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1. Introduction

The governing equations and fundamental boundary value problems of a
theory describing the three-dimensional deformations of a linearly elastic, ho-
mogeneous and isotropic solid which incorporates the effects of material mi-
crostructure [1] (also known as the linear theory of micropolar, asymmetric or
Cosserat elasticity) were established by Eringen in [2] (see [3] for a review of
works in this area and an extensive bibliography). The theory was intended to
eliminate discrepancies between the classical elasticity and experiments, since
the classical elasticity failed to present acceptable results when the effects of ma-
terial microstructure were known to contribute significantly to the body’s overall
deformation, for example, in the case of granular bodies with large molecules
(e.g. polymers), graphite or human bones (see, for example, [4]). These cases are
becoming increasingly important in the design and manufacture of modern day
advanced materials, as small-scale effects become paramount in the prediction
of the overall mechanical behavior of these materials.
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In [5], the boundary value problems of three-dimensional Cosserat elasticity

were shown to be well-posed and subsequently solved in a rigorous manner using

the boundary integral equation method. The corresponding problems in plane

and anti-plane deformations (see [6], for example, which provides a comprehen-

sive overview of the results obtained for classical anti-plane theory and their

importance for applications) and in the bending of plates [7], are not accom-

modated by the results in [5]. This can be attributed to the fact that, in each

case, the matrix of fundamental solutions has a highly unsuitable asymptotic

behavior. In a series of recent papers, (see [8–12]), the boundary integral equa-

tion method has been developed and extended to allow for a rigorous analysis

and solution of these problems which, as shown in [13] and [14], are of the great

importance for applications since, for example, the problem of torsion of a mi-

cropolar beam of arbitrary cross-section can be reduced to an interior Neumann

boundary value problem in anti-plane micropolar elasticity.

However, since the boundary value problems considered in [8–14] were formu-

lated in a L2 space, the corresponding solutions can be found only if the bound-

ary is sufficiently smooth and cannot be obtained in the case of the reduced

boundary smoothness or if the domain contains cracks. To obtain solutions for

the domain with an irregular boundary, Chudinovich and Constanda [15]

suggested that the boundary value problems arising in the bending of plates

should be formulated in a weak (Sobolev) space setting. Such formulation al-

lows to employ the boundary integral equation method to derive weak solutions

in the form of integral potentials. In addition, this approach facilitates the close

monitoring of the performance of numerical schemes in domains with relatively

low degree of smoothness. Recently, Shmoylova et al. [16, 17] has demonstrated

that the method introduced in [15] may be successfully applied to the investiga-

tion of the boundary value problems in the theory of plane micropolar elasticity.

Meanwhile, consideration of the corresponding boundary value problems for do-

mains with irregular boundaries in the case of anti-plane micropolar elasticity

is, to the authors’ knowledge, absent from the literature.

In this paper we formulate interior and exterior Dirichlet and Neumann

boundary value problems of anti-plane micropolar elasticity in a weak (Sobolev)

space setting, and we show that these problems are well-posed and the cor-

responding weak solutions depend continuously on the data. Further we show

that the problem of torsion of a micropolar beam of non-smooth arbitrary cross-

section can be reduced to the interior Neumann boundary-value problem in anti-

plane Cosserat elasticity and the corresponding (weak) solution for a warping

function may be found in terms of the modified integral potential. Using the

computational procedure presented in [18], we find the solution to the interior

Neumann problem in terms of generalized Fourier series and consider an ex-
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ample related to torsion of a graphite micropolar beam of square cross-section,

which demonstrates that material microstructure has a significant effect on the

warping function of a beam.

2. Preliminaries

In what follows Greek and Latin indices take the values 1, 2 and 1, 2, 3,

respectively, the convention of summation over repeated indices is understood,

Mm×n is the space of (m×n)-matrices, En is the identity element in Mm×n, a

superscript T indicates matrix transposition and (...),α ≡ ∂(...)/∂xα. Also, if X

is a space of scalar functions and v a matrix, v ∈ X means that every component

of v belongs to X.

Let S be a domain in R
2 bounded by a closed C2-curve ∂S and occupied

by a homogeneous and isotropic linearly elastic micropolar material with elastic

constants λ, µ, α, β, γ and κ. The state of micropolar anti-plane shear is charac-

terized by a displacement field u (x′) = (u1 (x′) , u2 (x′) , u3 (x′))T and a micro-

rotation field Φ (x′) = (φ1 (x′) , φ2 (x′) , φ3 (x′))T of the form:

(2.1)

uα

(
x′

)
= 0, u3(x′) = u3 (x) ,

φ3

(
x′

)
= 0, φα(x′) = φα (x) ,

where x′ = (x1, x2, x3) and x = (x1, x2) are generic points in R
3 and R

2,

respectively. From (2.1) we find that the equilibrium equations of micropolar

anti-plane shear written in terms of displacements and microrotations are given

by [3]:

(2.2) L(∂x)u(x) + q (x) = 0, x ∈ S,

in which now, denoting φα by uα, we have u(x) = (u1, u2, u3)T , the matrix of

the partial differential operator L(∂x) = L(∂/∂xα) is defined by

L (ξ) = L (ξα)

=




(γ + κ)∆ − 4α+ (β + γ − κ)ξ21 (β + γ − κ)ξ1ξ2 2αξ2

(β + γ − κ)ξ1ξ2 (γ + κ)∆ − 4α+ (β + γ − κ)ξ22 −2αξ1

−2αξ2 2αξ1 (µ+ α)∆


,

where ∆ = ξαξα and F = (F1, F2, F3)T represent body forces and couples.



