
Arch. Mech., 59, 2, pp. 97–117, Warszawa 2007

On the exponential decay for viscoelastic mixtures
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This paper concerns the study of mixtures composed of a thermoelastic solid and
a viscous fluid. For these mixtures, the dissipation effects are connected with the
viscosity rate of one constituent and with the relative velocity vector. Using the
time-weighted surface power method, associated with the linear process, we obtain
some spatial decay estimates, characterized by time–independent and time–dependent
decay rates, respectively. The first type of estimate is appropriate for large values of
time, while the other is useful for short values of the same variable.
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1. Introduction

The theory concerning thermomechanical mixtures can be found in works by
Truesdell and Toupin [1], Kelly [2], Eringen and Ingram [3, 4], Green
and Naghdi [5, 6], Müller [7], Bowen and Wiese [8], Bowen [9], Atkin
and Craine [10, 11], Bedford and Drumheller [12] and also in books by
Samohyl [13] and Rajagopal and Tao [14]. Moreover, Steel presents, in
[15], a linearized version of the above-mentioned theory for an isotropic mix-
ture of two solids, studying the propagation of plane waves. While an Eulerian
description is natural for mixtures containing fluids or gases as constituents, a
Lagrangian approach is suitable for mixtures in which one component is a solid.
The latter description is presented by Bedford and Stern [16, 17]. Following
them, Ieşan derives, in [18], a theory for binary mixtures of thermoelastic solids
and establishes, in [19], a counterpart of the Boussinesq–Somigliana–Galerkin
solution, obtaining the fundamental solutions in the equilibrium theory of ho-
mogeneous and isotropic mixtures, under the hypotheses of positive definiteness
of the internal energy density. Moreover, Ieşan proves the existence and unique-
ness theorems. Uniqueness results in the dynamical theory were also established
in [20, 21].

It is possible to study the classical Kelvin–Voigt viscoelastic model consider-
ing a mixture made of an elastic solid and a viscous fluid. In [22], Quintanilla
studies the linear problem of thermomechanical deformations for the previous
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model. Taking into account the results of linear operators semigroup theory, the
existence of solution is proved. Ieşan [23] studies, through a Lagrangian de-
scription, a viscoelastic mixture resulting from a combination of a porous elastic
solid with a viscous fluid. He establishes basic equations for both the nonlinear
and linear theories.

Furthermore, we have to remark that Saint–Venant’s principle has a central
role in many theoretical and applied questions of elasticity. An important review
of the research on spatial decay for solutions of time-dependent problems is given
by Horgan and Knowles [24], Horgan [25, 26] and Chirita [27]. Although
it is possible to cite several papers regarding the subject in concern, such as [28–
31] we have to remark that, in [32], Ciarletta and Chirita obtain, through an
innovative method based on a time-weighted surface power function, a domain
of influence in linear elastodynamics and viscoelastodynamics. They also get
spatial decay estimates with time-independent decay rate inside the domain
of influence. In the context of linear thermoelasticity, they also obtain spatial
estimates characterized by time-independent as well as time-dependent decay
and growth rates. Following [32], Ciarletta and Passarella [33] establish,
for a binary mixture, a spatial decay estimate of Saint–Venant type, with time-
independent decay rate for the inside of the domain of influence, in order to
obtain a precise determination of it.

In this article, using the time-weighted surface power function method, with
regard to viscoelastic mixtures, we describe the spatial behaviour of solutions
of given data in a certain time interval, also considering the heat conduction ef-
fects. In Sec. 2, we show the linear theory connected with the problem in concern
using a Lagrangian description while, in Sec. 3, we derive the first-order differen-
tial inequality satisfied by an appropriate time-weighted surface power function;
then, we obtain an exponential spatial decay estimate of Saint–Venant type for
bounded bodies, whereas we arrive at an alternative estimate of Phragmén–
Lindelöf type for unbounded bodies. In both cases, these estimates are charac-
terized by a time–independent decay rate. In Sec. 4, introducing another ap-
propriate function but applying a method similar to the one used in Sec. 3, we
establish spatial decay estimates with time-dependent decay rates for bounded
and unbounded bodies. The results obtained in Sec. 3 are suitable for large
values of time, while estimates of Sec. 4 are appropriate for short values of time.

With respect to classical methods used to estimate decay of solutions, the
time–weighted surface power function method refers to mathematical techniques
useful to obtain explicit expressions for the decay rate in terms of single consti-
tutive parameters. This gives a possibility to regulate the velocity of decay in
function of a single component. In particular, we can affirm that the paper in
concern is interesting, considering its possible applications to the dissipation of
acoustic and seismic energies.
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2. Statement of the problem

Let B be a (bounded or unbounded) regular region of R3, occupied by a
mixture of two interacting materials s1 and s2, in a given reference configuration.
As described by Ieşan [23], we will assume that s1 is a viscous fluid, while s2

represents an elastic solid.
The motion of the body is referred to a fixed orthonormal frame in R3. We

will denote the components of tensors of order p ≥ 1 by Latin subscripts, ranging
over {1, 2, 3}. Summation over repeated subscripts will be implied. Superposed
dot or subscript k preceded by a comma will mean partial derivative with respect
to the time variable or to the corresponding coordinate xk, respectively. Greek
indices will range from 1 to 2 and, in this case, summation convention will not
be used. In this connection, we will disregard regularity questions, simply un-
derstanding a degree of smoothness sufficient to ensure the analysis to be valid.

