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During the important industrial process of case hardening, phase transformations
in a steel workpiece are essentially influenced by the (non-homogeneous) carbon dis-
tribution (near the surface). Moreover, the temperature course is of great impor-
tance. We develop a mathematical model of case hardening which takes diffusion
of carbon in austenite, heat conduction and possible phase transformations into ac-
count. In this work, mechanical behaviour (thermo-elasticity, classical plasticity and
transformation-induced plasticity) is not included in the model. As a result we obtain
an initial-boundary-value problem for a coupled system of two parabolic partial and
several ordinary differential equations. Finally, we present some numerical simula-
tions.
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1. Introduction

It is the aim of this work to model carbon diffusion in steel on a macroscopic
level, in interaction with ferritic phase transformations and heat conduction.
This situation occurs, for instance, during the industrial process of carburisa-
tion of steel workpieces followed by quenching (so-called case hardening), but
also during phase transformations in steel workpieces with a given inhomoge-
neous carbon distribution. We refer, for instance, to the recent engineering ar-
ticles [1, 2, 5, 27, 41] dealing with carburisation and case hardening. It is well
known that carburisation and quenching happen on different time scales. Partic-
ularly for large workpieces with a high case-hardening depth, the carburisation
process can take several hours [27]. Since carbon diffusion is heavily temperature-
dependent, an increase in temperature from 950◦ C to 1050◦ C can reduce the
carburisation time by half. When carrying out such high-temperature carburi-
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sation, an isothermal phase transformation is often enforced after the carburi-
sation and before the quenching in order to guarantee a sufficiently fine-grained
microstructure (cf. [27] and references therein). For discussions concerning the
material properties of steel, phase transformations and heat treatment we refer
to [3, 7, 8, 11–13, 18, 22, 26, 28, 31, 36], e.g.

In our model of diffusion, heat conduction and phase transformations, we
obtain a coupled system consisting of two parabolic partial differential equations
for carbon diffusion in austenite and for heat conduction and of several ordinary
differential equations accounting for the phase transformations.

Although this paper is especially concerned with case hardening, our ap-
proach is also applicable to more general situations where diffusion and phase
transformations play a role. Besides this, decarburisation before quenching, when
the edge layer releases carbon to the environment, can also be captured by the
model proposed here. We emphasise that in this work macroscopic models are
considered. In particular, we do not dwell on the meso- and microstructure of
steel and its phases. Keywords in this context are grains and grain boundaries or
local carbon diffusion during the formation of ferrite and pearlite. All quantities
such as phase fractions and mass fractions refer to averages over not-too-small
volumes (so-called representative volume elements (RVEs), cf. [6, 15, 17, 52]). A
more detailed model accounting for diffusion on the meso-scale would require ad-
ditional notions and equations. Corresponding remarks are given below. Unlike
the earlier work [47], some assumptions in the present paper are less restrictive
(cf. the specific assumptions regarding the course of the phase transformations
in Sec. 3.2).

Generally, phase transformations may lead to mechanical deformations of
the workpiece. In order to focus, we do not include mechanical behaviour (e.g.
thermo-elasticity, transformation-induced plasticity (TRIP), plasticity) in the
model. This remains for future work. The distortion of workpieces related to
carburisation and case hardening is investigated in [1, 2, 26, 27]. Numerical
computations with the commercial software SYSWELD R©can be found in [1, 2].
For general models of the material behaviour of steel including phase transforma-
tions and TRIP we refer to [26] and, without carbon diffusion, to [39, 44, 45, 48].

In Sec. 2, basic assumptions are formulated concerning the involved phe-
nomena such as carbon diffusion in austenite, heat conduction and phase trans-
formations in steel. We derive a rather general model of phase transformations
that includes several known approaches. Afterwards, in Sec. 3, the specific phase
transformations of austenite that occur in unalloyed hypoeutectoid steel are de-
scribed. After this, the entire mathematical model is recapitulated in Sec. 4.
In Sec. 5 we present some numerical simulations with realistic data. Finally, in
Sec. 6 we give some remarks on how to take mechanical behaviour and grain
size into account.
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2. Macroscopic modelling – basics

2.1. Phenomenological assumptions

In order to fix ideas, we make the following assumptions:
1. We develop a macroscopic model. This means that steel is considered as

a co-existing mixture of its phases, which do not diffuse but rather stay
at the position where they are formed (cf. [44, 45, 48], e.g.). The meso-
scale is only considered as far as it seems necessary for the macroscopic
description. The choice of phases occurring in the model is mostly made
by macroscopic considerations. For instance, pearlite is regarded as one
phase although it is actually a mixture of ferrite and cementite.