522 E. Shmoylova, S. Potapenko, A. Dorfmann

Together with L we consider the boundary stress operator T (∂x) = T (∂/∂xα)
defined by

T (ξ) = T (ξα)

=




(2γ + β) ξ1n1 + (γ + κ) ξ2n2 (γ − κ)ξ2n1 + βξ1n2 −2αn2

(γ − κ)ξ1n2 + βξ2n1 (γ + κ) ξ1n1 + (2γ + β) ξ2n2 2αn1

0 0 (µ+ α)ξαnα




T

,

where n = (n1, n2)T is the unit outward normal to ∂S.
The internal energy density is given by

(2.3) E (u, v) = E1 (u, v) + E2 (u, v) +
µ

2
(u3,1v3,1 + u3,2v3,2)

+
α

2

[
(2v1 − u3,2) (2u1 − v3,2) + (2u2 + u3,1) (2v2 + v3,1)

]
,

where

E1 (u, v) =
γ + κ

2
(u1,2v1,2 + u2,1v2,1) +

(γ − κ)

2
(u1,2v2,1 + u2,1v1,2) ,

E2 (u, u) =

(
γ +

β

2

)
(u1,1v1,1 + u2,2v2,2) +

β

2
(u1,1v2,2 + u2,2v1,1).

Throughout what follows we assume that

2γ + β > 0, κ, α, γ, µ > 0.

Noting that the matrix L0 (ξ) corresponding to the second order derivatives in
the system (2.2) is invertible for all ξ 6= 0, since

detL0 (ξ) = (µ+ α) (γ + κ) (2γ + β) (ξ21 + ξ22)3,

it is clear that (2.2) is an elliptic system and that E (u, u) is a positive quadratic
form. In fact, E(u, u) = 0 if and only if

(2.4) u(x) = (0, 0, c)T ,

where c is an arbitrary constant. This is the most general rigid displacement
and microrotation associated with (2.1). Clearly, the space of such rigid displace-
ments and microrotations F is spanned by the single vector (0, 0, 1). Accordingly,
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we denote by F the matrix

F =




0 0 0

0 0 0

0 0 1




from which it can be seen that LF = 0 in R
2, TF = 0 on ∂S and a generic

vector of the form (2.4) can be written as Fk, where k ∈ M3×1 is constant and
arbitrary.

Let S+ be a domain in R
2 bounded by a closed curve ∂S, and S− = R

2\S+.
Using the same technique as in the derivation of the Betti formula [9], it is easy

to show that if u is a solution of (2.2) in S+, then for any v ∈ C2(S+)∩C1(S
+

)

(2.5)

∫

S+

vT qdx = −
∫

S+

vTLudx = 2

∫

S+

E(u, v) dx−
∫

∂S

vTTu ds.

The analogue of the Betti formula in the exterior domain S− requires that
we should restrict the behavior of u at infinity. To this end, we consider the class
A of vectors u ∈ M3×1 whose components, in terms of polar coordinates, admit
an asymptotic expansion (as r = |x| → ∞) of the form [9]

(2.6)

u1(r, θ) = r−2 [m0 sin 2θ +m1(1 − cos 2θ) +m2] +O(r−3),

u2(r, θ) = r−2 [−m0 sin 2θ −m1(1 − cos 2θ) +m3] +O(r−3),

u3(r, θ) = r−1 [(m3 −m0) cos θ − (m2 −m1) sin θ] +O(r−2),

where m0, ...,m3 are arbitrary constants.
We introduce also the set

A∗ =
{
u : u = Fk + sA

}
,

where k ∈ M3×1 is constant and arbitrary and sA ∈ M3×1∩A. In view of (2.3),
A and A∗ are classes of finite energy functions.

For the exterior domain the Betti formula [9] is as follows: if u is a solution

of (2.2) in S−, then for any v ∈ C2(S−) ∩ C1(S
−

) ∩ A∗

(2.7)

∫

S−

vT qdx = −
∫

S−

vTLudx = 2

∫

S−

E(u, v) dx+

∫

∂S

vTTu ds.
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3. Basic definitions of Sobolev spaces

For any m ∈ R, let Hm(R2) be the standard real Sobolev space of three-
component distributions, equipped with the norm

‖ u ‖2
m=

∫

R2

(1 + |ξ|2)m|ũ(ξ)|2dξ,

where ũ is the Fourier transform of u. In what follows we do not distinguish
between equivalent norms and denote them by the same symbol; thus, the norm
in H1(R2) can be defined by

‖ u ‖2
1=‖ u ‖2

0 +
3∑

i=1

‖ ∇ui ‖2
0 .

The spaces Hm(R2) and H−m(R2) are dual with respect to duality induced by
〈·, ·〉0 .

We introduce the space L2
ω(R2) of (3×1)-vector functions u = (u, u3)T , where

u = (u1,u2)T , such that

‖ u ‖2
0,ω=

∫

R2

|u(x)|2
(1 + |x|)4(1 + ln |x|)2dx+

∫

R2

|u3(x)|2
(1 + |x|)2(1 + ln |x|)2dx <∞.

