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Random hydrogen-induced stresses and effects on cracking
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The paper presents a method for quantitative characterization of random
hydrogen-induced stresses. The method is based on randomized diffusion-elasticity
equations. Also a stochastic parametric model, suitable for representing relevant em-
pirical data, is outlined. The general considerations are illustrated by two particular
examples. The first one concerns the effect of random hydrogen concentration on
material failure time in a half-space, whereas the second one shows its effect on the
Mode-I stress intensity factor for a crack in a circular cylinder.

1. Introduction

There are a variety of engineering/technological situations in which various
microstructural stresses play an important role; they have to be carefully taken
into account if the material reliability is to be properly estimated. Since a long
time it has been evident that hydrogen-induced stress may significantly influence
the structural integrity of materials; e.g. the associated cracking is a phenomenon
that affects high-strength steels as well as aluminium and titanium alloys.

It is known that in such materials, when they are exposed to hydrogen, sub-
critical crack growth can occur at loads far below those which are required for
crack growth in the absence of hydrogen (cf. Unger [1]; G lowacka, Świa֒t-
nicki [2]). A well known phenomenon is the hydrogen embrittlement which
manifests itself in various parameters used in the evaluation of materials such
as e.g. tensile strength, fracture toughness, time to failure. It may also change
the mode of fracture from ductile coalescence to brittle intergranular failure
(cf. Sofronis, McMeeking [3]).

Exposure to hydrogen can take different “physical” forms. Direct exposure to
hydrogen gas occurs in pressure vessels and in pipelines. Indirect exposure can
occur from physical contact with water or water vapor (in this situation chemical
reactions between the metal and water produce hydrogen gas, which then enters
the metal structure and embrittles it). Hydrogen can also be introduced into a
material (cf. [1]) during the manufacturing process. The problems how hydro-
gen penetrates the metal structure at micro-level (e.g. atomic lattice diffusion,
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transport by mobile dislocations, diffusion along grain boundaries) will not be
discussed here. Our analysis relies on a continuum (macroscopic) description.

There is no single mechanism causing hydrogen embrittlement. The exist-
ing literature indicates that rather different mechanisms govern different situ-
ations. But it was recognized that the damaging effect of hydrogen is due to
its interaction with the atomic lattice and defects in the vicinity of the ma-
jor crack. For example, in the paper [1] by Unger, a decohesion mechanism of
hydrogen embrittlement is assumed (which means that high hydrogen concen-
trations reduce the cohesive bonding forces between the metal atoms) and the
crack opening displacement is used for the characterization of material degra-
dation. Earlier Oriani and Josephic [4] related the threshold stress intensity
factor for crack initiation to a critical hydrogen concentration using experimen-
tal data. Other papers (cf. Anderson [5]) deal with hydrogen-induced cracking
in a heat-affected zone of steel weldments. In this case the diffusion of hydrogen
increases essentially with the increase of temperature. More general thermo-
dynamical analyses of hydrogen-induced embrittlement are presented by Wang
in [6]. In all these papers hydrogen concentration is assumed to be deterministic.

Although the existing analyses provide interesting insight into the problem
of hydrogen-assisted degradation and cracking, it seems that there is still a need
for further and more systematic approach to this important problem. In this pa-
per we provide a systematic analytical derivation of the diffusive microstresses
in elastic materials, taking into account the randomness of the hydrogen con-
centration. Afterwards, we use the random stresses obtained for a quantitative
evaluation of the material failure time and stress intensity factors, generated
by the hydrogen diffusion stresses. The analysis is illustrated by calculations of
specific exemplary problems.

2. Formulation of the problem

Let us assume, in general, that we have an elastic body which constitutes a
region B in R3; the boundary of B will be denoted by ∂B. As it is customary
in elasticity theory – this body, depending on the physical situations, can be
subjected to body forces as well as to the surface actions. Here we are primar-
ily concerned with the situation when the surface of the body is exposed to
the action of an aggressive hydrogen environment. Therefore, we assume that
on the surface ∂B hydrogen concentration is prescribed as a random function
C∗(r, t, γ), r ∈ ∂B, t ∈ [0,∞), r = (x1, x2, x3), whereas γ is a variable indi-
cating randomness; more exactly, γ ∈ γ, where γ is the space of elementary
events in the basic scheme of probability theory (cf. Sobczyk, Kirkner [7]).
The boundary concentration function is positive-valued, i.e. C∗(r, t, γ) > 0 for
all r, t, γ in their domains of definition. For each fixed γ ∈ γ, C∗(r, t, γ) becomes
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an ordinary (deterministic) function of (r, t); it describes a particular realization
of the concentration field in space and time.

The concentration C∗(r, t, γ), r ∈ ∂B, induces hydrogen diffusion through
the material. The resultant hydrogen concentration C(r, t, γ) in the body B
(r ∈ B) generates a random microstructural stress field σh(r, t, γ) ≡ σh

ij(r, t, γ).
In many situations (when some critical conditions are exceeded) these stresses
may produce considerable cracking along the grain boundaries. In order to pre-
dict quantitatively the hydrogen stress effects on crack initiation and growth,
the random stress field σh(r, t, γ) has to be properly characterized. Under a
simplifying assumption of linear diffusion-elasticity, we present an effective ap-
proach to the problem. In what follows we tacitly assume that the prescribed
random concentration field C∗(r, t, γ) as well as the initial conditions are suffi-
ciently regular to assure regular (with probability one) probabilistic solutions of
the stochastic differential equations under consideration (cf. Sobczyk [8]).

