(w̄2 + w̄3,2)]dx2.

In view of the hypothesis ω < ω1, if we set in (3.17) a =
√
km/µh, from

Eq. (3.15) we obtain

(3.19) −K ′(x1) ≥
l∫

0

[M1h
2wα,1w̄α,1 +M2(w1 + w3,1)(w̄1 + w̄3,1)

+M3h
2w1,2w̄1,2 +M4h

2w2,2w̄2,2 +M5w3,2w̄3,2

+M6h
2φφ̄+M7h

4φ,1φ̄,1]dx2,

where

(3.20)

M1 = M2 = 2km, M3 = 2km

(
1 − ω2

ω2
1

)
,

M4 = km

(
1 − ω2

ω2
1

)
, M5 =

kmµh
2π2

2(kmh2π2 + µl2)

(
1 − ω2

ω2
1

)
,

M6 = 2

[
km +

α(l2 + π2h2)

l2h2

](
1 − ω2

ω2
1

)
, M7 = 2

α

h2
.

Moreover, by means of the Schwarz inequality and the arithmetic-geometric
inequality, we obtain

(3.21) |K(x1)| ≤
∫ l

0

(
1

εα
M1αM̄1α +

1

ε3
S13S̄13 +

1

ε4
T1T̄1

+ εαwαw̄α + ε3w3w̄3 + ε4φφ̄

)
dx2.

Furthermore, by using the relation (3.3), the Schwarz inequality for the bi-
linear form F in terms of (w1,1, w2,2, φ) and (S11, 0, 0) and the inequality (3.14),
we obtain

(3.22) M11M̄11 ≤ h4k2
M (w1,1w̄1,1 + w2,2w̄2,2 + φφ̄).
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Thus, by setting ε1 = ε2 = hkM , ε3 = µ/h and ε4 = αh, in view of relations
(2.11)2,3 and (3.3), we deduce

(3.23) |K(x1)| ≤
l∫

0

[M∗
1h

2wα,1w̄α,1+M∗
2 (w1+w3,1)(w̄1+w̄3,1)+M

∗
3h

2w1,2w̄1,2

+M∗
4h

2w2,2w̄2,2 +M∗
5w3,2w̄3,2 +M∗

6h
2φφ̄+M∗

7h
4φ,1φ̄,1]dx2,

where

(3.24)

M∗
1 = M∗

2 = hkM , M∗
3 = M∗

5 = kM
l2

hπ2
,

M∗
4 = kM

(
h+

l2

hπ2

)
, M∗

6 = hkM +
α

h
, M∗

7 =
α

h
.

From the relations (3.19) and (3.23) we have the following first-order differ-
ential inequality

(3.25) σ|K(x1)| +K ′(x1) ≤ 0 for all x1 ∈ [0, L],

where

(3.26)
1

σ
= max

i=1,2,...,7

(
M∗

i

Mi

)
.

We now proceed to integrate this inequality. To this end we note, from the
relation (3.19), that the function K is decreasing on [0, L] and moreover, from
the boundary conditions we have K(L) = 0 and hence K(x1) is an acceptable
measure of the amplitude of the steady-state vibration.

By integration we obtain the estimate (3.7) and the proof of the Theorem 1
is complete.

Let us discuss further the case of a semi-infinite rectangular plate (the case
when L→ ∞).

For this purpose we define the energetic measure

(3.27) K(x′1) =

∞∫

x′

1

l∫

0

[h2wα,βw̄α,β + (w1 + w3,1)(w̄1 + w̄3,1)

+ h2φφ̄+ h4φ,1φ̄,1]dx1dx2.

IfK(x1) ≥ 0 for all x1 ∈ [0,∞), then we have the spatial decay estimate (3.7).
From this estimate and the inequality (3.19), we can say that the energetic
measure K(x1) exists and is finite.

If there exists such x∗1 ∈ [0,∞) that K(x∗1) < 0, since K(·) is a decreasing
function on [0,∞), then we have

(3.28) K(x1) < 0 for all x1 ∈ [x∗1,∞).



272 I.-D. Ghiba

In consequence, the differential inequality (3.25) leads to the inequality

(3.29) K ′(x1) − σK(x1) ≤ 0 for all x1 ∈ [x∗1,∞),

and in consequence we have the estimate

(3.30) −K(x1) ≥ −K(x∗1) exp[σ(x1 − x∗1)] > 0.

Using this estimate and the inequality (3.23) we observe that, in this case, K(x1)
is infinite.

The above results are embodied in the following Phragmèn–Lindelöf alter-
native result.