We consider the bilinear form b(u, v) = 2
∫

R2 E(u, v) dx. Let H1,ω(R2) be the
space of three-component distributions on R

2 for which

‖ u ‖2
1,ω=‖ u ‖2

0,ω +b(u, u) <∞,

H−1,ω(R2) is dual to H1,ω(R2) with respect to the duality generated by 〈·, ·〉0 .
The norm in H−1,ω(R2) is denoted by ‖ · ‖−1,ω .

Let
◦
Hm(S+) be the subspace of Hm(R2) consisting of all u which have a

compact support in S+. Hm(S+) is the space of the restrictions to S+ of all
u ∈ Hm(R2). Denoting by π± the operators of restrictions from R

2 to S±, respec-
tively, we introduce the norm of u ∈ Hm(S+) by ‖ u ‖m;S+= infv∈Hm(R2):π+v=u

‖ v ‖m . If m = 1, then the norms of u ∈
◦
H1(S+) and u ∈ H1(S+) are equivalent

to 

‖ u ‖2

0;S+ +

3∑

i=1

∫

S+

|∇ui(x)|2dx





1/2

.

The spaces
◦
Hm(S+) and H−m(S+) are dual with respect to the duality induced

by 〈·, ·〉0;S+ .
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Let
◦
H1,ω(S−) be the subspace of H1,ω(R2) consisting of all u which have

compact support in S−. H1,ω(S−) is the space of the restrictions to S− of all

u ∈ H1,ω(R2). The norm in H1,ω(S−) is defined by

‖ u ‖1,ω;S−= inf
v∈H1,ω(R2):π−v=u

‖ v ‖1,ω .

From the definition it follows that H1,ω(S−) is isometric to H1,ω(R2)\
◦
H1(S+).

It can be shown that the norm of u ∈ H1,ω(S−) is equivalent to

{
‖ u ‖2

0,ω;S− +b−(u, u)
}1/2

,

where

‖ u ‖2
0,ω;S−=

∫

S−

|u(x)|2
(1 + |x|)4(1 + ln |x|)2dx+

∫

S−

|u3(x)|2
(1 + |x|)2(1 + ln |x|)2dx

and b±(u, v) = 2
∫
S± E(u, v) dx. This norm is compatible with asymptotic

class A.

The dual of
◦
H1,ω(S−) with respect to the duality generated by 〈·, ·〉0;S− is the

space H−1,ω(S−), with norm ‖ · ‖−1,ω;S− ; the dual of H1,ω(S−) is
◦
H−1,ω(S−),

which can be identified with a subspace of H−1,ω(R2).

Let Hm(∂S) be the standard Sobolev space of distributions on ∂S, with norm

‖ · ‖m;∂S Hm(∂S) and H−m(∂S) are dual with respect to the duality generated

by the inner product 〈·, ·〉0;∂S in L2(∂S).

We denote by γ+ and γ− the trace operators defined first on C∞
0 (S±) and

then extended by continuity to the surjections γ+ : H1(S+) −→ H1/2(∂S),

γ− : H1,ω(S−) −→ H1/2(∂S). This is possible because of the local equivalence

of H1,ω(S−) and H1(S−). We also consider a continuous extension operators

l+ : H1/2(∂S) −→ H1(S+), l− : H1/2(∂S) −→ H1(S−); the latter, since the

norm in H1(S−) is stronger than that in H1,ω(S−), can also be regarded as a

continuous operator from H1/2(∂S) into H1,ω(S−).

To proceed further we will need the following well-known fact from the func-

tional analysis.

Theorem 1. (Lax–Milgram Lemma). Let H be a Hilbert space and b(u, v)

be a bilinear functional defined for every ordinate pair u, v ∈ H, for which there

exist two constants h and k such that:

|b(u, v)| 6 h ‖u‖ ‖v‖ , ‖u‖2
6 k |b(u, u)| ∀u, v ∈ H.
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In this case we say that b(u, v) is coercive. Then however we assign the bounded
linear functional L(v) on H, there exists one and only one u such that

b(u, v) = L(v), ∀v ∈ H, ‖u‖ 6 c ‖L‖∗ ,
where ‖·‖∗ is the norm on the dual H ′ of H.

The proof of this lemma can be found in [19].

4. Interior boundary value problems

We consider the Dirichlet and Neumann interior boundary value problems.

The (interior) Dirichlet problem is formulated as follows.

(D+) Find u ∈ C2(S+) ∩ C1(S
+

) satisfying (2.2) such that u |
∂S

= f, .

where f is prescribed on ∂S.

Let (D+
0 ) be the interior Dirichlet problem with f = 0. From (2.5) we see

that a solution u of (D+
0 ) satisfies

(4.1) b+(u, v) = 〈q, v〉0,S+ ∀v ∈ C∞
0 (S+).

Since C∞
0 (S+) is dense in

◦
H1(S+), it is clear that (4.1) holds for any v ∈

◦
H1(S+).

Obviously, any u ∈ C2(S+) ∩ C1(S
+

) satisfying (4.1) for any v ∈
◦
H1(S+) and

u|
∂S

= 0 is a classical (regular) solution of (D+
0 ). Hence, the variational formu-

lation of (D+
0 ) is as follows.