3. Characterization of random hydrogen induced stresses

3.1. Randomized diffusion-elasticity problem

It is clear that the characterization of the diffusion process in solids and the
induced stress analysis can be approached at various levels of sophistication (e.g.
nonlinear diffusion, inhomogeneity of the material). Since our main focus here
is on the randomness in the hydrogen action, and on the probabilistic effects on
the degradation of the material, we perform the analysis within the following
standard linear model.

Diffusion equation

(3.1)
∂C

∂t
= D∆C,

C(r, t, γ) = C∗(r, t, γ) , r ∈ ∂B

where D is the diffusion constant of the material, C∗(r, t, γ) is the given ran-
dom field characterizing hydrogen concentration on the surface of the body, and
∆ is the Laplace operator; we assume for simplicity that the initial condition
(at t = t0) is zero.

Elasticity theory equations with diffusion

(3.2) µUi,jj + (λ+ µ)Uj,ji +Xi = βC,i

where Ui andXi, i = 1, 2, 3, are the components of displacements and mechanical
body forces respectively, µ and λ are the Lamé parameters of the elastic material
in question, β is a coefficient of coupling between diffusion and elastic deforma-
tion, Ui,jj =

∑3
j=1 ∂

2Ui/∂x
2
j , Uj,ji =

∑3
j=1 ∂

2Uj/∂xj∂xi, and C,i = ∂C/∂xi.
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It is seen that in the model adopted here, the diffusion-elasticity equations
are in a separated form, i.e. the effect of elastic deformation on the diffusion
process is neglected. Therefore, in order to evaluate the random hydrogen-
induced stresses, the following steps should be taken.

1. Collect empirical data concerning the random hydrogen stream on the
surface of the body (for variable r and t, or – to simplify the problem – for
fixed r; then C∗ depends only on time), and perform statistical inference on
C∗ to obtain its basic probabilistic characteristics, e.g. mean value, correlation
function and possibly higher-order probabilistic moments.

2. Solve the diffusion Eq. (3.1) with the random boundary condition C∗.
Since the equation is linear, the solution – random concentration field C(r, t, γ)
in the body – is the integral of the product of the Green’s function of Eq. (3.1)
and the surface random field C∗(r, t, γ). This integral and its statistics can be
calculated exactly in some simple cases (e.g. in the 1-dimensional case, or when
C∗ depends on time only) or via numerics. Sometimes the boundary concen-
tration of hydrogen can be approximately modelled as a Gaussian random field
(with such values of parameters that its probability of becoming negative is suf-
ficiently low). If the probability distribution of the boundary concentration field
is Gaussian then also the random hydrogen concentration in the body B will
be Gaussian. However, one should keep in mind that when there is some other
random uncertainty hidden in the problem (e.g. the material contains “some”
random inhomogeneity) and not accounted for in the model (3.1), empirical data
on C in the body may indicate a significant departure from normality (i.e. from
Gaussian distribution) – cf. Sobczyk et al. [9].

3. Having characterized the random hydrogen concentration field C in the
body considered, find the probabilistic characteristics of its derivatives with
respect to spatial coordinates x1, x2, x3 (which define the right-hand side of the
elasticity theory equations (3.2)). As it is known, the means and correlation
functions of C,i(r, t, γ) are expressed in terms of derivatives of the mean and
correlation function of C(r, t, γ). It should be noticed that in order to improve
the effectiveness of calculations it is beneficial to approximate C(r, t, γ), after
solving the diffusion equation (3.1), by a possibly simple random field.

4. Solve the elasticity theory Eqs. (3.2), when Xi ≡ 0; the term βC,i(r, t, γ)
plays the role of the “body” forces. The solution of (3.2) yields the random
displacement field U generated by the concentration field C(r, t, γ), whereas the
hydrogen-induced stresses are characterized by the formulae

(3.3) σh
ij(r, t, γ) = 2µεij + (λεkk − βC(r, t, γ)) δij ,

(3.4) εij =
1

2
(Ui,j + Uj,i)



Random hydrogen-induced stresses ... 563

where i, j = 1, 2, 3, δij is the Kronecker delta, εkk = ε11 + ε22 + ε33, and
Ui,j = ∂Ui/∂xj .