Following Bedford and Stern [16, 17], we assume that, in the reference
configuration, the typical particles of s1 and s2 occupy the same position and
the mass of each sα (α = 1, 2) is conserved. Furthermore, let us suppose that
chemical reactions between constituent materials are not possible and that the
partial stress tensors and the partial entropy vanish in the natural state.

Let u and w be the displacement vector fields of typical particles of s1 and
s2 at time t, and ϑ be the absolute temperature measured from the one in the
reference configuration, T0.

The linear theory for homogeneous and isotropic mixtures is described by
the following system [22, 23]

t
(1)
lk,l − pk + %1f

(1)
k = %1ük, t

(2)
lk,l + pk + %2f

(2)
k = %2ẅk

equations of motion,

%0T0η̇ = ql,l + %0R equation of energy,

(2.1) t
(1)
lk = (λ + ν)errδlk + 2(µ + ζ)elk + (α + ν)grrδlk + (2β + ζ)glk

+ (2γ + ζ)gkl − (κ1 + κ2)ϑδlk + λ∗ėrrδlk + 2µ∗ėlk,

t
(2)
lk = νerrδlk + 2ζekl + αgrrδkl + 2βgkl + 2γglk − κ2ϑδlk,

pk = ξdk + ξ∗ḋk + b∗ϑ,k, %0η = κ1ell + κ2gll + aϑ,

qk = κϑ,k + f∗ḋk

constitutive equations,
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where δlk is the Kroneker’s delta and

(2.2) ekl =
1
2
(uk,l + ul,k), gkl = ul,k + wk,l, dk = uk − wk.

In these equations, t
(α)
lk are the components of the partial stress tensors asso-

ciated with sα, pk are the components of the vector field characterizing the
mechanical interaction between the constituents, f

(α)
k are the components of the

body forces per unit mass acting on sα, %α is the density of the material sα in
the reference state and %0 = %1 + %2. Furthermore, η is the entropy per unit
mass of the mixture, qk are the components of the heat flux vector, R represents
the external heat supply per unit mass and unit time, while λ, ν, µ, α, β, ζ, γ,
κ1, κ2, ξ, a, κ, λ∗, µ∗, ξ∗, b∗, f∗ are constitutive coefficients. Unlike the theories
about solid-fluid mixtures studied in [9–14], in the present work the diffusive
force pk depends on dk, ḋk and ϑ,k.

We suppose the constituents at the same temperature and that every ther-
modynamic process that takes place in the considered mixture satisfies the
Clausius–Duhem inequality, so that [22, 23]

(2.3)

3λ∗ + 2µ∗ ≥ 0, µ∗ ≥ 0, κ ≥ 0, ξ∗ ≥ 0,

4κξ∗ ≥ T0

(
b∗ +

1
T0

f∗
)2

.

Defining ` and c1 as (positive) constants with dimensions of length and velocity,
respectively, it is possible to introduce the following dimensionless quantities

x′k =
xk

`
, t′ =

c1t

`
, u′k =

uk

`
, w′k =

wk

`
, ϑ′ =

ϑ

T0
.

By extension, subscripts preceded by a comma will now mean partial differ-
entiation with respect to the variable x′k, while a superposed dot will denote
differentiation with respect to the variable t′. For convenience, in what follows,
we will assume all variables to be dimensionless, avoiding the use of symbol ′.

Denoting by

(λ0, ν0, µ0, ζ0, α0, β0, γ0) =
1

%1c2
1

(λ, ν, µ, ζ, α, β, γ),

(κ0
1 ,κ0

2) =
T0

%1c2
1

(κ1,κ2), (λ∗0, µ
∗
0) =

1
`%1c1

(λ∗, µ∗),
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ξ0 =
`2ξ

%1c2
1

, ξ∗0 =
`ξ∗

%1c1
, b∗0 =

T0b
∗

%1c2
1

, a0 = T0a,

K0 =
κ

`a0c1
, χ =

T0a0

%1c2
1

, f∗0 =
f∗

T0a0
, ρ =

%2

%1
,

F
(1)
k =

`f
(1)
k

c2
1

, F
(2)
k =

ρ`f
(2)
k

c2
1

, S =
`%0R

T0a0c1
,

and

π
(1)
lk = (λ0 + ν0)errδlk + 2(µ0 + ζ0)elk + (α0 + ν0)grrδlk

+ (2β0 + ζ0)glk + (2γ0 + ζ0)gkl,

(2.4)
π

(2)
lk = ν0errδlk + 2ζ0ekl + α0grrδkl + 2β0gkl + 2γ0glk,

π∗lk = λ∗0ėrrδlk + 2µ∗0ėlk,

the system (2.1) reduces to

(2.5) π̃
(1)
lk,l − Π̃k + F

(1)
k = ük, π̃

(2)
lk,l + Π̃k + F

(2)
k = ρẅk, Q̃l,l − ḣ + S = 0,

where

(2.6)

π̃
(1)
lk = π

(1)
lk + π∗lk − (κ0

1 + κ0
2)ϑδlk, π̃

(2)
lk = π

(2)
lk − κ0

2ϑδlk,

Π̃k = ξ0dk + ξ∗0 ḋk + b∗0ϑ,k, χh = (κ0
1 + κ0

2)ul,l + κ0
2wl,l + χϑ,

Q̃k = K0ϑ,k + f∗0 ḋk.

