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Presented is an analytical solution to creeping flow of a micropolar fluid past
a rotating circular cylinder of infinite length in spanwise direction. The solution is
decomposed into two parts; first, the flow past a stationary circular cylinder is solved
by the use of matched asymptotic expansions method. Afterwards, the rotation of
a circular cylinder in a stationary ocean of a micropolar fluid is investigated. Due
to linearity of the governing equations, the principle of superposition is then recalled
to construct the desired flow field. Ultimately, several kinematic and kinetic quantities
of the flow are studied by the use of the obtained closed-form analytical solution.
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1. Introduction

An analytical solution of the so-called Navier–Stokes differential equa-
tions can be obtained by the assumptions of creeping flow, potential flow and
a boundary-layer flow. Under the assumption of small Reynolds numbers (Re),
i.e. creeping flow, the nonlinear terms of Navier–Stokes equations, which are
inertial terms, become negligible and the flow is viscous dominant. Stokes ob-
tained a closed-form analytical solution to the problem of very slow motion of
a sphere through a viscous, Newtonian, incompressible fluid in 1851 [1]. The so-
lution is only valid for Re ≪ 1 and for higher values of Re, the nonlinear terms
become significant and a general analytical solution is impossible. The solution
of Stokes’ equation in 2D, e.g. for an infinite cylinder in a cross-stream, cannot
fulfill the boundary conditions far from the body. This mismatch is called the
Stokes’ paradox. Oseen solved the paradox by a linear approximation of the
nonlinear term [2].

Lamb solved the problem of slow motion of a sphere through a viscous
fluid [3]. Faxen solved the Oseen’s differential equation for slow flow past a cir-
cular cylinder [4]. Tomotika and Aoi investigated the steady low-Reynolds
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number flow of a viscous fluid past a sphere and a circular cylinder [5]. Proud-
man and Pearson considered the flow about spheres and cylinders at small
Reynolds numbers using asymptotic expansions [6]. Kaplun and Lagerstrom
also investigated creeping flow past a circular cylinder by utilizing asymptotic
expansions [7–9]. Atefi solved the Oseen’s differential equation for flow past sta-
tionary and rotating circular cylinders at small Reynolds numbers with mixed
stick-slip boundary conditions, analytically [10–12]. Padmavathi et al. inves-
tigated the Stokes flow past a sphere with mixed stick-slip boundary condi-
tions [13].

Micropolar fluids are fluids with microstructures. They belong to a class
of fluids with a non-symmetric stress tensor. Micropolar fluids consist of rigid,
randomly oriented (or spherical) particles with their own spins and microrota-
tions, suspended in a viscous medium. The concept of microrotation was pro-
posed by Cosserat and Cosserat in the theory of elasticity [14, 15]. Con-
diff and Dahler [16], and Eringen [17] applied the concept to describe fluids
with microstructures in the middle of the 1960s. Trostel investigated local
and non-local Cosserat-type fluids [18]. Alexandru developed a second-grade
Cosserat-type fluid theory based on the generalized continuum conceptions of
Trostel [19]. Moreover, comprehensive textbooks on micropolar fluids have
been published [20–22]. More recently, Moosaie and Atefi have analytically
investigated the turbulent flows as well as a flow of complex fluids by means of
Cosserat-type (micropolar) and microstretch fluids [23–26].

There are some relevant previous investigations on creeping flows in microp-
olar fluid mechanics [27–30]. In particular, Ramkissoon [31] has obtained the
solution of a micropolar fluid flow around a sphere and the drag force exerted
on the sphere. Later, Power and Ramkissoon [32] presented a fundamen-
tal solution, i.e., the Green function, etc., for the Stokesian micropolar flow.
Buchukuri and Chichinadze [33] obtained the fundamental solution and pre-
dicted the fluid flow around a cylinder as an integral form, but they could not
present the explicit velocity field and the drag force. Hayakawa solved the prob-
lems of axisymmetric slow viscous flow of a micropolar fluid past a stationary
sphere and a stationary cylinder explicitly, and computed the drag force in each
case [34].

Micropolar fluids are of interest in the general context of non-Newtonian
fluid mechanics. Some application ranges from flow of blood and blood-like
fluids [24], suspensions of rigid particles in Newtonian fluids [25, 26], liquid
crystals, granular fluids [34] and hydrodynamic turbulence [23].