Find u ∈
◦
H1(S+) such that

(4.2) b+(u, v) = 〈q, v〉0,S+ ∀v ∈
◦
H1(S+).

Theorem 2. There exists a constant c = c(S+) > 0 such that

(4.3) b+(u, u)+ ‖ u ‖2
0;S+> c ‖ u ‖2

1;S+ ∀u ∈ H1(S+).

P r o o f. In view of the condition on α, β, γ, κ and µ, E(u, u) is a positive

quadratic form. Consequently, we may introduce the space G of all (3×1)-vector

functions u on S+ with norm

‖ u ‖2
G= b+(u, u)+ ‖ u ‖2

0;S+ .

Let {u(n)} be a Cauchy sequence in G. From the definition of b+(u, v) it follows

that there are ρ11, ρ22, ρ12, ρ21, ρ31, ρ32, ρ132, ρ231, β ∈ L2(S+) such that

u
(n)
1,1 → ρ11, u

(n)
2,2 → ρ22, u

(n)
1,2 → ρ12, u

(n)
2,1 → ρ21,

u
(n)
3,1 → ρ31, u

(n)
3,2 → ρ32,

2u
(n)
1 − u

(n)
3,2 → ρ132, 2u

(n)
2 + u

(n)
3,1 → ρ231, u

(n) → ρ
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in L2(S+). Then

u
(n)
1,1 → ρ11 = ρ1,1, u

(n)
2,2 → ρ22 = ρ2,2,

u
(n)
1,2 → ρ12 = ρ1,2, u

(n)
2,1 → ρ21 = ρ2,1,

u
(n)
3,1 → ρ31 = ρ3,1, u

(n)
3,2 → ρ32 = ρ3,2,

2u
(n)
1 − u

(n)
3,2 → ρ132 = 2ρ1 − ρ3,2,

2u
(n)
2 + u

(n)
3,1 → ρ231 = 2ρ2 + ρ3,1,

in the sense of distributions, hence, also in L2(S+). This implies that ρ, ρ1,1, ρ2,2,

ρ1,2, ρ2,1, ρ3,1, ρ3,2, 2ρ1 − ρ3,2, 2ρ2 + ρ3,1 ∈ L2(S+) and ‖ u(n) − ρ ‖G→ 0, what

means that G is complete. For any u ∈ G we have u1 ∈ L2(S+), u1,1 ∈ L2(S+),

u1,2 ∈ L2(S+), consequently, u1 ∈ H1(S+). The facts that u2 ∈ H1(S+) and

u3 ∈ H1(S+) are shown similarly. This indicates that G is a subset of H1(S+).

The converse statement being obvious, we conclude that G and H1(S+) coincide

as sets. The imbedding operator I : H1(S+) → G is bijective and continuous,

therefore, by Banach’s theorem [19] on the inverse operator I−1 is continuous;

in other words, ‖ u ‖2
G> c ‖ u ‖2

1,S+ , which is the same as (4.3).

Theorem 3. There exists a constant c = c(S+) > 0 such that

(4.4) b+(u, u) > c ‖ u ‖2
1 ∀u ∈

◦
H1(S+).

P r o o f. We claim that there is a c = c(S+) > 0 such that

(4.5) b+(u, u) > c ‖ u ‖2
0,S+ ∀u ∈

◦
H1(S+).

Indeed, if the opposite is true, then we can construct a sequence {u(n)} in
◦
H1(S+)

such that

(4.6) b+(u(n), u(n)) → 0, ‖ u(n) ‖0,S+= 1 for all n.

By (4.3), {u(n)} is bounded in H1(S+) so, by Rellich’s lemma [19], it contains

a convergent subsequence (again denoted by {u(n)}, for simplicity); that is, there

is a u ∈ L2(S+) such that u(n) → u in L2(S+). This means that, in view of (4.6),
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u
(n)
1,1 → 0 = u1,1, u

(n)
2,2 → 0 = u2,2,

u
(n)
1,2 → 0 = u1,2, u

(n)
2,1 → 0 = u2,1,

u
(n)
3,1 → 0 = u3,1, u

(n)
3,2 → 0 = u3,2,

2u
(n)
1 − u

(n)
3,2 → 0 = 2u1 − u3,2,

2u
(n)
2 + u

(n)
3,1 → 0 = 2u2 + u3,1

in L2(S+). These equalities imply that u is a rigid displacement. Since u = 0

on ∂S, it follows that u = 0 in S+ which contradicts the corollary ‖ u ‖0,S+= 1

of (4.6). Hence, (4.5) holds, and the statement of the theorem is now obtained

from (4.5) and (4.3).

Theorem 4. Problem (4.2) has a unique solution u ∈
◦
H1(S+) for every

q ∈ H−1(S+), and this solution satisfies the estimate

(4.7) ‖ u ‖16 c ‖ q ‖−1,S+ .

P r o o f. Since H−1(S+) is the dual of
◦
H1(S+) with respect to duality in-

duced by 〈·, ·〉0,S+ , it follows that 〈q, v〉0,S+ is continuous linear functional on
◦
H1(S+) for every q ∈ H−1(S+). By Theorem 2, b+(u, v) is a continuous bilinear

form on
◦
H1(S+) ×

◦
H1(S+). By Theorem 3, b+(u, u) is coercive on

◦
H1(S+). We

now apply the Lax-Milgram lemma to complete the proof.