Theorem 2. In the context of a semi-infinite rectangular plate we have the
following alternative: a) for the amplitudes having a finite volume energetic mea-
sure K(x1), the K(x1), as given by (3.4), is an acceptable measure which decays
spatially faster than the exponential exp(−σx1), or b) for the amplitudes having
an infinite volume energetic measure K(x1), the −K(x1) grows spatially faster
than the exponential exp[σ(x1 − x∗1)].

4. Second estimate

In this section we describe a second method for discussing the spatial be-
haviour of the amplitudes which allows us to extend the class of materials by
relaxing the range of elastic moduli.

Throughout this section we will assume the following inequalities:

(4.1) µ > 0, λ < 0, α > 0, λ+ 2µ > 0, ξ >
2β2

λ+ 2µ
.

It is easy to see that the basic equations (2.13)1 can be written in the following
form:

(4.2) mβα,β − Sα3 + ρh2ω2wα = 0,

where

(4.3) mβα = h2[µwα,β + (λ+ µ)wβ,α + βφδαβ].

We associate with the problem defined by the relation (2.13) and the bound-
ary condition (2.12), the function

(4.4) I(x1) = −
l∫

0

(m̄1αwα +m1αw̄α + S̄13w3 + S13w̄3 + T̄1φ+ T1φ̄)dx2,
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for all x1 ∈ [0, L], and we introduce the quantities

(4.5)

cm = min

{
λ+ 2µ,

1

2

(
ξ + λ+ 2µ−

√
[ξ − (λ+ 2µ)]2 + 8β2

)}
,

cM = max

{
λ+ 2µ,

1

2

(
ξ + λ+ 2µ+

√
[ξ − (λ+ 2µ)]2 + 8β2

)}
,

bm = min {−λ, λ+ 2µ} , bM = max {−λ, λ+ 2µ} .

In what follows we will suppose that ω satisfies the inequality

(4.6) ω < ω2,

where

(4.7) ω2 = min

{
π

l

√
bm

2ρ
,
π

l

√
cm

2ρ
,
π2h

2l

√
cmµ

ρ(cmh2π2 + µl2)
,

1

lh

√
l2h2cm + α(l2 + h2π2)

ρχ

}
.

Theorem 3. Suppose that the hypotheses (4.1) and (4.6) hold true. The
functional I(x1) represents an acceptable measure of the solution that satisfies
the following exponential decay estimate

(4.8) 0 ≤ I(x1) ≤ I(0) exp(−σ̃x1),

for every x1 ∈ [0, L], where the positive constant σ̃ depends on the constitutive
constants λ, µ, ξ, α, β, the thickness h0 and the width l of the plate.

P r o o f. For the proof of this Theorem we use a method similar to the one
used in the proof of Theorem 1.

Thus, by direct differentiation and then using integration by parts, the re-
lations (2.10), (2.11), (4.2) and (4.3) and the boundary conditions (2.12), we
have

(4.9) I ′(x1) = −2

l∫

0

{h2[µwα,βw̄α,β + (λ+ µ)wα,βw̄β,α + β(φw̄ρ,ρ + φ̄wρ,ρ)

+ ξφφ̄] + αh2φ,αφ̄,α + αφφ̄+ µ(wα + w3,α)(w̄α + w̄3,α)

− ρω2h2wαw̄α − ρω2w3w̄3 − ρω2h2χφφ̄}dx2.

We proceed now to obtain the estimates for the −I ′(x1) and |I(x1)|. To this
end we define the bilinear forms
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(4.10)

Ω(a,b) =
1

2

{
(λ+ 2µ)(a1b̄1 + ā1b1 + a2b̄2 + ā2b2)

+ β[ā3(b1 + b2) + a3(b̄1 + b̄2) + b̄3(a1 + a2)

+ b3(ā1 + ā2)] + ξ(a3b̄3 + ā3b3)
}
,

Π(c,d) =
1

2
[ µ(c1d̄1 + c̄1d1 + c2d̄2 + c̄2d2)

+ (λ+ µ)(c1d̄2 + c̄1d2 + c2d̄1 + c̄2d1)],

for all a = {a1, a2, a3}, b = {b1, b2, b3} and for all c = {c1, c2}, d = {d1, d2}.
Moreover, we introduce the following quadratic forms:

(4.11)
Ω∗ = (λ+ 2µ)(w1,1w̄1,1 + w2,2w̄2,2) + β(φ̄wρ,ρ + φw̄ρ,ρ) + ξφφ̄,

Π∗ = µ(w1,2w̄1,2 + w2,1w̄2,1) + (λ+ µ)(w1,2w̄2,1 + w̄1,2w2,1),

in terms of (w1,1, w2,2, φ) and (w1,2, w2,1), respectively.
In view of the assumption (4.1), these two quadratic forms are positive defi-

nite. The eigenvalue of the matrix associated with the quadratic forms Π∗ are

(4.12) b1 = −λ, b2 = λ+ 2µ,

and the eigenvalues of the matrix associated to the quadratic form Ω∗ are

(4.13)

c1 = λ+ 2µ,

c2 =
1

2

(
ξ + λ+ 2µ−

√
[ξ − (λ+ 2µ)]2 + 8β2

)
,

c3 =
1

2

(
ξ + λ+ 2µ+

√
[ξ − (λ+ 2µ)]2 + 8β2

)
.

The following two inequalities hold:

(4.14)
cm(w1,1w̄1,1 + w2,2w̄2,2 + φφ̄) ≤ Ω∗ ≤ cM (w1,1w̄1,1 + w2,2w̄2,2 + φφ̄),

bm(w1,2w̄1,2 + w2,1w̄2,1) ≤ Π∗ ≤ bM (w1,2w̄1,2 + w2,1w̄2,1),

where cm, cM , bm, bM are the quantities defined by the relations (4.5).
Under the hypothesis of Theorem 3, if we use the inequality (3.17) for a =√

cm/µh, we obtain

(4.15) − I ′(x1) ≥
l∫

0

[M̃1h
2wα,1w̄α,1 + M̃2(w1 + w3,1)(w̄1 + w̄3,1)

+ M̃3h
2w1,2w̄1,2 + M̃4h

2w2,2w̄2,2 + M̃5w3,2w̄3,2

+ M̃6h
2φφ̄+ M̃7h

4φ,1φ̄,1]dx2,
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where

(4.16)

M̃1 = 2cm, M̃2 = 2bm, M̃3 = 2bm

(
1 − ω2

ω2
2

)
,

M̃4 = cm

(
1 − ω2

ω2
2

)
, M̃5 =

cmµh
2π2

2(cmh2π2 + µl2)

(
1 − ω2

ω2
2

)
,

M̃6 = 2

[
cm +

α(l2 + π2h2)

l2h2

](
1 − ω2

ω2
2

)
, M̃7 = 2

α

h2
.

It is easy to see that, from (4.2), we have

(4.17)
m11m̄11 = h2Ω((s11, 0, 0), (w1,1, w2,2, φ)),

m12m̄12 = h2Π((w2,1, w1,2), (s12, 0)),

which, in view of the Schwarz inequality and the inequalities (4.11), lead to the
estimates

(4.18)
m11m̄11 ≤ h4cM (w1,1w̄1,1 + w2,2w̄2,2 + φφ̄),

m12m̄12 ≤ h4bM (w1,2w̄1,2 + w1,2w̄1,2).

By using the relations (2.11)2,3, the above inequalities and the arithmetic-
geometric inequality, we deduce

(4.19) |I(x1)| ≤
l∫

0

[M̃∗
1h

2wα,1w̄α,1 + M̃∗
2 (w1 + w3,1)(w̄1 + w̄3,1)

+ M̃∗
3h

2w1,2w̄1,2 + M̃∗
4h

2w2,2w̄2,2 + M̃∗
5w3,2w̄3,2

+ M̃∗
6h

2φφ̄+ M̃∗
7h

4φ,1φ̄,1]dx2,

where

(4.20)
M̃∗

1 = cMh, M̃∗
2 = bMh, M̃∗

3 = hbM + cM
l2

hπ
,

M̃∗
4 = hcM + bM

l2

hπ
, M̃∗

5 = µ
l2

hπ2
, M̃∗

6 = hcM +
α

h
, M̃∗

7 =
α

h
.

Thus, using the relations (4.12) and (4.15) we obtain the following first-order
differential inequality

(4.21) σ̃I(x1) + I ′(x1) ≤ 0, x1 ∈ [0, L],

where

(4.22)
1

σ̃
= max

i=1,2,...,7

(
M̃∗

i

M̃i

)
.
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By direct integration we obtain the estimate (4.8) and the proof of Theorem 3
is complete.

Following a procedure with that above Section, the results may be easy
extended to a semi-infinite rectangular plate.