As mentioned above, the published materials on creeping flow of micropolar
fluids are related to some flow situations around fixed bodies. Thus, the impor-
tant issue of flow past rotating bodies in micropolar fluid mechanics, due to the
author’s knowledge, is missing. In this paper, an analytical closed-form solution



Slow motion of a rotating circular cylinder . . . 201

to the problem of slow flow of a micropolar fluid around a rotating circular
cylinder is obtained. This paper is an extension of the work done by Hayakawa
[34] in which the solution for slow flow past a stationary cylinder is given. At
first, a brief review of governing equations is presented. Afterwards, thanks to
the linearity of governing equations of creeping flow, the flow of micropolar fluid
past a stationary circular cylinder is superposed on the flow induced by rotation
of a circular cylinder in a stationary ocean of micropolar fluid to obtain the
desired solution. Finally, several aspects of the flow field are studied.

2. Governing equations and boundary conditions

In this section, the general governing equations for the calculation of slow
micropolar fluid flows are presented. Let’s restrict our interest to steady viscous
flow in which the partial derivatives with respect to time are assumed to be zero.
For simplicity, the dimensionless quantities are used for later discussion, which
are normalized by the velocity far from the cylinder and the radius of the cylin-
der. Thus, we start from the following set of equations. The continuity equation
for an incompressible micropolar fluid is identical with that of a classical fluid.
The incompressibility condition is given by

(2.1) ∇ · v = divv = 0,

where v is the velocity field. The equation of linear momentum is [21]

(2.2) Rev · ∇v = −∇p+ ∆v + µr rot ω,

where ∆ is the Laplacian, Re is the effective Reynolds number, p is the pressure,
µr is the dimensionless viscosity of microrotation field which is assumed to be less
than 2. Note that the Reynolds number Re and µr are represented by quantities
with physical units as Re = ρUa/(η + ηr) and µr = 2ηr/(η + ηr), where ρ,
U , a, η and ηr are the density, the magnitude of the characteristic flow, i.e.,
the free-stream velocity far from the cylinder, the radius of the cylinder, the
conventional viscosity and the viscosity for microrotation, respectively. The flow
of microrotation is governed by the equation of angular momentum

(2.3)
Re ·I
µr

v · ∇ω = rotv − 2ω + µA∇div ω + µB∆ω,

where I is the dimensionless microinertia coefficient and µA and µB are dimen-
sionless rotational viscosities [21]. Similar to Newtonian fluids, µA and µB are
dimensionless bulk and shear viscosities with respect to the microrotation field,
respectively. In general, div ω is not equal to zero, but it is easy to show that

(2.4) div ω = 0,
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for axisymmetric flows. For the case of flow around a rotating cylinder we have

(2.5)

vz = ωr = ωθ = 0,

vr = vr(r, θ),

vθ = vθ (r, θ) ,

ωz = ωz (r, θ) .

Equations (2.5)1 and (2.5)4 imply that div ω = 0. Thus, the microrotation field
is regarded as a solenoidal field, where the term proportional to µA in Eq. (2.3)
is zero in later discussion. Let us remark on the micropolar fluid model. It is
obvious that the model is reduced to the Navier–Stokes equation for µr → 0.

We assume the boundary condition outside the cylinder as

(2.6)

v = vboundary, ω = 0 at r = 1,

v = ex, ω → 1

2
rotv as r → ∞,

where r is the distance from the center of the cylinder whose radius is unity,
and ex is the unit vector along the x axis. The above boundary conditions are
not always valid in micropolar fluids. Here, we assume the no-slip boundary
condition on the boundary surface. Effective slip of particles is included as mi-
crorotation. The microrotation on the surface is assumed to be zero because the
center of rotation cannot exist on the surface, but it exists at a position removed
by the particle radius. The microrotation coincides with the rotation of the flow
velocity v if the place is far away enough from the cylinder. Regarding the first
condition in (2.6)1, if a stationary cylinder is considered then vboundary = 0,
but when a rotating cylinder is going to be investigated, the velocity boundary
condition becomes vboundary = aΩeθ, where Ω is the angular velocity of the
cylinder. The problem geometry and coordinates are depicted in Fig. 1.

Fig. 1. Problem geometry and the cylindrical coordinate system used.
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Now, we are going to carry out a systematic calculation of the flow field
around a rotating cylinder. For this purpose, we adopt the matched asymptotic
method developed by Kaplun and Lagerstrom [7–9] for the 2D-problem,
explained in [35,36] and later used by Hayakawa [34]. It is well known that
the Stokes approximation (Re → 0 and µr → 0 in Eq. (2.2)) is invalid far
from the cylinder. Therefore, in micropolar fluids, we need careful treatments
to calculate the flow around a cylinder. To remove such difficulties we introduce
an appropriate contracted coordinate as

(2.7) x̃ = Re ·x, ỹ = Re ·y,

and the scaled variables

v = ex + α(Re)u(r̃),

ω = α(Re) Re ·ω̃ez,(2.8)

p = α(Re) Re ·p̃.