Throughout this work, we will assume that

(2.7) %1 > 0, %2 > 0, χ > 0;

furthermore, we will suppose that the following quadratic forms

E0 =
1
2
ξ0dkdk,

(2.8) E1 =
1
2
λ0ellekk + µ0elkelk

+
1
2
α0gllgkk + β0glkgkl + γ0glkglk + ν0ellgkk + 2ζ0elkglk
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are positive definite. The only eigenvalue associated with E0 is ς0 = ξ0, while
eigenvalues associated with E1 are

ς1 = γ0 − β0, ς2,3 =
1
2

{
β0 + γ0 + µ0 ±

√
(β0 + γ0 − µ0)

2 + 4ζ2
0

}
,

ς4,5 =
1
2

{
β0 + γ0 + 2µ0 ±

√
(β0 + γ0 − 2µ0)

2 + 8ζ2
0

}
,

(2.9)
ς6,7 =

1
4

{
3λ0 + 2µ0 + 3α0 + 2β0 + 2γ0

±
√

[3λ0 + 2µ0 − (3α0 + 2β0 + 2γ0)]
2 + 4(3ν0 + 2ζ0)2

}
.

We remark that the isothermal internal energy density is E = E0 + E1. It is
possible to establish that, for an isotropic mixture, the conditions necessary and
sufficient to ensure E to be positive in the variables dk, elk and gkl are

(2.10)

ξ0 > 0, |β0| < γ0, µ0 > 0, 3λ0 + 2µ0 > 0,

3α0 + 2β0 + 2γ0 > 0, (β0 + γ0)µ0 > ζ0
2,

(3α0 + 2β0 + 2γ0)(3λ0 + 2µ0) > (3ν0 + 2ζ0)2.

The inequalities (2.3) can be rewritten as follows

(2.11)
3λ∗0 + 2µ∗0 ≥ 0, µ∗0 ≥ 0, K0 ≥ 0, ξ∗0 ≥ 0,

4χK0ξ
∗
0 ≥ (b∗ + χf∗0 )2 .

Now, Eqs. (2.4)–(2.6) lead to a system formulated in terms of displacements and
temperature

A1uk,ll + A2ul,lk + B1wk,ll + B2wl,lk − ξ0(uk − wk)

−M0
1 ϑ,k − ξ∗0(u̇k − ẇk) + µ∗0u̇k,ll + (λ∗0 + µ∗0)u̇l,lk + F

(1)
k = ük,

(2.12) B1uk,ll + B2ul,lk + C1wk,ll + C2wl,lk + ξ0(uk − wk)

−M2ϑ,k + ξ∗0(u̇k − ẇk) + F
(2)
k = ρẅk,

χK0ϑ,ll −
[
(κ0

1 + κ0
2)u̇l,l + κ0

2ẇl,l

]− χϑ̇ + χS = 0,
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where

A1 = µ0 + 2β0 + 2ζ0, A2 = λ0 + µ0 + α0 + 2ν0 + 2γ0 + 2ζ0,

B1 = 2γ0 + ζ0, B2 = α0 + ν0 + 2β0 + ζ0,

C1 = 2β0, C2 = 2γ0 + α0,

M0
1 = κ0

1 + κ0
2 + b∗0, M0

2 = κ0
2 − b∗0.

Considering the isothermal theory, we obtain equations describing the behaviour
of a linear Kelvin–Voigt material, modelled as a mixture, i.e.

A1uk,ll + A2ul,lk + B1wk,ll + B2wl,lk − ξ0dk − ξ∗0 ḋk + µ∗0u̇k,ll

+ (λ∗0 + µ∗0)u̇l,lk + F
(1)
k = ük,

B1uk,ll + B2ul,lk + C1wk,ll + C2wl,lk + ξ0dk + ξ∗0 ḋk + F
(2)
k = ρẅk.

We consider the problem P defined by Eqs. (2.12) with the following initial
conditions

(2.13) uk = u0
k, u̇k = u̇0

k, wk = w0
k, ẇk = ẇ0

k, ϑ = ϑ0, on B̄ × {0}

and the following boundary conditions (Dirichlet problem)

(2.14) uk = ũk, wk = w̃k, ϑ = ϑ̃, on ∂B × [0, +∞),

where B̄ and ∂B are, respectively, the closure and the smooth boundary of
B. The right-hand terms of Eqs. (2.13), (2.14) stand for (sufficiently smooth)
assigned fields; these are, along with F

(α)
k and S, external data of the problem

in concern. Fixed τ0 > 0, we introduce the support D̂τ0 of external data on the
time interval [0, τ0]. For convenience, we assume that D̂τ0 is a bounded regular
region of B̄ and we introduce the following sets

Dr =
{
x ∈ B̄ : S(x, r) ∩ D̂τ0 6= ∅

}
, Br = B\Dr, B(r1, r2) = Br2\Br1,

where r ≥ 0, r2 ≤ r1 and S(x, r) is the closed ball with radius r and center at
x. Then, we denote by Sr the subsurface of ∂Br contained inside B, and whose
outward unit normal vector is directed towards the exterior of Dr.
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3. A time-weighted surface power function and related estimates

In this section, we describe the spatial behaviour of solutions, in the time
interval [0, τ0], for bounded or unbounded bodies under hypotheses (2.7), (2.10),
(2.11).

Let us start from introducing the following forms

(3.1) H0 = λ∗0ėllėkk + 2µ∗0ėlkėlk, H1 = ξ∗0 ḋkḋk + χK0ϑ,kϑ,k + (b∗0 + χf∗0 ) ϑ,kḋk.

