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The incompressible viscous steady flow through a helical pipe of circular cross-
section rotating at a constant angular velocity about the center of curvature is in-
vestigated numerically to examine the combined effects of rotation (Coriolis force),
torsion and curvature (centrifugal force) on the flow. The flow depends on the Taylor

number Tr =
2a2ΩT

υ

s
2

δ + 2β2
0

, the Dean number Dn =

√
2δa3G

µυ
, the torsion para-

meter β0 =
λ√
2δ

and the dimensionless curvature of the duct δ, where a is the radius

of the helical pipe, ΩT the angular velocity, µ the viscosity, υ the kinematic viscosity,
G the constant pressure gradient along the pipe axis and β0 – a parameter related
to the torsion τ and curvature δ. When ΩT > 0, the rotation is in the direction in
which the Coriolis force produces the curvature effect. When ΩT < 0, the rotation
is in the direction in which the Coriolis force exhibits an opposite effect to that of
curvature. The calculations are carried out for −500 ≤ Tr ≤ 500, 1500 ≤ Dn ≤ 2000
(large Dean number), 0 ≤ β0 ≤ 0.4 and 0 < δ ≤ 0.2. The total flux through the duct
has a sharp peak at a negative Tr.

1. Introduction

The flow through a curved tube has attracted considerable attention not
only because of its practical importance in chemical and mechanical engineer-
ing, but also because of the physically interesting features under the action of
centrifugal force caused by curvature of the tube. Dean [6] was the pioneer of
the problem in mathematical terms under the fully developed flow condition. He
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found the secondary flow consisting in a pair of counterrotating vortices caused
by the centrifugal force. Since then, the secondary flow driven by the centrifu-
gal force in a curved pipe has been studied extensively, as shown in the review
articles by Berger Talbot and Yao [1], Nandakumar and Masliyah [16]
and Ito [9]). The fluid flowing through a tube rotating at a constant angular
velocity about an axis normal to a plane including the tube is subject to both
the Coriolis and centrifugal forces. Such rotating passages are used in cooling
systems for conductors of electric generators.

Flow in a rotating straight duct is of interest because the secondary flows in
this case are qualitatively similar to those in stationary curved systems in view
of the similar centrifugal mechanisms inducing the secondary flows in the two
systems (Ishigaki [11]). Since the pipelines have more or less bent or curved
sections, it is interesting to investigate the combined effects of curvature and
rotation, which are relevant to the flow in rotating curved ducts. Miyazaki
[15] examined the solutions when the pressure-driven flow proceeds in the same
direction of rotation. This is called the co-rotating case. Ito and Motai [9]
investigated both co-rotating and counter-rotating cases with respect to the
direction of pressure-driven flow. A reduction in the strength of the secondary
flow and even a secondary flow reversal was observed for counter rotating case.
Moreover, Daskopoulos and Lenhoff [5] showed the bifurcation study of the
flow combined with curvature and rotation. The above-mentioned works have
been considered for a circular cross-section.

The curved geometry of helical pipe is important from both-industrial and
academic standpoint. The helical pipe has been used extensively in various in-
dustrial applications to enhance the rate of heat, mass and momentum transfer.
In order to improve the performance of these devices, an accurate and reliable
analysis of the flow in the helical pipe is necessary. These devices could also be
used as a basis for studying the flow in other devices, such as screw pumps, heat
exchangers and the passage between the blades of gas turbines or centrifugal
compressors. The shape of a helical pipe, as shown in Fig. 1a, is determined
by the dimensionless curvature δ and torsion λ. The torsion and curvature are