5. Another approach to the characterization of σh
ij consists in the usage of

the stress equations of elasticity (with a diffusion term) and the Green’s function
Gij(r, t; ξ, τ) for the diffusion-elasticity equations (for the stress formulation of
elasticity problems – see: Hetnarski, Ignaczak [10] and references therein).
In both approaches (via the displacement or stress formulation) one comes to
the representation of the random hydrogen-induced stress field which, in general,
can be written as

(3.5) σh
ij(r, t, γ) = Aij [C∗(ξ, τ, γ), r, t]

where Aij are integral operators with the Green’s function Gij(r, t; ξ, τ) as the
kernel. Formula (3.5) constitutes the general basis for the probabilistic charac-
terization of σh

ij(r, t, γ) via numerical calculations.
The algorithm for probabilistic characterization of hydrogen-induced stresses

presented above for the general 3-dimensional case and for a quite general space-
time random variability of hydrogen action is computationally quite involved.
However, it can be simplified in various specific situations (e.g. plane stress
problem, specific invariance properties of the prescribed hydrogen field C∗(r, t, γ)
like spatial homogeneity and isotropy, dependence of C∗ on time only, etc.).

3.2. Stochastic parametric model

In many practical situations one needs a simple model of a phenomenon,
which captures both the basic regularity of empirical data and their statistical
scatter. In fact this is a situation in which one is looking for a statistical-empirical
model. The problem which arises is: what class of random functions has the
features which are especially adequate to the properties of the real phenomenon
in question, and – at the same time – whether the random functions introduced
are simple enough to make further analysis effective. In the context of residual
stresses, such a model was indicated in paper [11] by Sobczyk and Tre֒bicki.

Let us assume here that the real residual hydrogen-induced stress σh in the
body is characterized by a random function σh = Sh(r, t, γ). Probabilistic prop-
erties of Sh(r, t, γ) are determined (not as in Sec. 3.1. via a diffusion-elasticity
model) by elaboration of empirical data. A useful class of random functions
capable to model the random variability contained in data can be represented
in the form of a deterministic function of its argument, say ξ, with random
variables as parameters, i.e.

(3.6) Sh(ξ, γ) = g(ξ; Z(γ)) = g(ξ;Z0(γ), . . . , Zn(γ))

where the argument ξ denotes r, or t, or both (r, t). The functional form of g
is given and random variables Zk(γ), k = 0, . . . , n, have specified probabilistic
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properties. For example, in the uniaxial case when ξ = r = (x, 0, 0), a random
polynomial of degree n is a special case of (3.6); namely

(3.7) Sh(x, γ) =
n∑

k=0

Zk(γ)xk

There is a theorem (cf. Onicescu and Istratescu [12]) which asserts that if
S(x, γ) is any random function continuous in probability in the interval I ∈ R1,
then there exists a family of random polynomials {Sn(x, γ)} converging uni-
formly in probability to S(x, γ), as n → ∞. This is a stochastic counterpart
of the known Weierstrass theorem on polynomial approximation of continuous
deterministic functions.

Another special case of (3.6) which has the power to capture a variety of ran-
dom empirical variations, and particularly – random hydrogen-induced stresses,
is

(3.8) Sh(ξ, γ) = σh(x, γ) = g(x; Z(γ)) = Z0(γ) p1(x;Z1(γ)) p2(x/L;Z2(γ)),

where Z0(γ), Z1(γ), Z2(γ) are independent random variables with known prob-
ability distributions, and p1(x; ζ) and p2(x; ζ) are suitable empirical functions
representing the shape of the stress variability in x-direction (e.g. polynomials,
trigonometric functions, exponentials etc.). Function p2(x; ζ) may characterize
a dependence of the hydrogen stress on the microstructural length scale L (e.g.
grain size).

The empirical-type probabilistic models (3.6)–(3.8) may be very handy in
the analysis of cracking due to the hydrogen stress distribution (cf. Example 2).

4. Hydrogen-induced microcracking

4.1. Poissonian approximation of random failure time

When the hydrogen-induced stress outcrosses the boundary, say ∂G, of its
“safety domain”, microcrack nucleation occurs. More generally, one can assume
that the nucleation takes place if the local limiting condition

(4.1) ϕ(σh
ij) < σcr

does not hold any longer, where ϕ is, most often, an empirically motivated
relationship for a specific material and σcr is its limiting value. Our purpose
here is to determine the probability of the failure time at a fixed “critical” point
r of the material. When r is fixed, random function σh

ij reduces to a tensor-

valued stochastic process σh
ij(t, γ), so the variable r will be omitted. Criterion

(4.1) can be interpreted as a condition on all the components of the tensor
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σh = {σh
ij(t, γ)}, or – on some“representative”values of σh, e.g. on the invariants

of the stress field σh. In what follows we will deal with a stochastic process
σh

ij(t, γ), i, j = 1, 2, 3.

Let us denote by G the set of those values of σh
ij , for which condition (4.1)

holds, i.e.

(4.2) G = {σh
ij : ϕ(σh

ij) < σcr}.

Therefore the problem of estimation of the random failure time (due to a ran-
dom time-varying hydrogen stress) consists in finding the probability of the first
“excursion” of the process σh

ij(t, γ) from the domain G.
In order to obtain an effective solution of the problem, we assume that our

stress process is such a stochastic process σh
ij(t, γ), for each fixed (i, j), which –

in general – has the “potential” to cross the boundary ∂G of G many times. We
will denote by NG(t) the random number of its excursions in the time interval
(0, t ].