The function α(Re) will be determined by the matching procedure. Thus, for
the 2D-case Eqs. (2.2) and (2.3) are reduced to

∂u

∂x̃
= −∇̃p̃+ ∆̃u + µr r̃ot(ω̃ez),(2.9)

Re ·I
µr

∂ω̃

∂x̃
=
∂uy

∂x̃
− ∂ux

∂ỹ
− 2ω̃ + µB∆̃ω̃,(2.10)

where Eq. (2.4) is assumed to be valid for the case of flow past a rotating
cylinder. One can conclude from Eq. (2.10) that for the limiting case of Re → 0,
the relations

(2.11)

ω̃ =
1

2

(
∂uy

∂x̃
− ∂ux

∂ỹ

)
,

r̃ot(ω̃ez) = −1

2
∆̃u,

are held. The outer equations of the micropolar fluid are thus reduced to

(2.12)
∂u

∂x̃
= −∇̃p̃+

(
1 − µr

2

)
∆̃u +O(Re).

The solution of Eq. (2.12) is regular even far from the cylinder. As a result, we
do not have to solve the Oseen approximation of Eqs. (2.2) and (2.3), which
cannot be represented by an explicit form [33]. Eq. (2.12) supports the validity
of the boundary condition ω → rotv/2 as r → ∞ in Eq. (2.6)2.
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Since we know the solution of Eq. (2.12) for 2D and 3D, what we need to
solve is the Stokes approximation of Eqs. (2.2) and (2.3) in an axisymmetric
flow as

−∇p+ ∆v + µr rot(ωzez) = 0,(2.13)

(rotv)z − 2ωz + µB∆ωz = 0,(2.14)

near the cylinder. The solutions of Eq. (2.12) and Eqs. (2.13) and (2.14) will be
connected with the aid of the matching asymptotic technique. Moreover, from
the divergence of Eq. (2.13) we have

(2.15) ∆p = 0,

which implies that pressure is a harmonic function. On the other hand, the
rotation of Eq. (2.13) yields

(2.16) ∆ rotv + µr rot rot(ωzez) = 0.

3. Flow past a rotating cylinder

So far, we derived equations governing the slow flow of micropolar fluids
around a rotating cylinder. In this section, we are going to solve these differential
equations. It is obvious that all the equations and the boundary conditions
involved are linear. The linearity implies the applicability of the superposition
principle. We can split our problem into two parts by utilizing the principle of
superposition: a stationary cylinder in a cross-stream and a rotating cylinder
in a stationary ocean of a micropolar fluid. The solution of our problem will
be the sum of these two partial solutions. In the following subsections we will
investigate each of the partial problems.

3.1. Stationary cylinder in a cross-stream

This problem has been investigated by Buchukuri and Chichinadze [33]
and Hayakawa [34]. The stream function for a two-dimensional problem in
cylindrical coordinate system is defined through

(3.1)

vr =
1

r

∂Ψ

∂θ
,

vθ = −∂Ψ
∂r
.

The mass balance equation (2.1), i.e. the continuity equation, is fulfilled auto-
matically by this choice of stream function. The procedure is as follows: first we
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will give the explicit calculation of the Stokes approximation as an inner solu-
tion. Then, we will obtain an outer solution and use the matched asymptotic
method.

At the first step, let’s obtain the solution of Eqs. (2.13) and (2.14) based on
the Stokes approximation. From Eqs. (3.1) and (2.16) we obtain an equation for
ωz and Ψ ,

(3.2) ∆∆Ψ + µr∆ωz = 0.

On the other hand, from Eq. (2.14) we obtain

(3.3) ∆Ψ + 2ωz − µB∆ωz = 0.

From the operation of the Laplacian operator on Eq. (3.3) and with the help of
Eq. (3.2), we obtain

(3.4) ∆(∆ − ξ−2)ωz = 0,

where

(3.5) ξ =

√
µB

2 − µr
.