defined, respectively, as λ =
ab′

b′2 + c′2
and δ =

ac′

b′2 + c′2
, where a is the radius

of the cross-section of the helical pipe, 2πb′ the pitch of the helical pipe, and
c′, the radius of the helix of the center-line of the helical pipe. The curvature δ
and torsion λ of the center-line of the pipe characterize the particular kind of a
pipe. For example, for a toroidal pipe, δ is constant and λ is zero, and for helical
pipe, both λ and δ are constant and nonzero. The torsion gives rise to the so-
called pitch of the duct, 2πb′, as shown in Fig. 1a. Wang [20] for the first time
handled the problem of flow in a helical circular duct using a non-orthogonal,
helical co-ordinate system. The flow in the helical pipe has been studied for cir-
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cular (Manlapaz et al. [14] Wang [20] Murata et al. [16] Germano [7], Chen
and Fan [2], Kao [12], Xie [19], Tuttle [18], Chen and Jan [3]) and elliptical
(Germano [8]) cross-sections. The previous theoretical studies mentioned above
are limited to small curvature and torsion. Liu and Masliyah [13] numerically
solved the problem of laminar flows in a circular pipe having a non-zero pitch.
They discussed in detail secondary flow patterns in a cross-section of the pipe.
However, their analysis is limited to a small Dean number and small curvature.
Yamamoto et al. [22] investigated numerically the flow through a helical pipe
for a wide range of the Dean number, curvature and torsion. They employed the
orthogonal coordinate system and solved the equations numerically by applying
the spectral method. Yamamoto et al. [23] also conducted experiments on the
flow in helical circular tube over a range of Reynolds numbers from about 500
to 2000. The results reveal a rather large effect of torsion on the flow. Quite
recently, Yamamoto, Mahmud Alam, Yasuhara and Arivowo [24] studied
the helical pipe flow with rotation for a small range of Dean number. For a wide
range of the Dean number, curvature and torsion, no work regarding the helical
pipe flow with rotation has been done. In this respect, it is quite innovative to
investigate the flow in a rotating helical pipe for a wide range of the Dean num-
ber, curvature and torsion to understand the flow behavior. This is the main
objective of the present paper.

2. Governing equations

We have considered the coordinate system (s′, r′, θ′) as shown in Fig. 1b for
fully a developed flow in a rotating helical circular pipe. In this figure, s′ is the
coordinate along the center-line of the duct, T – the unit tangent vector along s′,
and N and B – the normal and binormal vectors, respectively. The right-handed
helix is considered in our work (see Fig. 1a). The angle φ is defined by

(2.1) φ(s′) =

s′∫

s′
0

τ ′(s)ds

where τ ′ is the torsion of the center-line of the pipe and s′0 is arbitrary as long as
s′ ≥ s′0. Variables are non-dimensionalized by using a, the radius of the circular
tube, υ the kinematic viscosity and ρ the density of the fluid. We introduce the
non-dimensional variables defined by:

(2.2)

r =
r′

a
, u =

a

υ
u′, v =

a

υ
v′, w =

a

υ
w′√2δ,

δ =
a

L
, λ = aτ ′, p =

(a
υ

)2 p′

ρ
, s =

s′

a
.
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a) b)

c) d)

Fig. 1. a) Helical pipe with circular cross-section; b) Co-ordinate system;
c)The directions of the u′, v′ and w′ velocity components; d) Geometrical configuration.

Here u, v and w are the velocity components in the r, α, s directions respec-
tively and these are shown in Fig. 1c, p is the pressure, δ the non-dimensional
curvature, λ the non-dimensional torsion and the variables with prime are dimen-
sional quantities. With reference to the generalized equations, the Navier–Stokes
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equations can be put mathematically in the following non-dimensional forms:

(2.3)
1

r

∂

∂r
(ru) +

1

r

∂v
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+
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ω

∂w
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+
δ

ω
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(2.4) Du− v2

r
− cosα

ω

w2

2
+

1

2
Tr(2β0υ − w cosα) = −∂p1

∂r

−
(

1

r

∂

∂α
− δ sinα

ω

)
Ω +

β0

ω

∂

∂α

(
2δβ0

ω

∂u

∂α
− ∂w

∂r
− δ cosα

ω
w

)
,

(2.5) Dv +
uv

r
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2
+

1

2
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(2.6) Dw +
δ cosα

ω
uw − δ sinα

ω
vw + Trδ(u cosα− v sinα) =
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ω
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1
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,

where Ω, ω, D and α are defined by

(2.7)

Ω =
∂v

∂r
+
v

r
− 1

r

∂u

∂α
, ω = 1 + δ r cosα,

D = u
∂

∂r
+
v

r

∂

∂α
+
β0

ω
w
∂

∂α
, α = θ + φ.