As in other problems of reliability (cf. Madsen et al. [13]), we will assume
that the excursions occur independently of each other with λ(t) denoting the
intensity, i.e. the mean number of outcrossings in a time unit. We assume also
that the ∂G-outcrossings of σh

ij(t, γ) are characterized by the Poisson random
process, i.e.

P{NG(t) = k} =
Λ(t)k

k!
e−Λ(t) , Λ(t) =

t∫

0

λ(τ)dτ

where k = 0, 1, . . . . The probability that the stress process will not outcross ∂G
in the time interval (0, t ] is equal to the probability that its initial value σh

ij(0, γ)

belongs to G and the process σh
ij(t, γ) does not show any ∂G-outcrossing within

the time interval (0, t ], i.e.

PG(t) = P{[σh
ij(0, γ) ∈ G] ∩ [NG(t) = 0]}.

This probability can be approximated by the product, i.e.

(4.3) PG(t) = P0 P{NG(t) = 0} = P0 e
−Λ(t),

where P0 = P{σh
ij(0, γ) ∈ G}. Therefore, the probability PF (t) of the material

failure in the interval (0, t ] is

(4.4) PF (t) = 1 − PG(t) = 1 − P0 e
−Λ(t).

If the process σh
ij(t, γ) can be represented by a stationary random process,

then the associated stream of outcrossings is a homogeneous Poisson process,
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i.e. λ(t) = λ0 = const . In this case formulae (4.3), (4.4) take a simple form. For
example, the probability distribution function of the material failure in the time
interval (0, t ] is

(4.5) PF (t) = 1 − P0 e
−λ0t.

The derivative of PF (t) yields the probability density fT (t) of the random vari-
able T characterizing the random failure time.

To make use of the formulae above one has to express λ(t) or λ0 in terms
of probabilistic characteristics of the underlying random stress process σh(t, γ).
This can be done in two ways. The first approach is based on retaining the multi-
dimensional character of the stress tensor and investigating the rate, at which
σh(t, γ), treated as a process with values in R6 (its components are σh

11, σh
22, σh

33,
σh

12 = σh
21, σh

13 = σh
31, σh

23 = σh
32), outcrosses ∂G. The value of λ(t) can then be

obtained from the Belayev formula (cf. Belayev [14]). The second approach is
based on definition (4.2) of the set G and the observation that σh(t, γ) outcrosses
∂G exactly when ϕ(σh(t, γ)), treated as a scalar stochastic process, upcrosses
the level σcr. This auxiliary scalar process will be further denoted by σ(t, γ), i.e.

(4.6) σ(t, γ) = ϕ(σh(t, γ)).

It follows that the mean number of outcrossings of ∂G by σh(t, γ) equals the
mean number of upcrossings of the level σcr by σ(t, γ). The latter can be obtained
from the Rice formula (cf. Soong, Grigoriu [15]), which is a scalar version of
the Belayev formula for multi-dimensional processes. The Rice formula gives

(4.7) λ(t) =

∞∫

0

v p(σcr, v, t) dv

where p(u, v, t) is the joint probability density function of the process σ(t, γ)
and its time derivative σ̇(t, γ) at time t. The second, scalar approach is followed
in the first numerical example given below.

4.2. Example 1. A half-space under random time-varying hydrogen action;
effect on failure time

As an exemplary problem we will show how to estimate the hydrogen-induced
failure time, using the theoretical approach described in the previous sections.

Assume that the elastic bodyB constitutes a half-spaceB={r = (x1, x2, x3) :
x3 > 0} with the boundary ∂B = {r : x3 = 0}; the initial hydrogen concentra-
tion C0(r) ≡ 0, r ∈ B, whereas the boundary ∂B is subjected to a constant in
(x1, x2), time-varying random concentration of hydrogen: C∗(t, γ). It is assumed
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that C∗(t, γ) is a stationary Gaussian stochastic process with the following mean
and correlation function:

(4.8) m(t) = m0 , K(t1, t2) = s2e−α2(t1−t2)2 ,

where m0 is constant, s denotes the standard deviation of C∗(t, γ), whereas
α is a correlation parameter characterizing the dependence between hydrogen
concentration at time instants t1 and t2. All Gaussian probability distributions
(for all possible {t1, t2, . . . , tn}) are expressed in the known way in terms of
m0 and the elements of the correlation matrix {K(ti, tj)}, i, j = 1, 2, . . . , n;
(see e.g. Sobczyk, Spencer [16]). It should be underlined here that although
the Gaussian distribution is theoretically extended over the entire real line
(−∞,+∞) it can, nevertheless, be assumed in practice as a model of non-
negative quantities; as it is known, there is a“three sigma”rule which asserts that
the probability that the possible values of a Gaussian variable, say X, depart
from their meanm by more than 3σ is very small (i.e. P{|X−m| > 3σ} ≈ 0.003);
σ is the standard deviation which in (4.8) is denoted by s. Therefore, we assume
here that m0 > 3s.

It may further be observed that since hydrogen stresses are expressed as
linear transformations of the boundary concentration of hydrogen (relation (3.5))
and since, in the present case, C∗(t, γ) is Gaussian, the resulting stress field is
also Gaussian (cf. [8]). To obtain a full stochastic description of σh

ij(r, t, γ) one
therefore only needs to find the integral operators Aij and apply them to the
mean and correlation function of C∗(t, γ).