The variational formulation of (D+) is as follows.

Find u ∈ H1(S+) such that

(4.8) b+(u, v) = 〈q, v〉0,S+ ∀v ∈
◦
H1(S+)

and

(4.9) γ+u = f.

Theorem 5. Problem (4.8)–(4.9) has a unique solution u ∈ H1(S+) for any

q ∈ H−1(S+) and any f ∈ H1/2(∂S), and this solution satisfies the estimate

(4.10) ‖ u ‖1,S+6 c
(
‖ q ‖−1,S+ + ‖ f ‖1/2,∂S

)
.

P r o o f. The substitution u = u0 + l+f reduces (4.8)-(4.9) to a new varia-

tional problem, consisting in finding u0 ∈
◦
H1(S+) such that

(4.11) b+(u0, v) = 〈q, v〉0,S+ − b+(l+f, v) ∀v ∈
◦
H1(S+).
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Clearly, b+(u, v) is continuous on H1(S+) ×H1(S+), which implies that

〈q, v〉0,S+ − b+(l+f, v)

is a continuous linear functional on
◦
H1(S+). Also,

(4.12)

| 〈q, v〉0,S+ − b+(l+f, v) | 6‖ q ‖−1,S+‖ v ‖1 +c ‖ l+f ‖1,S+‖ v ‖1

6 c
(
‖ q ‖−1,S+ + ‖ l+f ‖1,S+

)
‖ v ‖1 .

The statement now follows from Theorem 4, with (4.10) obtained from (4.12)

and the continuity of l+.

The (interior) Neumann problem is formulated as follows.

(N+) Find u ∈ C2(S+) ∩ C1(S
+

) satisfying (2.2) andTu = g on ∂S,

where g is prescribed on ∂S.

In this case (2.5) leads to the following variational formulation.

Find u ∈ H1(S+) such that

(4.13) b+(u, v) = 〈q, v〉0,S+ +
〈
g, γ+v

〉
0,∂S

∀v ∈ H1(S+).

It is clear that, in view of the properties of rigid displacements,

(4.14)
〈
q,F(i)

〉

0,S+
+

〈
g, γ+

F
(i)

〉

0,∂S
= 0

is a necessary solvability condition for (N+). In what follows we assume that

(4.14) holds.

Theorem 6. There is a c = c(S+) > 0 such that for any u ∈ H1(S+)

(4.15) b+(u, u) +
3∑

i=1

〈
u,F(i)

〉2

0,S+
> c ‖ u ‖2

1,S+ ,

(4.16) b+(u, u) +
3∑

i=1

〈
γ+u, γ+

F
(i)

〉2

0,∂S
> c ‖ u ‖2

1,S+ .

P r o o f. If either (4.15) or (4.16) does not hold, then, by repeating the

argument in the proof of Theorem 3, we find that there is a u ∈ F such that〈
u,F(i)

〉
0,S+ = 0 in the case of (4.15) or

〈
γ+u, γ+

F
(i)

〉
0,∂S

= 0 in the case of

(4.16), while ‖ u ‖1,S+= 1, which is an obvious contradiction. Inequalities (4.15)

and (4.16) hold.
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Theorem 7. Problem (4.13) is solvable for any q ∈
◦
H−1(S+) and g ∈

H−1/2(∂S). Any two solutions differ by a rigid displacement, and there is a

solution u0 that satisfies the estimate

(4.17) ‖ u0 ‖1,S+6 c
(
‖ q ‖−1,S+ + ‖ g ‖−1/2,∂S

)
.

P r o o f. We introduce the factor space H1(S+) = H1(S+)\F , the bilinear

form

B+(U, V ) = b+(u, v) on H1(S+) ×H1(S+),

and the linear functional

L(V ) = 〈q, v〉0,S+ +
〈
g, γ+v

〉
0,∂S

on H1(S+),

where u and v are arbitrary representatives of the classes U, V ∈ H1(S+). We

define the norm in H1(S+) by

‖ U ‖H1(S+)= inf
u∈H1(S+)

u∈U

‖ u ‖1,S+ .

Instead of (4.13) we now consider the new variational problem of finding

U ∈ H1(S+) such that

(4.18) B+(U, V ) = L(V ) ∀V ∈ H1(S+).

In view of the definition of B+(U, V ), we see that for any U, V ∈ H1(S+) and

any u ∈ U, v ∈ V ,

|B+(U, V )| = |b+(u, v)| 6 c ‖ u ‖1,S+‖ v ‖1,S+ ,

therefore

|B+(U, V )| 6 c inf
u∈H1(S+)

u∈U

‖ u ‖1,S+ inf
v∈H1(S+)

v∈U

‖ v ‖1,S+= c ‖ U ‖H1(S+)‖ V ‖H1(S+),

which shows that B+(U, V ) is continuous on H1(S+) ×H1(S+).