The pressure can be written in the form

(2.8) p = −Dns√
2δ

+ p1(r, α) +
T 2

r

16

(
δ + 2β2

0

) [( c
a

+ r cosα
)2

+ 2β2
0

c

a
sin2 α

]
,

where p1 is the deviation of the pressure in a cross-section and G is a constant
representing the pressure gradient along the pipe center-line. The non-dimensio-
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nal parameters Tr (Taylor number), Dn (Dean number) and β0 (torsion parame-
ter) were defined earlier. Considering the continuity Eq. (2.3), we can introduce
the modified stream function ψ which is related to u, v and w by

(2.9) u =
1

rω

∂ψ

∂α
, v = − 1

ω

∂ψ

∂r
− β0r

ω
w.

Putting this equation into Eqs. (2.4)–(2.6) and eliminating p1 in the resulting
relations, we get the equations for w and ψ. The relations for w and ψ are
actually used for numerical computations and these are not shown for brevity.
The boundary conditions at the wall surface are given by

(2.10) w = u = v = 0, or w = ψ =
∂ψ

∂r
= 0 at r = 1.

3. Flux through the rotating helical pipe

The dimensional mean axial velocity w′ is expressed by

(3.1) w′ =
1

πa2

a∫

0

r′dr′
2π∫

0

w′dα =
υ

2a

k√
δ
,

where

k =

√
2

π

1∫

0

rdr

2π∫

0

wdα

is the dimensionless flux.
We define the non-dimensional mean radial velocity w as

(3.2) w =
a

υ
w′ =

k

2
√
δ
.

The flux of the rotating helical pipe Qc and that of a straight tube Qs are
given by

Qc = πa2w′ =
π

2
aυ

k√
δ
,(3.3)

Qs =
πGa4

8µ
.(3.4)

Therefore, we have

(3.5)
Qc

Qs
=

4
√

2k

Dn
.
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We define the Reynolds number as

(3.6) Re =
w′(2a)

υ
=

k√
δ
.

4. Method of numerical calculation

The numerical calculation technique corresponds exactly to those given by
Yamamoto, Md. Mahmud Alam, Yasuhara and Arivowo [24] and so their
description are not reproduced here for brevity. We will present here only the
basic concept of the numerical calculation technique. The spectral method is
applied in the numerical calculation. The Fourier series are used for the circum-
ferential direction α and the series of the Chebyshev polynomials in the radial
direction r. That is, we expand ψ and w as

(4.1)

w(r, α) =
N∑

n=1

ws
n(r) sin(nα) +

N∑

n=0

wc
n(r) cos(nα),

ψ(r, α) =

N∑

n=1

fs
n(r) sin(nα) +

N∑

n=0

f c
n(r) cos(nα),

where N is the truncation number of the Fourier series. The collocation points
are taken as

(4.2) R = cos

{
M + 2 − i

M + 2

}
π (1 ≤ i ≤M + 1).

The obtained algebraic non-linear equations are solved by an iteration method
with under-relaxation. Convergence of the solution is assured by taking ∈p<
10−5, where subscript p denotes the iteration number.

5. Results and discussion

The main flow is forced by the pressure gradient along the centerline of the
pipe. The helical tube is rotating around the center of curvature of the duct
with angular speed ΩT . According to the definition of Tr, a positive Tr means
that the duct rotates in the same sense as the movement with axial velocity
of the fluid within the pipe and we call this with co-rotation (see Fig. 1d).
On the other hand, the negative Tr is the case when the helical duct rotates
in the opposite sense with respect to the axial velocity, and this is called the
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counter-rotation (see Fig. 1d). Yamamoto, Md. Mahmud Alam, Yasuhara
and Arivowo [24] have studied the present problem for a small range of Dean
numbers (Dn = 500 and 1000). In the present problem, numerical calculations
have been made of a wide range of the Dean numbers (Dn = 1500 and 2000)
for two cases of curvature δ, 0.01 and 0.2, the Taylor numbers Tr ranging from
−500 to 500, and the torsion parameter β0 = 0.4. The truncation number was
taken to be M = 35 and N = 60 with good accuracy. The obtained results in
this matter are presented below.