Because of the symmetry properties of the present problem, the concentra-
tion of hydrogen C(r, t, γ) and stresses σh

ij(r, t, γ) depend only on coordinate x3

and time. For simplicity, we further write x instead of x3. The solution of the
diffusion equation (3.1) in the considered case is

(4.9) C(x, t, γ) =

t∫

0

xC∗(τ, γ)

2
√
πD(t− τ)3

e−x2/(4D(t−τ)) dτ,

where C∗(t, γ) is the given random boundary concentration field and the inte-
gral is understood as a sample function integral. The solution of the elasticity
problem (3.2)–(3.4) yields

(4.10) σh
11(x, t, γ) = σh

22(x, t, γ) = − 2µβ

2µ+ λ
C(x, t, γ)

and other components σh
ij = 0. After combining (4.9) and (4.10), and performing



568 P. Ho lobut, K. Sobczyk

simple transformations, one can express the operators A11 and A22 as

(4.11) A11[g(◦), x, t] = A22[g(◦), x, t] = −b
t∫

0

g(t− τ)zτ−3/2e−z2/τ dτ,

where b = 2µβ/((2µ+ λ)
√
π), z = x/(2

√
D), and g(◦) stands for any particular

function on which the operator acts. Thus, the entire stress field in the body is
essentially described by one scalar field given by (4.10) and its integral operator
in (4.11). Since the stress field in (4.10) is always non-positive, one can define
a new non-negative field σ(x, t, γ) = −σh

11(x, t, γ) = −σh
22(x, t, γ) and the corre-

sponding new integral operator A = −A11 = −A22. It can now be observed that
many local stress-based damage criteria, like the von Mises or Tresca yield cri-
teria, or the Mohr brittle fracture criterion (cf. Paul [17]), reduce in the present
case to the following safety condition

(4.12) σ(x, t, γ) < σcr

where σcr is a material-dependent critical value. Condition (4.12) will therefore
be of our concern in the subsequent analysis of time-to-failure. It can be seen
that σ(x, t, γ), as defined above, is just the auxiliary scalar process introduced
in (4.6) under the same name. Therefore it remains to determine the crossing
properties of σ(x, t, γ) with respect to the level σcr.

As remarked above σ(x, t, γ), being a linear transform of the Gaussian C∗(t, γ),
is itself Gaussian. Its mean and correlation function are obtained by applying
A to the mean and correlation function of C∗(t, γ) respectively (as defined in
(4.8)), which gives

(4.13) mσ(x, t) = A[m(◦), x, t]

= bm0

t∫

0

zτ−3/2e−z2/τ dτ = bm0

[√
π − 2

z/
√

t∫

0

e−u2

du
]
,

(4.14) Kσ(x′, t1, x
′′, t2) = A[A[K(◦, ◦), x′′, t2], x′, t1]

= b2s2
t1∫

0

t2∫

0

z1z2(τ1τ2)−3/2e−α2(t1−τ1−t2+τ2)2−z2
1
/τ1−z2

2
/τ2 dτ2 dτ1,

where in (4.14) the outer A acts with respect to the first, and the inner A with
respect to the second argument of K(◦, ◦). Above, x′ and x′′ are two possible
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values of x, z1 = x′/(2
√
D), and z2 = x′′/(2

√
D). Because of the symmetry of

the correlation function one may assume, without loss of generality, that t2 > t1,
and accordingly set t1 = t, t2 = t+ δ, where δ > 0. It can now be observed that
both mσ (for fixed x) and Kσ (for fixed x′ and x′′) tend to well-defined limits as
t → ∞, and moreover Kσ tends to its limit function uniformly in δ. Therefore
it will be assumed, as an approximation, that σ(x, t, γ) is a stationary Gaussian
process, whose mean and correlation function are

(4.15) m̄σ(x) = lim
t→∞

mσ(x, t) = bm0

√
π =

2µβm0

2µ+ λ
,

(4.16) K̄σ(x′, x′′, δ) = lim
t→∞

Kσ(x′, t, x′′, t+ δ)

= lim
t→∞

b2s2
t∫

0

t+δ∫

0

z1z2(τ1τ2)−3/2e−α2(τ1−τ2+δ)2−z2
1
/τ1−z2

2
/τ2 dτ2 dτ1.

As in Sec. 4.1 we assume here that x is a fixed “critical” point and we treat
σ(x, t, γ) as a stochastic process in t only, with x being a fixed parameter. We
therefore further write σ(t, γ).

In order to exploit expressions (4.5) and (4.7) and calculate PF (t) at x, prob-
abilistic characteristics of the joint vector process {σ(t, γ), σ̇(t, γ)} must be com-
puted. Since σ(t, γ) is stationary Gaussian, σ̇(t, γ) is also stationary Gaussian,
and they are independent for each fixed t (cf. [8]). The mean and correlation
function of σ(t, γ) are given by (4.15) and (4.16) respectively, with x = x′ = x′′.
In particular, the variance has the form

(4.17) Vσ = K̄σ(x, x, 0)

= lim
t→∞

b2s2
t∫

0

t∫

0

z2(τ1τ2)−3/2e−α2(τ1−τ2)2−z2/τ1−z2/τ2 dτ2 dτ1.