Next, we can choose
∼

u ∈ U such that
〈

∼

u,F(i)
〉

0,S+
= 0. Then, by Theorem 6,

B+(U,U) = b+(
∼

u,
∼

u) > c ‖ ∼

u ‖2
1,S+> c inf

u∈H1(S+)
u∈U

‖ u ‖1,S+= c ‖ U ‖H1(S+),

so B+(U,U) is coercive on H1(S+).
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Finally, since γ+ is continuous on H1(∂S), for any V ∈ H1(S+)

L(V ) 6 ‖ q ‖−1,S+‖ v ‖1,S+ + ‖ g ‖− 1

2
,∂S‖ γ+v ‖ 1

2
,∂S

6 c
(
‖ q ‖−1,S+ + ‖ g ‖− 1

2
,∂S

)
‖ v ‖1,S+ ,

which shows that L is continuous linear functional on H1(S+).

By the Lax–Milgram lemma, problem (4.18) has a unique solution U ∈
H1(S+), and this solution satisfies the estimate

‖ U ‖H1(S+)6 c
(
‖ q ‖−1,S+ + ‖ g ‖− 1

2
,∂S

)
.

Clearly, any u ∈ U is a solution of (4.13), and u0 ∈ U such that

‖ u0 ‖1,S+=‖ U ‖H1(S+)

satisfies (4.17).

5. Exterior boundary value problems

We consider the Dirichlet and Neumann exterior boundary value problems.

The (exterior) Dirichlet problem is formulated as follows:

(D−) Find u ∈ C2(S−) ∩ C1(S
−

) ∩ A∗ satisfying (2.2) such that u |
∂S

= f,

where f is prescribed on ∂S.

Let (D−
0 ) be the exterior Dirichlet problem with f = 0. From (2.6) we see

that a solution u of (D−
0 ) satisfies

(5.1) b−(u, v) = 〈q, v〉0,S− ∀v ∈ C∞
0 (S−).

Since C∞
0 (S−) is dense in

◦
H1,ω(S−), it is clear that (4.19) holds for any v ∈

◦
H1,ω(S−). Obviously, any u ∈ C2(S−) ∩ C1(S

−
) ∩ A∗ satisfying (4.19) for any

v ∈
◦
H1,ω(S−) and u |

∂S
= 0 is a classical (regular) solution of (D−

0 ). Hence, the

variational formulation of (D−
0 ) is as follows.

Find u ∈
◦
H1,ω(S−) such that

(5.2) b−(u, v) = 〈q, v〉0,S− ∀v ∈
◦
H1,ω(S−).

Let K−
R =

{
x ∈ R

2 : |x| > R
}
, R > 1, and ∂KR =

{
x ∈ R

2 : |x| = R
}
.
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Theorem 8. There are ci(R) = const > 0 such that

(5.3) ‖ u ‖2
0,ω;K−

R

6 c1bK−

R
(u, u) + c2 ‖ u ‖2

0,∂KR
, ∀u ∈ H1,ω(K−

R ),

where ‖ · ‖0,∂KR
and ‖ · ‖1/2,∂KR

are the norms in L2(∂KR) and H1/2(∂KR),

respectively.

The proof of this theorem follows the procedure described in [20].

Theorem 9. There is a c = c(S−) = const > 0 such that any u ∈ H1,ω(S−)

satisfies the estimates

‖ u ‖2
1,ω;S− 6 c


b−(u, u) +

∣∣∣∣∣∣

∫

Γ0

u ds

∣∣∣∣∣∣

2
 ,(5.4)

‖ u ‖2
1,ω;S− 6 c

[
b−(u, u) +

3∑

i=1

〈
u, γ−F

(i)
〉2

0,∂S

]
,(5.5)

where Γ0 ⊆ ∂S, measure of Γ0 is larger than zero.

P r o o f. We claim that for any u ∈ H1,ω;S−

‖ u ‖2
0,ω;S− 6 c


b−(u, u) +

∣∣∣∣∣∣

∫

Γ0

u ds

∣∣∣∣∣∣

2
 ,(5.6)

‖ u ‖2
0,ω;S− 6 c

[
b−(u, u) +

3∑

i=1

〈
u, γ−F

(i)
〉2

0,∂S

]
.(5.7)

First suppose that the opposite of formula (5.6) is true. Then we can construct

a sequence {u(n)} ⊂ H1,ω(S−) such that

(5.8) b−(u(n), u(n)) → 0,

∫

Γ0

u(n)ds→ 0,

while

(5.9) ‖ u ‖2
0,ω;S−= 1.

Let ∂KR be a circle with the center at the origin and of radius R > 1 sufficiently

large so that ∂S is contained inside ∂KR. We write SR = S− ∩K−
R . Since SR



Weak solutions to anti-plane boundary value problems ... 533

is bounded, we may repeat the proof of Theorem 3 to deduce that there is a

cR = const > 0 such that

(5.10) ‖ u ‖2
1;SR

6 cR


bSR

(u, u) +

∣∣∣∣∣∣

∫

Γ0

u ds

∣∣∣∣∣∣

2
 ∀u ∈ H1(SR).

Then, by Theorem 8,

‖ u(n) ‖2
0,ω;S−=‖ u(n) ‖2

0,ω;SR
+ ‖ u(n) ‖2

0,ω;K−

R

6‖ u(n) ‖2
0,SR

+ ‖ u(n) ‖2
0,ω;K−

R

6 cR


bSR

(u(n), u(n)) +

∣∣∣∣∣∣

∫

Γ0

u(n) ds

∣∣∣∣∣∣

2
 + c1bK−

R
(u(n), u(n))

+ c2 ‖ ∽

u
(n) ‖2

1/2,∂KR
+c3 ‖ u(n)

3 ‖2
0,∂KR

.