The problem will be solved under the boundary conditions on the cylinder sur-
face. Although we cannot adopt the boundary condition far from the cylinder,
we know that the leading singularity comes from a logarithmic divergent term
which will be regularized by matching with the outer solution. Thus, higher
divergent terms which obey power laws will be omitted in discussion in this
subsection. The boundary condition far from the cylinder is

(3.6) ωz = −1

2
∆Ψ,

which is equivalent to 1
2 rotv according to the last equation of (2.6)2.

Taking into account the boundary condition on the cylinder, namely

∂Ψ

∂θ
(1, θ) = 0,

∂Ψ

∂r
(1, θ) = 0,(3.7)

ωz(1, θ) = 0,

we obtain

(3.8) ∆ωz(r, θ) =
∞∑

n=1

C(2)
n Kn

(
r

ξ

)
sinnθ,
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where C
(2)
n is a constant and Kn denotes the modified Bessel function of the

second kind of order n. Thus, it is easy to obtain the general form of ωz as

(3.9) ωz(r, θ) =
∞∑

n=1

[
aω,nr

n +
bω,n

rn
+ C(2)

n ξ2Kn

(
r

ξ

)]
sinnθ.

It is obvious that aω,n = 0 for all n to satisfy the boundary condition far from
the cylinder (the microrotation must be finite at infinity). From Eq. (3.7)3 we
have

(3.10) bω,n = −C(2)
n ξ2Kn

(
1

ξ

)
.

Similarly, we can obtain Ψ as

(3.11) Ψ (r, θ) = sin θ

[
a

(2)
Ψ r +

b
(2)
Ψ

r
+ αr ln r − µrξ

4C
(2)
1 K1

(
r

ξ

)]

+

∞∑

n=2

[
b
(2)
Ψ,n

rn
+
d

(2)
Ψ,n

rn−2
− µrξ

4C(2)
n Kn

(
r

ξ

)]
sinnθ.

It is shown by Hayakawa in [34] that the mode n ≥ 2 will become zero. Thus, the
problem can be simplified. From Eq. (3.6) and the first two relations of Eq. (3.7)
we obtain

(3.12)

bω,1 = −α,

a
(2)
Ψ = αâ,

b
(2)
Ψ = αb̂,

C
(2)
1 =

α

ξ2K1(1/ξ)
â,

where

â =
1

2

{
µrξ

[
ξ +

K ′
1 (1/ξ)

K1 (1/ξ)

]
− 1

}
,(3.12)5

b̂ =
1

2

{
µrξ

[
ξ − K ′

1 (1/ξ)

K1 (1/ξ)

]
+ 1

}
,(3.12)6

in which the prime denotes the ordinary derivative of the modified Bessel func-
tion of the second kind, which is given by

(3.12)7 K ′
1(x) = −1

2
[K0(x) +K2(x)].
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Thus, we obtain

(3.13)

Ψ(r, θ) = α sin θ

[
âr +

b̂

r
+ r ln r − µrξ

2K1(r/ξ)

K1(1/ξ)

]
,

ω(r, θ) = α sin θ

[
−1

r
+ ξ2

K1(r/ξ)

K1(1/ξ)

]
.

The flow field following from Eqs. (3.13) has a logarithmic singularity in the
limit of r → ∞. The obtained Stokes’ solution is treated as an inner solution for
our matching procedure.

To resolve Stokes’ paradox for r → ∞ we adopt the matched asymptotic
method developed by Kaplun and Lagerstrom [8] and used by Hayakawa
[34] successfully. Now, we are going to obtain the outer solution and to this end,
we reconsider Eq. (3.13)1,

(3.14) Ψ(r, θ) ∼ α(Re)

[
âr +

b̂

r
+ r ln r − µrξ

2K1(r/ξ)

K1(1/ξ)

]
sin θ,

where α is replaced by a multiplier α(Re) which is allowed to depend upon the
Reynolds number, because our asymptotic sequence is unspecified. Although this
approximation cannot satisfy the condition v = ex in Eq. (2.6)2 or Ψ → r sin θ
as r → ∞, it can be matched to the uniform stream, regarded as the first term
of an Oseen expansion.

Now, introducing a new variable

(3.15)1 ρ =
Re

1 − µr/2
r = εr,

in which

(3.15)2 ε =
Re

1 − µr/2
,

the outer Eq. (2.12) becomes

(3.16)1
∂u

∂x̂
= −∇̂p̃+ ∆̂u,

where

(3.16)2 ∇̂ =
1

1 − µr/2
∇̃.