Let σ∗m, ς∗m and σ∗M , ς∗M be the smallest and greatest eigenvalues associated with
H0 and H1, respectively, that is

σ∗m = min{2µ∗0, 3λ∗0 + 2µ∗0}, ς∗m =
1
2

[
χK0 + ξ∗0 −

√
(χK0 − ξ∗0)

2 + (b∗0 + χf∗0 )2
]
,

σ∗M = max{2µ∗0, 3λ∗0 + 2µ∗0}, ς∗M =
1
2

[
χK0 + ξ∗0 +

√
(χK0 − ξ∗0)

2 + (b∗0 + χf∗0 )2
]
.

Eqs. (2.7), (2.11) imply that all eigenvalues of H0 and H1 are positive. Conse-
quently, H0 and H1 are positive definite and it results that

(3.2)
σ∗mėlkėlk ≤ H0 ≤ σ∗M ėlkėlk,

ς∗m(ḋkḋk + ϑ,kϑ,k) ≤ H1 ≤ ς∗M (ḋkḋk + ϑ,kϑ,k).

Corresponding to a (regular) solution U = {u,w,ϑ} of the initial-boundary
value problem P, we define the following time-weighted surface power function

(3.3) Γ (r, t) = −
t∫

0

∫

Sr

e−ωs
[
π̃

(1)
lk (s)u̇k(s) + π̃

(2)
lk (s)ẇk(s) + χϑ(s)Q̃l(s)

]
nldads,

where ω is a prescribed strictly positive parameter. At a fixed t ∈ [0, τ0], the
function Γ (r, t) is non-increasing with respect to r. In fact, using the divergence
theorem, we obtain

(3.4) Γ (r1, t)− Γ (r2, t) = −
t∫

0

∫

B(r1,r2)

e−ωs
[
π̃

(1)
lk (s)u̇k(s) + π̃

(2)
lk (s)ẇk(s)

+ χϑ(s)Q̃l(s)
]
,l
dV ds
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for r2 < r1. In view of relations (2.5) and defining the kinetic energy as

(3.5) T =
1
2
(u̇ku̇k + ρẇkẇk),

we have

(3.6) π̃
(1)
lk (s)u̇k,l(s) + π̃

(2)
lk (s)ẇk,l(s) + Π̃k(s)ḋk(s) + χḣ(s)ϑ(s)

=
[
π̃

(1)
lk (s)u̇k(s) + π̃

(2)
lk (s)ẇk(s) + χϑ(s)Q̃l(s)

]
,l
− χK0ϑ,k(s)ϑ,k(s)

− χf∗0 ḋk(s)ϑ,k(s) + u̇k(s)F
(1)
k (s) + ρẇk(s)F

(2)
k (s) + χϑ(s)S(s)− ∂

∂s
T (s).

On the other hand, from Eqs. (2.4), (2.6), (2.8), (3.1), we get

(3.7) π̃
(1)
lk (s)u̇k,l(s) + π̃

(2)
lk (s)ẇk,l(s) + Π̃k(s)ḋk(s) + χḣ(s)ϑ(s)

=
∂

∂s

[
E0(s) + E1(s) +

χ

2
ϑ2(s)

]
+H0(s) +H1(s)

− χK0ϑ,k(s)ϑ,k(s)− χf∗0 ḋk(s)ϑ,k(s).

If we take into account Eqs. (3.4)–(3.7) and consider that external data vanish
on Br and Sr, we deduce

(3.8) Γ (r1, t)− Γ (r2, t)

= −
t∫

0

∫

B(r1,r2)

e−ωs

{
∂

∂s

[
T (s) + E0(s) + E1(s) +

χ

2
ϑ2(s)

]

+H0(s) +H1(s)
}

dV ds;

therefore, by means of an integration by parts, we conclude that, for r2 < r1, it
results

(3.9) Γ (r1, t)− Γ (r2, t) = −
∫

B(r1,r2)

e−ωt
[
T (t) + E0(t) + E1(t) +

χ

2
ϑ2(t)

]
dV

−
t∫

0

∫

B(r1,r2)

e−ωs
{

ω
[
T (s) + E0(s) + E1(s) +

χ

2
ϑ2(s)

]
+ H0(s)

+H1(s)} dV ds.
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Through hypotheses (2.7), (2.10), (2.11) and Eq. (3.9), we prove that Γ (r, t) is
a non-increasing function of r, for all fixed t ∈ [0, τ0].

For a bounded body B, we can remark that

(3.10) Γ (L, t) = 0, ∀t ∈ [0, τ0],

where L = max
x∈B̄

min
y∈ bD∗T

√
|x− y| < ∞. Putting r1 = L and r2 = r in Eq. (3.9),

Eq. (3.10) shows that Γ (r, t) is a measure

(3.11) Γ (r, t) ≥ 0 for all r ∈ [0, L], t ∈ [0, τ0];

in particular, it is

Γ (r, t) =
∫

Br

e−ωt
[
T (t) + E0(t) + E1(t) +

χ

2
ϑ2(t)

]
dV

+

t∫

0

∫

Br

e−ωs
{

ω
[
T (s) + E0(s) + E1(s) +

χ

2
ϑ2(s)

]
+H0(s) +H1(s)

}
dV ds.

For an unbounded body B, Γ (r, t) is still non-increasing with respect to r
and, at a fixed t ∈ [0, τ0], it is

(3.12)
either Γ (r, t) ≥ 0 ∀r ≥ 0, or

∃ r̄t ≥ 0 such that Γ (r, t) < 0 ∀r ≥ r̄t.