2. We restrict ourselves to ferritic phase transformations, i.e., when the pro-
cess starts, only austenite is present, which transforms under certain con-
ditions into the different ferritic phases. The reverse transformations are
not considered except that of ferrite into austenite above the eutectoid
temperature. This seems reasonable since during quenching processes, the
temperature decreases rapidly and a possible re-warming due to the latent
heats generally plays a minor role. Moreover, transformations between
austenite and ferrite before quenching, which are important in practical
applications (cf. [27], e.g.), are included.

3. Since only a small amount of carbon is dissolved in ferrite, we consider only
carbon diffusion in austenite and not in the ferritic phases. The mesoscopic
diffusion of carbon, for instance during the formation of pearlite, does not
appear in the macroscopic model equations since pearlite is regarded as
one phase. When a ferritic phase is formed, the associated carbon can no
longer diffuse through the austenite.

4. In the heat equation, only sources and sinks due to the phase transfor-
mations are taken into account. Moreover, cross-diffusion effects between
carbon and heat transport (cf. [24], e.g.) are neglected since they are not
relevant in steel.

5. The phase transformations strongly depend on temperature and carbon
content (cf. Sec. 2.4). In order to reduce the number of possible phases
it seems appropriate to assume certain ranges of temperature and carbon
content that are not exceeded. The possible phases are then determined
with the help of the corresponding iron-carbon diagram (see [7, 8, 22,
33, 36], e.g.). We restrict ourselves to the hypoeutectoid regime and to
unalloyed steels (cf. Sec. 3).

6. Since the densities of the phases in steel differ only a little (for fixed tem-
perature), we do not distinguish between mass and volume fractions of the
phases (cf. [43]). Although this simplification is usually made, it should be
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noted that the small differences in the phase densities can cause distor-
tion of steel workpieces. In carburisation, the changes in density are an
important source of distortion (cf. [1]).

7. In order to focus, in this work, mechanical deformations are neglected ex-
cept for some comments in Sec. 6. Therefore, distortion, in particular that
related to case hardening, can not be described by the proposed model.
However, the composition of the phases and accordingly, the hardness
of the material can be predicted. In order to capture the distortion ef-
fects, it is necessary to add a momentum balance as well as additional
constitutive equations (e.g., thermo-elasticity with phase transformations,
TRIP, or classical plasticity) to the model. This remains for future re-
search. For modelling of mechanical behaviour of steel including carbon
diffusion, phase transformations, TRIP and classical plasticity, we refer to
[26], as well as to [4, 13, 15, 20, 21, 31, 39, 44–46, 48] (without carbon
diffusion) and the literature cited therein.

2.2. Modelling of carbon diffusion in austenite

We consider diffusion in a solid body subject to small deformations and in
which the change of a fixed volume as well as its mass by diffusion is negligible.
In case of large deformations, the corresponding Piola transformation has to be
applied (cf. [19, 51], e.g.). It is assumed that N ≥ 2 phases are relevant where
austenite has always index 1. Let us consider a representative volume element
(RVE) V at a point x ∈ Ω, where the (three-dimensional) domain Ω repre-
sents the workpiece. The mass of carbon existing in V and dissolved in phase i
(i = 1, ..., N) is denoted by mci. Then we define the mass concentration (= par-
tial density) of carbon dissolved in phase i referring to the total volume V in x,
at time t, by

(2.1) cci(x, t) :=
1

V

∫

V

ρ̃ci(x, t, y)γi(x, t, y)dy, i = 1, ..., N,

where γi is the characteristic function of phase i in V and ρ̃ci is the microscopic
(mesoscopic) mass concentration (partial density) of carbon in phase i. Accord-
ingly, the volume fraction pi and the mass fraction ψi of phase i are defined
as

pi(x, t) : =
1

V

∫

V

γi(x, t, y) dy, i = 1, ..., N,(2.2)

ψi(x, t) : =
ρi(x, t)

ρ(x, t)
dy, i = 1, ..., N,(2.3)
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where ρ is the mass density of the RVE and ρi is the mass density of phase i
in V . Of course, the sum of all cci is then equal to the total mass concentration
of the carbon in the workpiece. Let Jc1 be the diffusion flux density of carbon
in austenite (referring to the total volume). Then the diffusion equation

(2.4)
∂cc1
∂t

+ divJc1 = f in Ω×]0, T [

is valid, where f is a source which is specified below and T > 0 is the duration
time of the process. By assumption 3 in 2.1, carbon can only diffuse in austenite.
Therefore, the following variant of Fick’s law is appropriate:

(2.5) Jc1 = −dc1(θ)p1 ∇
(

cc1
p1

)

.