Then the Oseen expansion begins with

(3.17) Ψ ∼ 1

ε
ρ sin θ + · · · as ε→ 0.
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Writing the Stokes expression (3.14) with the Oseen variables (3.15), the leading
term is now

(3.18) Ψ ∼ α(ε)

ε
ln

(
1

ε

)
ρ sin θ,

where α(ε) = α(Re) in the limit of ε→ 0. This matches Eq. (3.17) if

(3.19) α(ε) =
1

ln(1/ε) + k
,

where k is a constant to be determined later.
Expansion of the Stokes approximation (3.14) further by ρ and α (ε) leads

to

(3.20) Ψ ∼ 1

ε
[1 + α(ε)(ln ρ− k + â)]ρ sin θ.

This requires the Oseen expansion (3.17) to continue as

(3.21) Ψ ∼ 1

ε
[ρ sin θ + α(ε)ψ(ρ, θ) + · · ·].

Substituting this into the full equation, ψ satisfies the linearized Oseen equation

(3.22)

(
∆̂ − ∂

∂x̂

)
∆̂ψ = 0.

The appropriate solution for the stream function can be found as an infinite
series [6,10,12]. The fundamental solution due to Oseen gives as the Cartesian
velocity components

ux =
∂ψ

∂(ρ sin θ)

= 2c2

{
∂

∂(ρ cos θ)

[
ln ρ+ e(ρ cos θ)/2K0

(
ρ

2

)]
− e(ρ cos θ)/2K0

(
ρ

2

)}
,(3.23)

uy = − ∂ψ

∂(ρ cos θ)
= 2c2

∂

∂ (ρ sin θ)

[
ln ρ+ e(ρ cos θ)/2K0

(
ρ

2

)]
,

where c2 is a constant which will be determined by the matching procedure. The
term in ln ρ at the origin cancels the term involving K0(ρ/2). For small ρ we
obtain the integrated form of ψ as

(3.24) ψ ∼ −c2
(

ln
4

ρ
+ 1 − γ

)
ρ sin θ +O(ρ2 ln ρ),
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where γ is Euler’s constant γ = 0.5772 . . . . Using this we find that the Oseen
expansion (3.21) behaves near the cylinder as

(3.25) Ψ ∼ 1

ε
ρ sin θ

[
1 + c2α(ε)

(
ln
ρ

4
+ γ − 1

)]
.

This can match Eq. (3.20) if we choose

c2 = 1,
(3.26)

k = â− γ + 1 + ln 4.

Thus, we obtain

(3.27) α(ε) =

(
ln

4

ε
− γ + 1 + â

)−1

.

This vanishes for ε→ 0. The explicit expression near the cylinder is thus given
by

(3.28) Ψ(r, θ) = α(ε)

[
âr +

b̂

r
+ r ln r − µrξ

2K1(r/ξ)

K1(1/ξ)

]
sin θ.

This expression satisfies all the boundary conditions.
Utilizing Eqs. (3.1), the explicit expression of the inner solution is thus given

by

vr = α(ε)

[
â+

b̂

r2
+ ln r − µrξ

2 K1(r/ξ)

rK1(1/ξ)

]
cos θ,

(3.29)

vθ = α(ε)

[
−â+

b̂

r2
− ln r − 1 + µrξ

K ′
1(r/ξ)

K1(1/ξ)

]
sin θ.

The pressure is similarly determined from Eqs. (2.13) and (3.1) as

∂p

∂r
=

1

r

∂

∂θ
(∆Ψ + µrωz),

(3.30)
1

r

∂p

∂θ
= − ∂

∂r
(∆Ψ + µrωz).

As stated in [34], the pressure is determined by the Stokes pole Ψ ∼ r ln r. The
result is

(3.31) p(r, θ) = p0 −
2 − µr

r
α(ε) cos θ,

where p0 is an unimportant constant (the free-stream pressure).
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3.2. Rotating cylinder in a stationary micropolar fluid

The first partial problem was solved. In this subsection, we want to obtain
the solution of the second partial problem, i.e. a rotating cylinder with the
angular velocity Ω in a stationary micropolar fluid. Since all equations and
results have been presented in non-dimensional form, the angular velocity Ω is
non-dimensionalized as Ω = aΩ/U . The flow field is characterized by

vr = vz = 0,

ωr = ωθ = 0,
(3.32)

vθ = vθ(r),

ωz = ωz(r).

The mass balance equation (2.1) is automatically satisfied in this case. Intro-
ducing conditions (3.32) to the general governing equations of micropolar fluid
mechanics (2.2) and (2.3), we have

(3.33)

d2vθ

dr2
+

1

r

dvθ

dr
− vθ

r2
− µr

dωz

dr
= 0,

µB
d2ωz

dr2
+
µB

r

dωz

dr
− 2ωz +

dvθ

dr
+
vθ

r
= 0.