In the next part of the work, we will need the following lemma.
Lemma 1. Let U be a solution of the initial-boundary-value problem P and

let D̂T be the bounded support of external data, in the time interval [0, τ0]. Let the
hypotheses (2.7), (2.10), (2.11) be true. Function Γ (r, t) satisfies the following
first–order differential inequality

(3.13)
ω

υ1
|Γ (r, t)|+ ∂

∂r
Γ (r, t) ≤ 0, for any 0 ≤ r, t ∈ [0, τ0],

where

(3.14) υ1 =

√
6ςM + σ∗Mω (1 + ε0)

2min{1, ρ}
and ε0 is the positive root of the algebraic equation

(3.15) ε20+
(
1+

6ςM
σ∗Mω

− 6[(κ0
1 + κ0

2)
2 + (κ0

2)
2]

χσ∗Mω
− 2χmax{f∗0 2,K2

0}min{1, ρ}
ς∗mσ∗M

)
ε0

−
(

1 +
6ςM
σ∗Mω

)
6[(κ0

1 + κ0
2)

2 + (κ0
2)

2]
χσ∗Mω

= 0.



On the exponential decay for viscoelastic mixtures 107

P r o o f. Eq. (3.9) directly leads to

(3.16)
∂Γ

∂r
(r, t) = −

∫

Sr

e−ωt
[
T (t) + E0(t) + E1(t) +

χ

2
ϑ2(t)

]
da

−
t∫

0

∫

Sr

e−ωs
{

ω
[
T (s) + E0(s) + E1(s) +

χ

2
ϑ2(s)

]
+H0(s) +H1(s)

}
dads.

In order to estimate Γ (r, t) in terms of
∂Γ

∂r
(r, t), we rewrite π∗lk and H0 as

(3.17) π∗lk = Arsklėrs, H0 = Arsklėrsėlk,

with
Arskl = λ∗0δrsδlk + 2µ∗0δrlδsk.

Through Schwarz’s inequality and Eqs. (3.2)1, (3.17), we obtain

π∗lkπ
∗
lk = Arsklėrsπ

∗
lk ≤ (Arsklėrsėkl)1/2(Arsklπ

∗
rsπ

∗
lk)

1/2

≤ (Arsklėrsėkl)1/2(σ∗Mπ∗lkπ
∗
lk)

1/2

and we deduce

(3.18) π∗lkπ
∗
lk ≤ σ∗MH0.

Now, for each couple of second-order tensors {ω(1)
lk , ω

(2)
lk }, we introduce the vector

space V of all vector fields such that

E ≡ {E11, E22, E33, E12, E13, E23, G11, G22, G33, G12, G13, G23, G21, G31, G32},

with
Elk = Ekl =

1
2

(
ω

(1)
lk + ω

(1)
kl

)
, Glk = ω

(1)
kl + ω

(2)
lk .

It results

(3.19) ElkElk = Elkω
(1)
lk ≤ 1

2

[
ω

(1)
lk ω

(1)
lk +

1
2

(
ω

(1)
lk ω

(1)
lk + ω

(1)
kl ω

(1)
kl

)]
= ω

(1)
lk ω

(1)
lk .

Moreover, for each couple of second-order tensors {Llk, Flk}, using the well-
known property

(3.20) (Llk + Flk)(Llk + Flk) ≤ (1 + ε)LlkLlk +
(

1 +
1
ε

)
FlkFlk,
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we get

(3.21) GlkGlk = (ω(1)
kl + ω

(2)
lk )(ω(1)

kl + ω
(2)
lk ) ≤ 2(ω(1)

lk ω
(1)
lk + ω

(2)
lk ω

(2)
lk ).

Let us define the functional

F [E, Ē] ≡ 1
2
λ0EkkĒll + µ0ElkĒlk +

1
2
α0GkkḠll + β0GklḠlk

+ γ0GlkḠlk +
1
2
ν0

(
EkkḠll + GkkĒll) + ζ0(ElkḠlk + GlkĒlk

)
,

with Ē ≡ {Ē11, ..., Ē23, Ḡ11, ..., Ḡ32} ∈ V. Clearly, it follows that

(3.22) F [E, Ē] = E · BĒ, F [E,E] ≤ ςM (ElkElk + GlkGlk),

where B is the symmetric matrix associated with the positive definite quadratic
form E1 and ςM is the greatest between eigenvalues of B defined in (2.9). Equa-
tions (3.19), (3.21), (3.22) imply that

(3.23) F [E,E] ≤ 3ςM (ω(1)
lk ω

(1)
lk + ω

(2)
lk ω

(2)
lk ).

Denoted by

(3.24)

ŝ
(1)
lk = (λ0 + ν0)Errδlk + 2(µ0 + ζ0)Elk + (α0 + ν0)Grrδlk

+(2β0 + ζ0)Glk + (2γ0 + ζ0)Gkl,

ŝ
(2)
lk = ν0Errδlk + 2ζ0Ekl + α0Grrδkl + 2β0Gkl + 2γ0Glk,

we consider the corresponding vector field of V

(3.25) s ≡ {s(1)
lk , s

(2)
lk }, with s

(1)
lk = s

(1)
kl =

1
2

(
ŝ
(1)
lk + ŝ

(1)
kl

)
, s

(2)
lk = ŝ

(1)
kl + ŝ

(2)
lk .