The corresponding quantities for σ̇(t, γ) are

m̄σ̇ =
d

dt
m̄σ = 0,

K̄σ̇(δ) = K̄σ̇(t2 − t1) =
∂2K̄σ(x, x, t2 − t1)

∂t1∂t2
= −∂

2K̄σ(x, x, δ)

∂δ2
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and the variance (after certain transformations) takes the form

(4.18) Vσ̇ = K̄σ̇(0)

= − lim
t→∞

b2s2z2

t∫

0

t∫

0

15τ2
1 − 20z2τ1 + 4z4

4
√
τ11
1 τ3

2

e−α2(τ1−τ2)2−z2/τ1−z2/τ2 dτ2 dτ1.

The variances in (4.17) and (4.18) have to be computed numerically.
The joint one-dimensional probability density function of σ(t, γ) and σ̇(t, γ)

can be written as

p(u, v, t) = pσ(u) pσ̇(v),

where pσ(u) and pσ̇(v) are the one-dimensional Gaussian probability density
functions of the individual processes, given by

pσ(u) =
1√

2πVσ
e−(u−m̄σ)2/(2Vσ),

pσ̇(v) =
1√

2πVσ̇
e−v2/(2Vσ̇).

The Rice formula (4.7) now yields the mean number of upcrossings of the level
σcr by the process σ(t, γ) in unit time as

(4.19) λ0 =

∞∫

0

v pσ(σcr) pσ̇(v) dv =
1

2π

√
Vσ̇

Vσ
e−(σcr−m̄σ)2/(2Vσ).

Also the probability of safety at t = 0 can now be computed as

(4.20) P0 = P{σ(0, γ) < σcr}

=

σcr∫

−∞

pσ(u) du =

σcr∫

−∞

1√
2πVσ

e−(u−m̄σ)2/(2Vσ) du.

The values of λ0 and P0, given by (4.19) and (4.20), may eventually be substi-
tuted into formula (4.5). This yields the probability PF (t) of material failure at
the point x until time t. Finally, the expectation and variance of the time to
failure at x are computed from the known formulae as

(4.21) EF =

∞∫

0

tṖF (t) dt =

∞∫

0

t λ0P0 e
−λ0t dt =

P0

λ0
,
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(4.22) VF = E2
F (1 − P0) +

∞∫

0

(t− EF )2ṖF (t) dt =
P0

λ2
0

(2 − P0).

To summarize the procedure: first, m̄σ, Vσ and Vσ̇ are computed with (4.15),
(4.17) and (4.18) respectively, from the supplied values of parameters; then,
m̄σ, Vσ and Vσ̇ are substituted into (4.19) and (4.20), to obtain λ0 and P0

respectively; finally, λ0 and P0 are used in (4.5), (4.21) and (4.22) to calculate
respectively PF (t), EF and VF .

Below are presented the results of numerical calculations, intended to show
the character of typical solutions. The chosen material is a low-alloyed, low-
strength steel with a Young modulus E = 205 [GPa], Poisson coefficient ν = 0.3,
and yield stress σcr = 250 [MPa]. The corresponding Lamé constants are λ = 118
[GPa] and µ = 78.8 [GPa]. The diffusion coefficient is taken as D = 10−9[m2/s]
(cf. Boellinghaus et al. [18]). The coupling coefficient is β = 332 [kNm/mol],
a value based on assuming the partial molar volume of hydrogen in steel to
be 2 [cm3/mol] (cf. Hirth [19]). The mean concentration of hydrogen on the
boundary is chosen as m0 = 900 [mol/m3], which is a possible equilibrium
concentration in high pressure vessels (cf. San Marchi et al. [20]).

Figure 1 shows the dependence of PF (t) on the correlation coefficient α of
the random hydrogen concentration. It can be seen that, for the chosen data,
stronger correlation of the values of C∗(t, γ) results in a smaller probability of
failure. (Smaller α corresponds to higher correlation.) In the case shown in Fig. 1
x is close enough to the boundary, so that higher frequencies in the spectrum of
C∗(t, γ) are not filtered out by the operatorA (in the given range of α). Therefore

Fig. 1. Probability of failure PF vs. time, for x = 5 [mm] and s = 300 [mol/m3]. Curve 1
corresponds to α = 10−5, curve 2 to α = 10−5.5, curve 3 to α = 10−6, and curve 4 to

α = 10−6.5 [s−1].
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higher variability of C∗(t, γ) transfers to σ(x, t, γ), which increases its probability
of reaching the critical value. The nonzero probability of instantaneous failure
at t = 0, visible in Fig. 1, is due to the stationary approximation of σ(x, t, γ)
made in calculations.

Figure 2 illustrates how failure probability diminishes with depth x, and
Fig. 3 shows how PF (t) may grow with the growth of the intensity of scatter
(standard deviation s) of C∗(t, γ).