The general solution of these two coupled ordinary differential equations is

vθ(r) = A1r +
A2

r
+A3J1

(
r

ξ

)
+A4Y1

(
r

ξ

)
,

(3.34)

ωz(r) = A1 +
1

µrξ

[
A3J0

(
r

ξ

)
+A4Y0

(
r

ξ

)]
,

where Ai (i = 1, . . . , 4) are integration constants and, Jn and Yn are the Bessel
functions of the first and the second kind of order n, respectively.

The following boundary conditions which are derived from the general
boundary conditions (2.6) must be enforced to the general solutions (3.34) in
order to obtain the integration constants explicitly.

(3.35)

vθ(r = 1) = Ω,

ωz(r = 1) = 0,

vθ(r → ∞) = 0,

ωz(r → ∞) = 0.

Linear and angular velocities must be finite at infinity and hence, one hasA1 = 0.
On the other hand, this solution based on micropolar fluid mechanics should
reduce to classical solution derived from the Navier–Stokes equations which
reveals A2 = Ω. From the boundary conditions on angular velocity we conclude
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that A3 = A4 = 0. Finally, the particular solution becomes

vθ(r) =
Ω

r
, ωz = 0,(3.36)

which is identical with the classical solution. We could expect this result, because
this flow situation is essentially an inviscid (irrotational) flow and the theory of
micropolar fluids is concerned with the viscosity effects and viscous flows. The
stream function is obtained by employing Eq. (3.1)

(3.37) Ψ(r) = −Ω ln r = Ω ln
1

r
.

4. Flow of micropolar fluid past a rotating cylinder

So far, we solved our two partial problems and now we want to combine them
and obtain the solution of our problem, i.e. the flow of micropolar fluid past a
rotating cylinder, by utilizing the principle of superposition.

4.1. Stream function

The stream function is obtained simply by summing up the stream functions
(3.28) and (3.37) which is

(4.1) Ψtotal(r, θ) = Ψ(r, θ) + Ψ(r)

= α(ε)

[
âr +

b̂

r
+ r ln r − µrξ

2K1(r/ξ)

K1(1/ξ)

]
sin θ −Ω ln r.

Now, we are able to depict streamline contours which are simply curves of con-
stant Ψtotal(r, θ). The streamline contours for a flow past a stationary cylinder,
i.e. for Ω = 0, are shown in Fig. 2. The obtained streamline contours for the

Fig. 2. Streamline contour for flow past a stationary cylinder
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flow past a rotating cylinder are also depicted in Fig. 3 for Re = 1 and different
values of Ω. In order to demonstrate the effect of micropolarity of fluid on the
flow pattern, the streamlines for the cases µr = 0 and µr = 1 are shown in Fig. 3.

As it is obvious from Fig. 3, the micropolarity of the fluid severely affects the
flow field around the rotating cylinder. The influence of the cylinder rotation on
the flow field is less pronounced with increase in the fluid micropolarity.

4.2. Microrotation field

Microrotation field is an important quantity in micropolar fluid dynamics
which is given by Eq. (3.13)2. Therefore, it is worthwhile to take a look at

a) b)

c) d)

[Fig. 4a–d]
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e) f)

Fig. 4. Microrotation contours around the cylinder.

its behavior. The microrotation contours at Re = 1 and Ω = 0 are depicted
in Fig. 4 for various values of µr. The most significant difference between the
conventional Stokes flow (µr = 0) and the micropolar Stokes flow (µr > 0)
appears as a localized microrotation near the cylinder surface. The transition
between these regimes is apparently shown in Fig. 4.

4.3. Velocity components

In order to compute the velocity components, we have two ways: employing
the obtained stream function (4.1) and then computing the velocities by the use
of Eqs. (3.1). Alternatively, we can make use of the linearity of the mathematical
system and then, employing the principle of superposition to sum up the velocity
fields (3.29) and (3.36). Ultimately, the velocity components are obtained as

(4.2)

vr = α(ε)

[
â+

b̂

r2
+ ln r − µrξ

2 K1(r/ξ)

rK1(1/ξ)

]
cos θ,

vθ = α(ε)

[
−â+

b̂

r2
− ln r − 1 − µrξ

2

K0(r/ξ) +K2(r/ξ)

K1(1/ξ)

]
sin θ +

Ω

r
.