Theorem 4. In the context of a semi-infinite rectangular plate we have the
following alternative: a) for the amplitudes having a finite volume energetic mea-
sure K(x1), the I(x1), as given by (4.3), is an acceptable measure which decays
spatially faster than the exponential exp(−σ̃x1), or b) for the amplitudes having
an infinite volume energetic measure K(x1), the −I(x1) grows spatially faster
than the exponential exp[σ̃(x1 − x∗1)], where x∗1 is lower so that I(x∗1) < 0.

5. Concluding remarks

In the present paper we have introduce two measures, (3.4) and (4.4), to
study the spatial behaviour of the amplitude of harmonic vibration in a rect-
angular Mindlin-type plate filled by an isotropic, homogeneous elastic material
with voids.

Our purpose was to describe a method which allows us to study the spatial
behaviour of a large class of materials. We note that:

a) For the class of materials characterized by the inequalities

(5.1) µ > 0, α > 0, −2µ < λ ≤ −µ, ξ >
2β2

λ+ 2µ
,

we have the measure I(·);
b) For the class of materials characterized by the inequalities

(5.2) µ > 0, α > 0, −µ < λ, ξ >
2β2

2λ+ 3µ
,

we have the measure K(·).
Thus, the class covered by our study is the class of elastic materials with

voids, for which the constitutive constants satisfies the assumptions (2.14). The
method presented here is believed to be used successfully for the study of mate-
rials with negative Poisson’s ratio which are most useful in biomechanics (porous
implants for example) [27], [29].

If we use the common writing (2.11)1 of the equations (2.13)1 and the method
described in the Sections 3 and 4, for the function defined by

(5.3) J(x1) = −
l∫

0

(S̄1iwi + S1iw̄i + H̄1φ+H1φ̄)dx2,

for all x1 ∈ [0, L], we can establish the following theorem.
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Theorem 5. For the class of materials characterized by the inequalities
(2.5), the functional J(x1) represents an acceptable measure of the solution that
satisfies the following exponential decay estimate

(5.4) 0 ≤ J(x1) ≤ J(0) exp(−σ̂x1),

for every x1 ∈ [0, L] and ω < ω3, where the positive constants σ̂ and ω3 are
given by

1

σ̂
= max

i=1,2,...,6

(
M̂∗

i

M̂i

)
,

(5.5)

ω3 = min

{
π

l

√
κm

2ρ
,
π2h

2l

√
κmµ

ρ(κmh2π2+µl2)
,

1

lh

√
l2h2κm+α(l2+h2π2)

ρχ

}
,

with

(5.6)

κm = min

{
2µ,

1

2

(
ξ + λ+ µ−

√
[ξ − (λ+ µ)]2 + 4β2

)}
,

κM = max

{
2µ,

1

2

(
ξ + λ+ µ+

√
[ξ − (λ+ µ)]2 + 4β2

)}
,

M̂1 = 2κm, M̂2 = 2µ

(
1 − ω2

ω2
3

)
, M̂3 = κm

(
1 − ω2

ω2
3

)
,

M̂4 =
κmµh

2π2

2(κmh2π2 + µl2)

(
1 − ω2

ω2
2

)
,

M̂5 = 2

[
κm +

α(l2 + π2h2

l2h2

](
1 − ω2

ω2
3

)
, M̂6 = 2

α

h2
,

M̂∗
1 = hκM , M̂∗

2 = hµ+ κM
l2

hπ
,

M̂∗
3 = κMµ+ µ

l2

hπ
, M̂∗

4 = µ
l2

hπ2
, M̂∗

5 = hκM +
α

h
, M̂∗

6 =
α

h
.

The class of materials discussed in the above theorem is more restrictive and
it is included in the class of materials considered in the Secs. 3 and 4.

For a fixed type of material, other criteria to choose the most appropriate
measure can be represented by the critical frequencies ωi or by the speeds of
decay σ, σ̃, σ̂.

The results are extended to a semi–infinite rectangular plate to obtain ap-
propriate alternatives of the Phragmèn–Lindelöf type.
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51, 9–23, 2005.

15. E. Scarpetta, Minimum principle for the bending problem of elastic plates with voids,
Int. J. Engn. Sci., 40, 1317–1327, 2002.

16. M. Birsan, A bending theory of porous thermoelastic plates, Journal of Thermal Stresses,
26, 67–90, 2003.



Spatial estimates concerning the harmonic vibrations . . . 279

17. M. Birsan, On the bending equations for elastic plates with voids, Math. Mech. Solids,
12, 40–57, 2007.

18. M. Birsan, Transient and steady-state solutions for porous thermoelastic plates, An. Şt.
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Iasi, ser. Matematica, 50, 289–304, 2004.
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