Fig. 2. Probability of failure PF vs. time, for s = 300 [mol/m3] and α = 10−5 [s−1]. Curve 1
corresponds to x = 2.5, curve 2 to x = 7.5, curve 3 to x = 12.5, and curve 4 to x = 17.5 [mm].

Fig. 3. Probability of failure PF vs. time, for x = 5[mm] and α = 10−5[s−1]. Curve 1
corresponds to s = m0/3 = 300, curve 2 to s = m0/4 = 225, curve 3 to s = m0/5 = 180, and

curve 4 to s = m0/6 = 150 [mol/m3].



Random hydrogen-induced stresses ... 573

The explicit dependence of failure probability on x is visualized in Fig. 4. At
points near the boundary, higher correlation of the values of C∗(t, γ) involves
longer expected time to failure. However, for deeper points in the half-space
the relation turns out to be reversed, with higher correlation entailing shorter
expectation times. Thus for deeper points, the operator A is a low-pass filter:
the influences of quick variations of a realization of C∗(t, γ) average out, making
failure less probable.

Fig. 4. Expected time to failure EF vs. position x, for s = 300 [mol/m3]. Curve 1
corresponds to α = 10−5, curve 2 to α = 10−5.5, curve 3 to α = 10−6, and curve 4 to

α = 10−6.5 [s−1].

4.3. Example 2. Infinite cylinder under random time-varying hydrogen action;
effect on stress intensity factor

As the second example, we consider an infinite circular cylinder of radius b:
B = {r = (r, θ, z) : 0 6 r 6 b} (cylindrical coordinate system is used), exposed
to the action of a random hydrogen concentration C∗(t, γ) on its boundary. It is
thus assumed, as in the preceding example, that C∗ varies in time but is constant
on ∂B at any given moment. The initial condition for hydrogen concentration
is homogeneous: C0(r) = 0, r ∈ B, and the boundary ∂B is free of tractions,
i.e. surface loading on the boundary is zero for all t. Therefore, at t = 0, the
cylinder is in a stress-free state. For further stress calculations, plane state of
strain is assumed in z direction.

The cylinder contains a radially oriented crack of rectilinear cross-section
and length a (Fig. 5), extended indefinitely along the z axis. As a result of the
boundary hydrogen concentration C∗(t, γ), hydrogen diffuses through the cylin-
der and residual stresses are induced in the material, giving rise to nonzero stress
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intensity factors at the edges of the crack. In the following, we determine approx-
imate probabilistic characteristics of the corresponding Mode-I stress intensity
factors K1

I (at r1) and K2
I (at r2 = r1 + a).

Fig. 5. Geometry of the crack (cross-section of the cylinder).

In the considered case, the resultant hydrogen concentration C(r, t, γ) in
the cylinder, and hydrogen-induced stresses σh

ij(r, t, γ), r ∈ B, t ∈ [0,∞),
i, j = r, θ, z, are independent of θ and z. Therefore we can simply write C(r, t, γ)
and σh

ij(r, t, γ). The solution of the diffusion equation (3.1) for the cylinder with
a zero initial condition and a constant boundary condition C∗(t, γ) = 1, ex-
pressed in cylindrical coordinates, is (cf. Nowacki, Olesiak [21])

(4.23) C1(r, t) = 1 − 2b−1
∞∑

n=1

e−D t α2
n
J0(αnr)

αnJ1(αnb)
,

where J0 and J1 are the Bessel functions of the first kind of orders 0 and 1 re-
spectively, and the sum is taken over all positive roots of equation J0(αnb) = 0.
For a differentiable boundary concentration function C∗(t, γ) one therefore ob-
tains

(4.24) C(r, t, γ) = C∗(0, γ)C1(r, t) +

t∫

0

Ċ∗(τ, γ)C1(r, t− τ) dτ,

where Ċ∗(t, γ) = ∂C∗(t, γ)/∂t. The random hydrogen-induced stresses are
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(based on [21])

(4.25)

σrr(r, t, γ) = m


r−2

r∫

0

C(ρ, t, γ)ρ dρ− b−2

b∫

0

C(ρ, t, γ)ρ dρ


 ,

σθθ(r, t, γ) = m


C(r, t, γ) − r−2

r∫

0

C(ρ, t, γ)ρ dρ− b−2

b∫

0

C(ρ, t, γ)ρ dρ


,

σzz(r, t, γ) = m


C(r, t, γ) − λ

(λ+ µ)b2

b∫

0

C(ρ, t, γ)ρ dρ


 .

where m = −2µβ/(λ+ 2µ). All other components of the stress tensor are zero.
In the sequel, to effectively characterize the stress intensity factors K1

I and K2
I ,

we make the following two simplifications. First, we disregard the multiaxial
character of the stress field and consider only the component σθθ which is per-
pendicular to the crack surface. Second, for present considerations, we assume
the crack to be suitably small and distant from the boundary of the cylinder to
be treated as if it were placed in an infinite medium. (This second condition can
be avoided by using more specialized weight functions than we do below.) We
thus consider the crack as a rectilinear through crack in an infinite space, under
uniaxial state of stress perpendicular to the crack surface. The stress intensity
factors for this case can be expressed as (based on Sih [22])