Figure 5 shows the radial and tangential velocity profiles at θ = π/4 and
θ = π/2. The results of the Atefi’s analytical solution to Oseen’s differential
equation for creeping flow of Newtonian fluid past a circular cylinder [10] and
the results obtained from the potential flow theory are depicted as well. As it is
obvious from the diagrams, our solution reduces to the flow of a Newtonian fluid
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a) b)

c) d)

Fig. 5. Velocity profiles for flow past a stationary and rotating cylinder: a) radial velocity
profiles, Re = 0.25 and Ω = 0.0; b) tangential velocity profiles, Re = 0.25 and Ω = 0.0;
c) tangential velocity profiles, Re = 0.25 and Ω = 0.0; d) tangential velocity profiles, Re = 0.25

and Ω = 0.5 (◦ Atefi’s analytical solution [10]).

past a circular cylinder for µr = 0. The trends of velocity profiles for both µr = 0
and µr = 1 are similar, while there is a significant difference with potential flow
pattern. Furthermore, the magnitudes of both radial and tangential velocities
for the case of µr = 1 are greater than those of µr = 0, and the differences
between them gradually grow with increase in r.

4.4. Drag and lift forces

In the motion of a rotating cylinder through a viscous fluid, drag and lift
forces act on the cylinder. In Newtonian fluids, one has to integrate the pressure
and shear stress on the cylinder surface which yields the net force exerted on
the cylinder by the viscous fluid, whose streamwise component forms the drag,
while its component normal to the streamwise direction is lift. In micropolar
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fluids however, the effect of non-symmetric stress tensor must be taken into
account as well. Therefore, the drag force in this case is composed of three
parts; the part from non-symmetric stress tensor Dτ , the form (pressure) drag
Dp due to normal stresses, and the part induced by the shear stresses Df . Dτ is
given by [34]

(4.3)1 Dτ =

∫

S

τrx|r=1dS = −µr

2π∫

0

Ωz(1, θ) sin θdθ,

where Ωz = (rotv)z/2 and it reduces to Ωz(1, θ) =
1

2
∂vθ/∂r. Performing the

integration one obtains

(4.3)2 Dτ = πµrα(ε)[1 − µrβ(ξ)],

where

(4.4) β(ξ) =
1

2K1(1/ξ)
[K ′′

1 (1/ξ) − ξK ′
1(1/ξ) + ξ2K1(1/ξ)].

Similarly, for the form drag Dp we have

(4.5)1 Dp = −
2π∫

0

p(1, θ) cos θdθ = π(2 − µr)α(ε),

where the pressure field p(r, θ) can be obtained from the linear momentum equa-
tion (2.13) as

(4.5)2 p(r, θ) = p0 +Ω
sin θ

r
− 2 − µr

r
α(ε) cos θ.

Df is also given by

(4.6) Df = −
(

1 − µr

2

) 2π∫

0

∂vθ

∂r

∣∣∣∣
r=1

sin θdθ = π(2 − µr)α(ε)[1 − µrβ(ξ)].

The total drag force DΣ = Dτ +Dp +Df becomes

(4.7)1 DΣ = πα(ε)[4 − µr − 2µrβ(ξ)],

which can be rewritten as

(4.7)2 DΣ = π(η + ηr)Uα(ε)[4 − µr − 2µrβ(ξ)].

It is obvious that the rotation of a cylinder has no effect on the drag force. It
is expected because our solution implies that the flow induced by a rotating
cylinder in quiescent fluid is inviscid and hence, produces no drag. Nevertheless,
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it is not a complete physical view, because the rotation has an effect on drag
force in reality. By the way, this effect is much smaller than the effect of shear
flow past the cylinder and thus, it is not that far from reality. The flow induced
by a rotating cylinder in a quiescent fluid is not inviscid in reality due to end
effects near the ends of the cylinder and three-dimensionality of fluid at those
regions. In the present solution however, we do not take them into account. The
drag force (4.7)2 reduces to the Oseen’s drag [34] for the case of a Newtonian
fluid (µr → 0) which is given by

(4.7)3 DΣ =
4πηU

S + 1/2
, S = ln

(
4

Re

)
− γ.

Now, let us calculate the lift force. Drag was calculated by taking into account
the streamwise component of the total force. Lift is the remaining component
which is normal to the main-stream direction. Non-symmetric stress tensor and
shear stress contribution to lift is zero, i.e. Lτ = Lf = 0, and we just have the
contribution of the pressure field, i.e. Lp.