From Eqs. (3.23)–(3.25) and using Schwarz’s inequality, we have

ŝ
(1)
lk ŝ

(1)
lk + ŝ

(2)
lk ŝ

(2)
lk = 2F [E, s] ≤ [2F [E,E]]1/2[2F [s, s]]1/2

≤ [2F [E,E]]1/2[3ςM (ŝ(1)
lk ŝ

(1)
lk + ŝ

(2)
lk ŝ

(2)
lk )]1/2,

so that

(3.26) ŝ
(1)
lk ŝ

(1)
lk + ŝ

(2)
lk ŝ

(2)
lk ≤ 6ςMF [E,E].
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For ω
(1)
lk = ul,k, ω

(2)
lk = wl,k, Elk = elk, Glk = glk, F [E,E] reduces to E1 and

relations (3.24) become (2.4)1,2. Consequently, Eq. (3.26) implies

(3.27) π
(1)
lk π

(1)
lk + π

(2)
lk π

(2)
lk ≤ 6ςME1 ≤ 6ςM (E0 + E1).

Furthermore, Eqs. (2.6), (3.20) and the obvious relation 1+
1
ε0

> 1 lead, for any

ε > 0, to

(3.28) π̃
(1)
lk π̃

(1)
lk + π̃

(2)
lk π̃

(2)
lk ≤ (1 + ε)(π(1)

lk π
(1)
lk + π

(2)
lk π

(2)
lk )

+
(
1 +

1
ε

)
(1 + ε0)π∗lkπ

∗
lk + 3

(
1 +

1
ε

)(
1 +

1
ε0

)[
(κ0

1 + κ0
2)

2 + (κ0
2)

2
]
ϑ2.

Using Schwarz’s and arithmetic–geometric mean inequalities in conjunction
with Eqs. (3.5), (3.18), (3.27), (3.28), we arrive, for any ε1 > 0, at

(3.29)
∣∣∣π̃(1)

lk u̇knl + π̃
(2)
lk ẇknl

∣∣∣ ≤ ε1T +
3ςM [E0 + E1]
ε1 min{1, ρ} (1 + ε)

+
3

[
(κ0

1 + κ0
2)

2 + (κ0
2)

2
]

ε1 min{1, ρ}χ
(

1 +
1
ε

)(
1 +

1
ε0

)
χ

2
ϑ2

+
σ∗MH0

2ε1 min{1, ρ}
(

1 +
1
ε

)
(1 + ε0).

On the other hand, by means of Eqs. (2.6)5, (3.2)2 and of relation

(3.30) (Lk + Fk)(Lk + Fk) ≤ (1 + ε)LkLk +
(

1 +
1
ε

)
FkFk

valid for any ε > 0 and for each couple of vectors {Lk, Fk}, we get

(3.31) Q̃kQ̃k ≤ 2
(
f∗20 ḋkḋk + K2

0ϑ,kϑ,k

)
≤ 2max

{
f∗20 , K2

0

}H1

ς∗m

and

(3.32)
∣∣∣χϑQ̃lnl

∣∣∣ ≤ ε2
χ

2
ϑ2 +

χmax
{
f∗20 ,K2

0

}H1

ε2ς∗m
, ∀ε2 > 0.
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Collecting Eqs. (3.3), (3.29), (3.32), we have, for any ε > 0, ε0 > 0, ε1 > 0,
ε2 > 0,

|Γ (r, t)| ≤
t∫

0

∫

Sr

e−ωs

{
ε1T (s) +

3ςM [E0(s) + E1(s)]
ε1 min{1, ρ} (1 + ε)

+

[
3

[
(κ0

1 + κ0
2)

2 + (κ0
2)

2
]

ε1 min{1, ρ}χ
(

1 +
1
ε0

)(
1 +

1
ε

)
+ ε2

]
χ

2
ϑ2(s)

+
σ∗MH0(s)

2ε1 min{1, ρ}
(

1 +
1
ε

)
(1 + ε0) +

χmax
{
f∗20 , K2

0

}H1(s)
ε2ς∗m

}
dads.

If we choose the constants such that

ε1 =
3

[
(κ0

1 + κ0
2)

2 + (κ0
2)

2
]

ε1 min{1, ρ}χ
(

1 +
1
ε0

)(
1 +

1
ε

)
+ ε2 =

3ςM
ε1 min{1, ρ}(1 + ε)

=
ω

2ε1 min{1, ρ}
(

1 +
1
ε

)
(1 + ε0)σ∗M =

χω max
{
f∗20 , K2

0

}

ε2ς∗m
,

the following relations are valid

ε =
σ∗Mω

6ςM
(1 + ε0), ε1 =

√
3ςM

min{1, ρ}(1 + ε),

ε2 =
χω max

{
f∗20 ,K2

0

}

ς∗m

√
min{1, ρ}
3ςM (1 + ε)

;

moreover, ε0 is the positive root of the algebraic equation (3.15) and ε1 = υ1, as
defined in (3.14). Consequently, we conclude that

(3.33) |Γ (r, t)| ≤ υ1

ω

t∫

0

∫

Sr

e−ωs

{
ω

[
T (s) + E0(s) + E1(s) +

χ

2
ϑ2(s)

]

+H0(s) +H1(s)
}

dads.