From (5.10) for u(n) we now conclude that u(n) → 0 in H1(SR). Then u(n) → 0

in H1/2(∂KR), hence in L2(∂KR). Consequently, from the last inequality we find

that limn→∞ ‖ u(n) ‖2
0,ω;S−= 0, which contradicts (5.9). Formula (5.7) is proved

similarly.

Theorem 10. The variational problem (5.2) has a unique solution u ∈
◦
H1,ω(S−) for every q ∈ H−1,ω(S−), and this solution satisfies the estimate

‖ u ‖1,ω6 c ‖ q ‖−1,ω;S− .

P r o o f. By Theorem 9,

‖ u ‖2
1,ω6 cb−(u, u) ∀u ∈

◦
H1,ω(S−),

which means that b−(u, u) is coercive on
◦
H1,ω(S−). Since b−(u, u) is clearly con-

tinuous on
◦
H1,ω(S−)×

◦
H1,ω(S−), we apply the Lax–Milgram lemma to complete

the proof.

The variational formulation of (D−) is as follows.

Find u ∈ H1,ω(S−) such that

(5.11) b−(u, v) = 〈q, v〉0,S− ∀v ∈
◦
H1,ω(S−)

and

(5.12) γ−u = f.
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Theorem 11. Problem (5.11)–(5.12) has a unique solution u ∈ H1,ω(S−)

for any q ∈ H−1,ω(S−) and any f ∈ H 1

2

(∂S), and this solution satisfies the

estimate

‖ u ‖1,ω;S−6 c
(
‖ q ‖−1,ω;S− + ‖ f ‖ 1

2
,∂S

)
.

P r o o f. The substitution u = u0 + l−f reduces (5.11)–(5.12) to a new

variational problem, consisting in finding u0 ∈
◦
H1,ω(S−) such that

(5.13) b−(u0, v) = 〈q, v〉0,S− − b−(l−f, v) ∀v ∈
◦
H1,ω(S−).

Since for any v ∈
◦
H1,ω(S−)

| 〈q, v〉0,S− − b−(l−f, v)| 6‖ q ‖−1,ω;S−‖ v ‖1,ω +
[
b−(l−f, l−f)

]1/2
[b−(v, v)]1/2

6
(
‖ q ‖−1,ω;S− + ‖ l−f ‖1,ω;S−

)
‖ v ‖1,ω

6 c
(
‖ q ‖−1,ω;S− + ‖ f ‖1/2,∂S

)
‖ v ‖1,ω,

the linear form 〈q, v〉0,S−−b−(l−f, v) is a continuous linear functional on
◦
H1,ω(S−).

The statement of the theorem now follows from the Lax–Milgram lemma applied

to the auxiliary problem (5.13) and the estimates

‖ u0 ‖1,ω 6 c
(
‖ q ‖−1,ω;S− + ‖ f ‖1/2,∂S

)

‖ u ‖1,ω;S− 6‖ u0 ‖−1,ω;S− + ‖ l−f ‖1,ω;S−6 c
(
‖ q ‖−1,ω;S− + ‖ f ‖ 1

2
,∂S

)
.

The (exterior) Neumann problem is formulated as follows.

(N−) Find u ∈ C2(S−) ∩ C1(S
−

) ∩ A satisfying (2.2) and Tu = g on ∂S,

where g is prescribed on ∂S.

In this case (2.6) leads to the following variational formulation.

Find u ∈ H1,ω(S−) such that

(5.14) b−(u, v) = 〈q, v〉0,S− −
〈
g, γ−v

〉
0,∂S

∀v ∈ H1,ω(S−).

In view of the properties of rigid displacements, the condition

(5.15)
〈
q,F(i)

〉

0,S−
−

〈
g, γ−F

(i)
〉

0,∂S
= 0

is a necessary solvability condition for (5.14). In what follows we assume that

(5.15) holds.
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Theorem 12. Problem (5.14) is solvable for any q ∈
◦
H−1,ω(S−) and g ∈

H−1/2(∂S). Any two solutions differ by a rigid displacement, and there is a

solution u0 that satisfies the estimate

(5.16) ‖ u0 ‖1,ω;S−6 c
(
‖ q ‖−1,ω + ‖ g ‖−1/2,∂S

)
.

P r o o f. We introduce the factor space H1,ω(S−) = H1,ω(S−)\F , the bilin-

ear form

B−(U, V ) = b−(u, v) on H1,ω(S−) ×H1,ω(S−),

and the linear functional

L(V ) = 〈q, v〉0,S− −
〈
g, γ−v

〉
0,∂S

on H1,ω(S−),

where u and v are arbitrary representatives of the classes U, V ∈ H1,ω(S−). We

define the norm in H1,ω(S−) by

‖ U ‖H1,ω(S−)= inf
u∈H1,ω(S−)

u∈U

‖ u ‖1,ω;S− .

Instead of (5.14) we now consider the new variational problem of finding

U ∈ H1,ω(S−) such that

(5.17) B−(U, V ) = L(V ) ∀V ∈ H1,ω(S−).