5.1. Variation of the flux and the flow behavior with rotation

First, we describe the variation of the flux and the flow velocity with rotation

at the Dean number 1500 and 2000. The curvature δ is taken to be 0.01 and 0.2.

The torsion parameter β0 is kept constant and equal to 0.4.

Case 1. Dn = 1500.

Figure 2 shows the flux ratio
Qc

Qs
(where Qs is the flux through the straight

tube and Qc the flux through the rotating helical pipe (at the same pressure

gradient G) through the pipe versus the Taylor number Tr at δ = 0.01 and 0.2

and β0 = 0.4. The figure indicates that the flux increases as Tr decreases from

zero and it has a sharp peak close to the points where Tr = −270 for δ = 0.01

and Tr = −275 for δ = 0.2. Actually we are not able to obtain the flux near

Fig. 2. State diagram in terms of the dimensionless flux ratio Qc/Qs versus the Taylor
number Tr, for the flow through a rotating helical pipe of circular cross-section at Dean

number Dn = 1500, with β0 = 0.4.
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the peak point(at the left side) because the convergence of the solution in the

numerical calculation is very poor in that region. After that, the flux decreases

as Tr further decreases. The flux of δ = 0.01 is larger than that of δ = 0.2.

It is well understood that the high-curvature pipe makes the secondary flow

strong and for the fluid is not easy to flow. It is interesting to notice that the

peaks of the flux for two cases of curvature occur at about the same Tr and

the neighbouring flux ratios. Also the peaks are to be found to be near the

unity.

There are large differences between the fluxes at large |Tr| in two cases. We

shall depict the flow structures at several points of Tr in Fig. 3a–k when δ = 0.01.

Here and in the following figures, the left-hand figures show the vector plots of

the secondary flow in a cross-section, while the equi-velocity lines of the axial

flow are shown in the right-hand figures. The view from the upstream of the

pipe is shown in the figures. In this section, the increment of the axial velocity

is 30. The outer wall, i.e., the N direction, is to the right. The length of arrow

indicates the ratio of the stream velocity to the mean axial velocity and the

direction of the flow in vector plots are always indicated by an arrow-head, no

matter how small the flow is. The middle figures show the constant line of ψ

and the increment of ψ is 1.5. Therefore, from this figure we can understand the

secondary convection of fluid particles in a cross-section of the pipe. The vector

plots and the axial velocity contour plots are quantities which are measurable

experimentally by a pointing device, e.g. a hot-wire anemometer. It is seen in

some cases, e.g. in Fig. 3g, that there is a difference in the flow pattern between

constant ψ lines and vector plots.

We shall discuss the variation of the flow behavior with Tr by mainly using

constant ψ lines. A pair of vortices located at the upper left, and lower left, with

unequal size but opposite direction of rotation, is shown in Fig. 3f at Tr = 0.0.

The vortex rotating in the counter-direction of torsion (the upper vortex rotating

anti-clockwise) is larger and appears at the upper left of the cross-section. On

the other hand, the other vortex rotating in the same direction of torsion (lower

vortex rotating clockwise) is a little smaller and appears at the lower right of the

cross-section (see Fig. 3c). This figure also shows the location of the maximum

axial velocity being at upper right of the cross-section. Now we decrease Trto

the point where Tr = −100. The flow pattern at this point is shown in Fig. 3g. It

will be seen that the previous two vortices become an almost single vortex. The

center of the vortex moves to the upper left of the cross-section. If we further

decrease the value of Tr to the point where Tr = −275 and the flux ratio has

almost its peak, the secondary flow shows an interesting feature (see Fig. 3i).

Almost the only one vortex of the secondary flow is observed and it is stronger

near the centre of the cross-section. The velocity near the wall is very weak.
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[Fig. 3a–d]

The centre of the maximum axial flow is close to the centre of the cross-section.

This means that at the peak point the axial flow pattern approaches that of the

ordinary Poiseuille flow.