(4.8) LΣ = Lp =

2π∫

0

p(1, θ) sin θdθ = πΩ.

Here it is evident that the lift force has no dependence upon viscosity. The
reason, as explained above, is that the flow induced by a rotating cylinder in
a quiescent fluid is essentially inviscid. This lift force is still different from that
of the potential (irrotational) flow theory which is LΣ = 2πΩ. The potential
flow can be considered as the limiting case of very large Reynolds number, i.e.
Re → ∞. On the other hand, the creeping flow is valid for the limiting case
of vanishing Reynolds number, i.e. Re → 0. Therefore, if we define LΣ/2πΩ =
f(Re), then one deduces that f(0) = 1/2 and f(∞) = 1.

5. Concluding remarks

An analytical closed-form solution for slow motion of a rotating cylinder
through a micropolar fluid is presented. By the use of the obtained solution, sev-
eral flow field quantities are studied. The streamlines topology for a flow past a
stationary and a rotating cylinder for various rotation speeds of the cylinder are
presented. It is deduced that the influence of the cylinder rotation on the flow
field is less pronounced with increase in the fluid micropolarity. The microrota-
tion field is also studied and we conclude that for µr = 0, the contours are similar
to those of conventional Stokes flow. However, for µr > 0 the contours topology
changes gradually and the formation of a concentrated microrotation zone near
the cylinder is observed. The radial and tangential velocity profiles are investi-
gated as well. The results are validated by comparing with the results of Atefi’s
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analytical solution [10] for the case of µr = 0. The diagrams show that the ve-
locity profiles for µr = 0 and µr = 1 have similar trends while the trends are
completely different from those predicted by potential flow theory. In all of the
considered cases, the magnitudes of velocity components for µr = 1 are greater
than those for µr = 0 and the differences between them grows with increase in r.
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1139–1142, 1907.

15. E. Cosserat, F. Cosserat, Theorie des Corps Déformables, Librairie Scientifique A.
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22. A.C. Eringen, Microcontinuum Field Theories II: Fluent Media, Springer, New York
2001.

23. A. Moosaie, Gh. Atefi, Cosserat modeling of turbulent plane-Couette and pressure-

driven channel flows, ASME J. Fluids Eng., 129, 806–810, 2007.

24. A. Moosaie, Gh. Atefi, A COSSERAT continuum mechanical approach to steady flow

of blood through arteries, J. Disper. Sci. Technol., 28, 765–768, 2007.

25. A. Moosaie, Gh. Atefi, Analysis of concentrated suspension flow by utilizing a Cosserat-

type continuum theory, J. Disper. Sci. Technol., 28, 901–906, 2007.

26. A. Moosaie, Gh. Atefi, Microstretch continuum mechanical description of concentrated

suspension flow, J. Disper. Sci. Technol., 29, 2008, in press.

27. H. Ramkissoon, S.R. Majumdar, Representations and fundamental singular solutions

in micropolar fluid, ZAMM, 56, 197–203, 1976.

28. H. Ramkissoon, S.R. Majumdar, Drag on an axially symmetric body in the Stokes flow

of micropolar fluid, Phys. Fluids, 19, 16–21, 1976.

29. H. Ramkissoon, Plane interior boundary value problems in microcontinuum fluid me-

chanics, Int. J. Eng. Sci., 23, 809–820, 1985.

30. C.V. Easwaran, S.R. Majumdar, Causal fundamental solutions for the slow flow of a

micropolar fluid, Int. J. Eng. Sci., 28, 843–850, 1990.

31. H. Ramkissoon, Flow of a micropolar fluid past a Newtonian fluid sphere, ZAMM, 65,
635–637, 1985.

32. H. Power, H. Ramkissoon, Stokes flow of a micropolar fluid exterior to several non-

intersecting closed surfaces, but contained by an exterior contour, Math. Methods Appl.
Sci., 17, 1115–1127, 1994.

33. T. Buchukuri, R. Chichinadze, Two-dimensional problems of stationary flow of a

noncompressible viscous fluid in the case of Oseen’s linearization, Georgian Math. J., 1,
251–266, 1994.

34. H. Hayakawa, Slow viscous flows in micropolar fluids, Phys. Rev., E 61, 5477–5492,
2000.

35. M. Van Dyke, Perturbation Methods in Fluid Mechanics, Parabolic Press, Stanford 1975.

36. J. Kevorkian, J.D. Cole, Multiple Scale and Singular Perturbation Methods, Springer,
Berlin 1996.

Received October 18, 2007; revised version April 21, 2008.