In view of the definition of B−(U, V ), we see that for any U, V ∈ H1,ω(S−) and

any u ∈ U, v ∈ V

|B−(U, V )| = |b−(u, v)| 6 c ‖ u ‖1,ω;S−‖ v ‖1,ω;S− ,

therefore

|B−(U, V )| 6 c inf
u∈H1,ω(S−)

u∈U

‖ u ‖1,ω;S− inf
v∈H1,ω(S−)

v∈U

‖ v ‖1,ω;S−

= c ‖ U ‖H1,ω(S−)‖ V ‖H1,ω(S−),

which shows that B−(U, V ) is continuous on H1,ω(S−) ×H1,ω(S−).

Next, we can choose
∼

u ∈ U such that
〈
γ−

∽

u, γ−F
(i)

〉

0,∂S
= 0. Then, by (5.5),

B−(U,U) = b−(
∼

u,
∼

u) > c ‖ ∼

u ‖2
1,ω;S−> c inf

u∈H1,ω(S−)
u∈U

‖ u ‖2
1,ω;S−= k ‖ U ‖2

H1,ω(S−),

so B−(U,U) is coercive on H1,ω(S−).
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Finally, since γ− is continuous on H1,ω(S−), for any V ∈ H1,ω(S−)

L(V ) 6 ‖ q ‖−1,ω‖ v ‖1,ω;S− + ‖ g ‖− 1

2
,∂S‖ γ−v ‖ 1

2
,∂S

6 c
(
‖ q ‖−1,ω + ‖ g ‖− 1

2
,∂S

)
‖ v ‖1,ω;S− ,

which shows that L is a continuous linear functional on H1,ω(S−).

By the Lax–Milgram lemma, problem (5.17) has a unique solution U ∈
H1,ω(S−), and this solution satisfies the estimate

‖ U ‖H1,ω(S−)6 c
(
‖ q ‖−1,ω + ‖ g ‖− 1

2
,∂S

)
.

Clearly, any u ∈ U is a solution of (5.14), and u0 ∈ U such that

‖ u0 ‖1,ω;S−=‖ U ‖H1,ω(S−)

satisfies (5.16).

6. Example: Torsion of a graphite micropolar beam

of square cross-section

As an example, consider the torsion of a graphite micropolar beam of square

cross-section in which the length of each side is equal to 40 mm. The elastic

constants for graphite take the following values : α = 9050 MPa, β = 0 N,

γ = 5434 N, κ = 61132 N, and µ = 2123 MPa [21]. Assume that the origin

of the coordinate system is located in the center of the beam cross-section:

consequently, the domain S is bounded by the square

−20 < x1 < 20, − 20 < x2 < 20.

As an auxiliary contour ∂S∗ we take a circle of radius equal to 40 mm with

the center at the origin

x1 = 40 cos t, x2 = 40 sin t.

Using the Gauss quadrature formula with 16 ordinates to evaluate the inte-

grals over ∂S and following the computational procedure discussed in [18], the

approximate solution of the interior Neumann boundary-value problem (4.13) in

terms of generalized Fourier series is found to converge to twelve decimal places

accuracy for n = 56 terms of the series. Numerical values are presented below

for a set of representative points inside the square cross-section:
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Table 1. Approximate Solution of Micropolar Beam with Square Cross-section
with n = 56 in (4.13). ϕ1 – microrotation about x1 axis, ϕ2 – microrotation about

x2 axis, u – anti-plane displacement.

Point in Cross-Section ϕ1 ϕ2 u

(0, 0) 0 0 0

(10, 10) −0.005081325117 −0.036497251651 0.314159265343

(20, 20) −0.000220837450 −0.062474342712 1.256302804033

(20, 10) −0.021153286073 −0.029701921647 0.525061872292

(20, 0) −0.024678497292 0 0

(20, −10) −0.021153286076 0.029701921641 −0.525061872203

(20, −20) −0.000220837450 0.062474342715 −1.256302804069

(10, −20) 0.001677453459 0.083988380805 −0.731533594421

(0, −20) 0 0.087536496618 0

(−10, −20) −0.001677453459 0.083988380803 0.731533594488

(−20, −20) 0.000220837450 0.062474342718 1.256302804062

(−20, −10) 0.021153286079 0.029701921641 0.525061872208

(−20, 0) 0.024678497298 0 0

(−20, 10) 0.021153286071 −0.029701921643 −0.525061872272

(−20, 20) 0.000220837450 −0.062474342714 −1.256302804335

(−10, 20) −0.001677453459 −0.083988380807 −0.731533594413

(0, 20) 0 −0.087536496614 0

(10, 20) 0.001677453459 −0.083988380806 0.731533594418

Note, that these results are in good agreement with the experimental data

obtained for prismatic micropolar beams by Park and Lakes in [4]. Also, the

method used in our investigation is easily extended, with only minor changes

in detail, to the analysis of torsion of micropolar beams of any (non-smooth)

cross-section, where we again expect a significant contribution from the material

microstructure.

7. Summary

In this paper we have formulated the interior and exterior Dirichlet and

Neumann problems of anti-plane Cosserat elasticity in Sobolev spaces and es-

tablished the existence, uniqueness and continuous dependence on the data of

the results for these problems. We have shown that the problem of torsion of
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a micropolar beam of non-smooth arbitrary cross-section may be considered as

the interior Neumann boundary value problem in anti-plane micropolar elastic-

ity and provided an example, which demonstrates that material microstructure

does indeed have a significant effect on the warping function.
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