In this region of the Taylor number, the Coriolis force almost equals the

centrifugal force. If we further increase |Tr| to negative value from the peak

point of the flux, then we find that the flux suddenly decreases. That is, the
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[Fig. 3e–h]

flux has a sharp peak. The flow pattern after the peak point (where Tr = −400)

is shown in Fig. 3j. It is seen from this figure that its one weak vortex starts

to develop near the upper wall of the cross-section. The main vortex occupies

most area of the cross-section, and these two vortices are of reversed type as

compared with Fig. 3f. The maximum axial velocity is shifted to the lower left

of the cross-section. Further if we decrease the value of Tr to −500 (see Fig. 3),
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Fig. 3. (i–j) Vector plots of the secondary flow (left), stream-lines of the secondary flow
(middle) and contour plots of the axial flow (right) through the rotating helical pipe at

different values of Tr in case of Dn = 2000, with β0 = 0.4 and δ = 0.01.

we get again two vortices of almost equal size. The flow is completely reversed

as compared with the flow of Tr = 0.0 (see Fig. 3f).

The physical mechanism responsible for such a behavior is easily understood

once we recognize that without rotation and torsion, the curvature has the ten-

dency to induce a secondary flow directed radially outwards in the middle of

the channel, while without torsion the system rotation has a tendency to in-

duce a secondary flow in radially inward direction. The center of the maximum

axial flow (see Fig. 3k) has been approximately shifted to the opposite side as

compared to Fig. 3c where Tr = 500.

We next proceed to the discussions concerning the co-rotation. Starting from

the point where Tr = 0 (see Fig 3f) and increasing Tr, we reach the point where
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Tr = 500. The flow structure at this point is shown in Fig. 3e–a. It will be seen

that there is no qualitative difference with the flow structure of Tr = 0 (Fig. 3f).

At Tr = 500, the secondary flow as well as axial flow behavior are almost the

same as the flow behavior at Tr = −500, but of reversed type. This is due to

the Coriolis force added to the centrifugal force.

Case 2. Dn = 2000.

Figure 4 shows variation of the flux ratio with the Taylor number Tr when

Dn = 2000, δ = 0.01 and 0.2, and β0 = 0.4. In the present cases, we are not able

to obtain the flux near the peak point because the convergence of the solution

in the numerical calculation is very poor in that region. However, we will see

that the flux at a higher Dean number has a lower value at a constant Taylor

number. The presumed peak point moves to a lower value of Tr (higher |Tr|) for

larger Dean numbers. It will be seen that the flux has a sharp peak at larger

value of |Tr| as compared with that of Dn = 500 (Yamamoto, Md. Mahmud

Alam, Yasuhara and Arivowo [24]).

Fig. 4. State diagram in terms of the dimensionless flux ratio Qc/Qs versus the Taylor
number Tr, for the flow through a rotating helical pipe of circular cross-section at Dean

number Dn = 2000, with β0 = 0.4.

The effect of the centrifugal force is larger at larger flow rate, i.e., larger Dn,

without rotation. We need a large negative Coriolis force, i.e. large Tr, to counter-

balance the large centrifugal force. The strong secondary flow caused by a large

centrifugal force also makes the fluid difficult to flow. This is responsible for lower
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value of the flux, compared to that of Dn = 500 (Yamamoto, Md. Mahmud

Alam, Yasuhara and Arivowo [24]). Fig. 5a–g shows the flow structure.

In this figure, the increment of the axial velocity is 40 and the increment of

the ψ is 2.0. Variation of the flow behavior with the Taylor number introduces

no significant qualitative changes as compared to the previous case ofDn = 1500.

[Fig. 5a–d]
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Fig. 5. (e–g) Vector plots of the secondary flow (left), stream-lines of the secondary flow
(middle) and contour plots of the axial flow (right) through the rotating helical pipe at

different values of Tr in case of Dn = 2000, with β0 = 0.4 and δ = 0.01.

6. Conclusions

1. Many solutions have not been obtained in case of a rotating helical pipe

with circular cross-section.

2. The single cell with minor cell structure of the secondary flow at the max-

imum flux appears in case of Dean number 1500 and 2000. Similar flow

behaviours are observed after and before the peak point.

3. Near the maximum flux point, the strength of the vectors of the secondary

velocity is fairly weak and very weak near the periphery of the cross-

section. This may be due to the weak effect of interaction of the centrifugal

force with the Coriolis force.
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