Therefore, Eqs. (3.16), (3.33) lead to Eq. (3.13) and the proof is complete.
For a bounded body B, Eqs. (3.11), (3.13) imply

(3.34)
∂

∂r

[
Γ (r, t)e

ω
υ1

r
]
≤ 0, for all r ∈ [0, L], t ∈ [0, τ0],
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while, for an unbounded body B, Eqs. (3.12), (3.13) imply, for a fixed t ∈ [0, τ0]:

(3.35)
if for any r ≥ 0, Γ (r, t) ≥ 0,⇒ ∂

∂r

[
Γ (r, t)e

ω
υ1

r
]
≤ 0;

if for any r ≥ r̄t, Γ (r, t) < 0 ⇒ ∂

∂r

[
Γ (r, t) e

− ω
υ1

r
]
≤ 0.

Using Eqs. (3.13), (3.34), we can prove the next theorem, valid for a bounded
body. This theorem provides a spatial decay estimate of Saint–Venant type
through a time-independent decay rate.

Theorem 1. (Spatial behaviour for a bounded body). Let B be a bounded
body and let the hypotheses of Lemma 1 be valid. It follows

(3.36) Γ (r, t) ≤ Γ (0, t)e−
ω
υ1

r
, for all r ∈ [0, L], t ∈ [0, τ0].

Now, we can formulate, with the aid of Eqs. (3.13), (3.35), a theorem concern-
ing the spatial behaviour for an unbounded body. The obtained decay estimate
is of Phragmén–Lindelöf type.

Theorem 2. (Spatial behaviour for an unbounded body). Let B be an un-
bounded body and let the hypotheses of Lemma 1 hold true. It results, for any
fixed t ∈ [0, τ0]:

(3.37)
if for any r ≥ 0 Γ (r, t) ≥ 0 ⇒ Γ (r, t) ≤ Γ (0, t)e−

ω
υ1

r;

if for any r ≥ r̄t Γ (r, t) < 0 ⇒ −Γ (r, t) ≥ −Γ (r̄t, t)e
ω
υ1

(r−r̄t).

4. Another surface power function and related estimates

In this section, we will investigate another cross-section function, in order
to obtain different exponential decay estimates suitable for short values of time.
We introduce the following function

(4.1) Γ1(r, t) =

t∫

0

Γ (r, s)ds

= −
t∫

0

s∫

0

∫

Sα

e−ωτ
[
π̃

(1)
lk (τ)u̇k(τ) + π̃

(2)
lk (τ)ẇk(τ) + χϑ(τ)Q̃l(τ)

]
nldadτds.
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As a consequence of Eqs. (3.16), (4.1), it is

(4.2)
∂Γ1

∂r
(r, t) = −

t∫

0

∫

Sr

e−ωs
[
T (s) + E0(s) + E1(s) +

χ

2
ϑ2(s)

]
dads

−
t∫

0

s∫

0

∫

Sr

e−ωτ

{
ω

[
T (τ) + E0(τ) + E1(τ) +

χ

2
ϑ2(τ)

]

+H0(τ) +H1(τ)
}

dadτds.

Under hypotheses (2.7), (2.10), (2.11), for any fixed t ∈ [0, τ0], Eq. (4.2) implies
that

∂Γ1

∂r
(r, t) ≤ 0, ∀r ∈ [0, L]

and that Γ1(r, t) is non-increasing with respect to r.
As for Γ (r, t), also for Γ1(r, t), when B is a bounded body, it follows

Γ1(r, t) ≥ 0 for all r ∈ [0, L], t ∈ [0, τ0],

while, if B is an unbounded body, then it is

either Γ1(r, t) ≥ 0 ∀r ≥ 0, or ∃ r̄t ≥ 0 such that Γ1(r, t) < 0 ∀r ≥ r̄t.

Lemma 2. Let the hypotheses of Lemma 1 be true. For any fixed t ∈ (0, τ0],
Γ1(r, t) satisfies the inequality

(4.3)
1

υ2(t)
√

t

∣∣∣Γ1(r, t)
∣∣∣ +

∂

∂r
Γ1(r, t) ≤ 0,

where

(4.4) υ2(t) =

√
6tςM + σ∗M [1 + ε0(t)]

2min{1, ρ}
and ε0(t) is the positive root of the algebraic equation

(4.5) ε2
0 +

(
1 +

6tςM
σ∗M

− 6t[(κ0
1 + κ0

2)
2 + (κ0

2)
2]

χσ∗M

−2χmax{f∗0 2,K2
0}min{1, ρ}

ς∗mσ∗M

)
ε0

−
(

1 +
6tςM
σ∗M

)
6t[(κ0

1 + κ0
2)

2 + (κ0
2)

2]
χσ∗M

= 0.
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P r o o f. Remembering Eq. (3.29) and using the well-known relations

(4.6)

t∫

0

s∫

0

a(z)dzds =

t∫

0

(t− z)a(z)dz ≤ t

t∫

0

a(z)dz,

where a(z) is any non-negative function, we get, for any ε > 0, ε0 > 0, ε1 > 0,

(4.7)

∣∣∣∣∣∣

t∫

0

s∫

0

∫

Sα

e−ωτ
[
π̃

(1)
lk (τ)u̇k(τ) + π̃

(2)
lk (τ)ẇk(τ)

]
nldadτds

∣∣∣∣∣∣

≤
√

t

t∫

0

∫

Sα

e−ωτ

[√
tε1T (τ) +

3
√

tςM [E0(τ) + E1(τ)]
ε1 min{1, ρ} (1 + ε)

+
3
√

t
[
(κ0

1 + κ0
2)

2 + (κ0
2)

2
]

ε1 min{1, ρ}χ
(

1 +
1
ε0

)(
1 +

1
ε

)
χ

2
ϑ2(τ)

]
dadτ

+

t∫

0

s∫

0

∫

Sα

e−ωτ σ∗MH0(τ)
2ε1 min{1, ρ}

(
1 +

1
ε

)
(1 + ε0)dadτds.