(4.26) K1
I (t, γ) = R

r2∫

r1

σθθ(r, t, γ)

√
r2 − r

r − r1
dr,

(4.27) K2
I (t, γ) = R

r2∫

r1

σθθ(r, t, γ)

√
r − r1
r2 − r

dr,

where R =
√

2/(πa). By combining Eqs. (4.23)–(4.27), the following expressions
for the stress intensity factors are obtained:

(4.28) Ki
I(t, γ) =

∞∑

n=1

Ai
n(ebntC∗(0, γ) + C∗

n(t, γ)) , i = 1, 2

where

A1
n = R

r2∫

r1

an(r)

√
r2 − r

r − r1
dr , A2

n = R

r2∫

r1

an(r)

√
r − r1
r2 − r

dr ,
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C∗
n(t, γ) =

t∫

0

Ċ∗(τ, γ) ebn(t−τ) dτ,

an(r) = − 4µβ

b(λ+ 2µ)α2
n

(
J1(αnr) − αnrJ0(αnr)

rJ1(αnb)
+

1

b

)
, bn = −Dα2

n.

We next consider the case, when the boundary concentration C∗(t, γ) is given
by a stochastic parametric model (cf. Sec. 3.2.) of the particular form of a sum
of deterministic base functions with random coefficients

(4.29) C∗(t, γ) =
N∑

j=1

Zj(γ)fj(t).

Because of the linearity of Eqs. (4.28) in C∗(t, γ), the resultant stress intensity
factors can likewise be written as sums of deterministic functions with random
coefficients

(4.30) Ki
I(t, γ) =

N∑

j=1

Zj(γ)Kij
I (t) , i = 1, 2

where Kij
I (t), i = 1, 2, are the solutions of (4.28), with fj(t) taken as the bound-

ary concentration function. The relevant probabilistic moments are easily com-
puted. The mean values are

(4.31) M i
I (t) = E{Ki

I(t, γ)} =
N∑

j=1

MjK
ij
I (t) , i = 1, 2

where Mj = E{Zj(γ)} is the mean of the random variable Zj(γ). The variances
are given by

(4.32) V i
I (t) = E{(Ki

I(t, γ) −M i
I (t))2} =

N∑

j,k=1

VjkK
ij
I (t)Kik

I (t) , i = 1, 2

where Vjk = E{(Zj(γ) − Mj)(Zk(γ) − Mk)} is the covariance of Zj(γ) and
Zk(γ). In particular, when Zj(γ), j = 1, 2, . . . , N , are independent, formula
(4.32) reduces to

(4.33) V i
I (t) =

N∑

j=1

VjjK
ij
I (t)

2
, i = 1, 2

with Vjj being the variance of Zj(γ).
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For numerical calculations we consider a cylinder of radius b = 0.1 [m] made
of low-strength steel, with material parameters as in Example 1. The crack is of
length a = 2 [mm]. The boundary concentration is assumed in the form (4.29)
with N = 3 and fj(t) = sin(kjt) + 1, j = 1, 2, 3. The random variables Z1(γ),
Z2(γ), Z3(γ) are independent and uniformly distributed between 0 and Z̄ = 500[
mol/m3

]
. The means and variances of Zj(γ) are: Mj = Z̄/2 = 250

[
mol/m3

]

and Vjj = Z̄2/12 ≈ 20833
[
mol2/m6

]
, j = 1, 2, 3. The frequencies are assumed

to have the following values: k1 = 2π/7, k2 = 2π/16, and k3 = 2π/60
[
day−1

]
.

In Figures 6 and 7 only the results for the crack edge at r1 are shown, because
the corresponding values for the two edges differ only slightly (owing to the short
chosen crack length). It can be seen that under the action of a cyclic boundary

Fig. 6. Mean stress intensity factor at the inner edge of the crack, M1
I , vs. time. Curve 1

corresponds to r1 = 78, and curve 2 to r1 = 58 [mm].

Fig. 7. Standard deviation of the stress intensity factor at the inner edge of the crack,
p

V 1
I

,
vs. time. Curve 1 corresponds to r1 = 78, and curve 2 to r1 = 58 [mm].
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concentration C∗(t, γ), the crack undergoes cyclic tension and compression (as
presented in Fig. 6 for the case of mean values). The influence of hydrogen is
also more attenuated towards the center of the cylinder: cracks closer to the
boundary sustain higher stress amplitudes, and are therefore more likely to
propagate. Their stress intensity factors also exhibit greater statistical scatter
(Fig. 7).

5. Conclusions

In the paper, an effective method for quantitative characterization of ran-
dom hydrogen-induced stresses has been presented. The method is based on the
randomized diffusion-elasticity equations, but also a simpler, stochastic para-
metric model, based on empirical information on hydrogen stresses, is briefly
sketched. The analysis allows to perform specific calculations in a wide range of
real situations. The numerical calculations for the examples considered provide
quantitative effects of random hydrogen-induced stresses on the random time to
material failure and on the stress intensity factors. The graphical visualization
exhibits the effects of the basic statistical characteristics of the hydrogen con-
centration (e.g. its standard deviation and correlation time) on the failure time
and on the Mode-I stress intensity factor.
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