Moreover, using arithmetic-geometric mean inequality and by means of Eqs.
(3.31), (4.6), it results, for any ε2 > 0,

(4.8)

∣∣∣∣∣∣

t∫

0

s∫

0

∫

Sα

e−ωτχϑ(τ)Q̃l(τ)nldadτds

∣∣∣∣∣∣

≤

√t

t∫

0

∫

Sα

e−ωτχϑ2(τ)dadτ




1/2 
√t

t∫

0

s∫

0

∫

Sα

e−ωτχQ̃l(τ)Q̃l(τ)dadτds




1/2

≤
√

t

t∫

0

∫

Sα

e−ωτε2
χϑ2(τ)

2
dadτ +

√
t

t∫

0

s∫

0

∫

Sα

e−ωτ χmax
{
f∗20 ,K2

0

}H1(τ)
ς∗mε2

dadτds.
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Collecting Eqs. (4.1), (4.7), (4.8), we obtain

(4.9) |Γ1(r, t)| ≤
√

t

t∫

0

∫

Sα

e−ωτ



ε1

√
tT (τ) +

3
√

tςM [E0(τ) + E1(τ)]
ε1 min{1, ρ} (1 + ε)

+

[
3
√

t
[
(κ0

1 + κ0
2)

2 + (κ0
2)

2
]

ε1 min{1, ρ}χ
(

1 +
1
ε0

)(
1 +

1
ε

)
+ ε2

]
χ

2
ϑ2(τ)



 dadτ

+
√

t

t∫

0

s∫

0

∫

Sα

e−ωτ

[
σ∗MH0(τ)

2ε1 min{1, ρ}√t

(
1 +

1
ε

)
(1 + ε0)

+
χmax

{
f∗20 ,K2

0

}H1(τ)
ε2ς∗m

]
dadτds.

If ε, ε0, ε1, ε2 satisfy the following relations

ε1 =
3ςM

ε1 min{1, ρ}(1+ε) =
3

[
(κ0

1 + κ0
2)

2 + (κ0
2)

2
]

ε1 min{1, ρ}χ
(

1 +
1
ε0

)(
1 +

1
ε

)
+

ε2√
t

=
σ∗M

2ε1 min{1, ρ}t
(

1 +
1
ε

)
(1 + ε0) =

χmax
{
f∗20 ,K2

0

}

ε2ς∗m
√

t
,

we arrive at

ε =
σ∗M
6tςM

(1 + ε0), ε1 =

√
3ςM

min{1, ρ}(1 + ε),

ε2 =
χmax

{
f∗20 ,K2

0

}

ς∗m

√
min{1, ρ}

3tςM (1 + ε)
,

where ε0 is the positive root of Eq. (4.5) and ε1

√
t = υ2(t), as defined in (4.4).

Then, Eq. (4.9) can be rewritten as

(4.10) |Γ1(r, t)| ≤
√

tυ2(t)





t∫

0

∫

Sα

e−ωτ
[
T (τ) + E0(τ)+ E1(τ)+

χ

2
ϑ2(τ)

]
dadτ

+

t∫

0

s∫

0

∫

Sα

e−ωτ [H0(τ) +H1(τ)] dadτds



 .

Finally, comparing Eq. (4.2) with Eq. (4.10), we obtain Eq. (4.3).
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Using properties of Γ1 and proceeding in the same way as for Theorems 1-2,
we establish an exponential spatial decay estimate of Saint–Venant type for a
bounded body and we also get an alternative evaluation of Phragmén–Lindelöf
type, for an unbounded body.

Theorem 3. (Spatial behaviour for a bounded body). Under the same hy-
potheses of Theorem 1, it follows

(4.11) Γ1(r, t) ≤ Γ1(0, t)e
− r

υ2(t)
√

t , for all r ∈ [0, L], t ∈ (0, τ0].

Theorem 4. (Spatial behaviour for an unbounded body). Under the same
hypotheses of Theorem 2, it follows, for any fixed t ∈ (0, τ0]:
(4.12)

if for any r ≥ 0 Γ1(r, t) ≥ 0 ⇒ Γ1(r, t) ≤ Γ1(0, t)e
− r

υ2(t)
√

t ;

if for any r ≥ r̄t Γ1(r, t) < 0 ⇒ −Γ1(r, t) ≥ −Γ1(r̄t, t)e
1

υ2(t)
√

t
(r−r̄t)

.

5. Conclusions

In the present paper, we study the classical Kelvin–Voigt viscoelastic model,
using a Lagrangian description and considering a mixture made of an elastic solid
and a viscous fluid. In the context of linear theory used to describe the previous
model, we establish spatial behaviours of different types, defining appropriate
time-weighted surface power functions (3.3), (4.1) and studying their properties.
The estimates of first kind (3.36), (3.37) are characterized by a time-independent
decay rate, with results indicated for large values of time. The relations (4.11),
(4.12) show time-dependent decay rates suitable for short values of time. We are
able to establish spatial decay estimates of Saint–Venant type (3.36), (4.11), for
bounded bodies, and of Phragmén–Lindelöf type (3.37), (4.12), for unbounded
bodies.
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