Here, dci is the temperature-dependent diffusion coefficient of carbon in austen-
ite. The presence of the volume fraction p1 under the gradient can be motivated
by the following argument: Assume that cci is constant in space, but p1 is non-
constant. Since in this case the carbon concentration in austenite can not be
constant, diffusion will occur. The volume fraction in front of the gradient indi-
cates that diffusion can happen only in austenite. Equation (2.5) reads then as
follows:

(2.6)
∂cc1
∂t

− div

(

dc1(θ)p1 ∇
(

cc1
p1

))

= f in Ω×]0, T [.

Now we specify f . When a phase, say, ferrite, is built up from austenite, the
carbon located in this phase does no longer diffuse through the austenite. Since
in our setting the ferritic phases can only be built up from and transform into
austenite, we have

(2.7) f = −
N
∑

j=2

∂ccj
∂t

.

The sign in (2.7) is negative because a growth of phase j leads to a decrease
of carbon mass in austenite (referring to the total volume). We remark that
without carbon diffusion from (2.6) and (2.7) the relation

(2.8)
N
∑

j=1

∂ccj
∂t

= 0

follows, which means that the total carbon concentration can only change due
to (macroscopic) diffusion. Alternatively, we can express the quantities ccj by
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the mass fraction of carbon ucj (:= quotient of masses) in phase j and by the
mass fraction ψj of phase j (referring to total mass). From the definitions of
these quantities one obtains easily

(2.9) ccj = ρucjψj .

Hence, from (2.7) and (2.9) it follows for the source term

(2.10) f = −ρ
N
∑

j=2

∂

∂t
(ucjψj).

Due to (2.9), the relation (2.10) is valid also for a non-constant total density
ρ. In this case, a standard argument on time derivatives of particular volume
integrals has to be used (cf. [19, 51], e.g.). Summarising (2.6) and (2.10), we
obtain an inhomogeneous diffusion equation for cc1:

(2.11)
∂cc1
∂t

− div

(

dc1(θ)p1∇
(

cc1
p1

))

= −ρ
N
∑

j=2

∂

∂t
(ucjψj) in Ω×]0, T [.

By assumption 7 in 2.1 we do not distinguish between mass and volume fractions
of a phase in steel. Therefore, we assume approximately

(2.12) pj = ψj ,

and refer only to the phase fraction pj . In order to model the appropriate bound-
ary conditions, we proceed as follows. By the general theory of mixtures, in equi-
librium the chemical potentials of carbon in steel and carbon in the surrounding
medium coincide at the boundary. We do not specify them here but refer to [34].
What is important here is the fact that they are functions of carbon concen-
tration and of temperature. Therefore we assume on that part of the boundary
where carbon can diffuse,

(2.13) µcΓ (ccΓ , θ) = µc

(

cc1
p1
, θ

)

.

In (2.13) µcΓ and µc are the corresponding chemical potentials of carbon in
the surrounding medium and in steel, respectively. And ccΓ is the ambient mass
concentration, i.e., the mass of carbon per volume of the surrounding medium.
In general, µcΓ depends on how carbon is given in the carburisation medium.
For the non-equilibrium case we obtain a (generally nonlinear) Robin boundary
condition if we assume that the diffusion flux along the normal is proportional
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to the difference of the chemical potentials. This reads

(2.14) Jc1 ν = −dc1(θ)p1
∂

∂ν

(

cc1
p1

)

= δc1(θ)p1

(

µc

(

cc1
p1
, θ

)

− µcΓ (ccΓ , θΓ )

)

at ∂Ω×]0, T [.

Here we have used: ν – unit normal vector to ∂Ω directed outwards, δc1 –
temperature- and space-dependent mass-transfer coefficient for carbon in austen-
ite, θΓ – ambient temperature. At those parts of the boundary where no exchange
happens, we set δc1 equal to zero. The initial condition is

(2.15) cc1(x, 0) = cc10(x) for x ∈ Ω

with the initial concentration cc10. Instead of the quantity cc1, the mass frac-
tion of carbon in austenite is often employed. Thanks to (2.9), (2.12), and the
constancy of the density ρ we obtain from (2.11) (note also (2.7))

(2.16)
∂

∂t
(p1uc1) − div(dc1(θ)p1 ∇(uc1)) = −

N
∑

j=2

∂

∂t
(ucjpj) = −1

ρ

N
∑

j=2

∂ccj
∂t

in Ω×]0, T [.

Depending on the situation, we will work with both representations of the
source term. The relation (2.9) yields also the boundary conditions for uc1,
namely, instead of (2.13)

(2.17) −dc1(θ)
∂

∂ν
(uc1) =

δc1(θ)

ρ
(µc(ρuc1, θ) − µcΓ (ccΓ , θΓ )) at ∂Ω×]0, T [.

It is possible to linearise the difference of the potentials (cf. [34], e.g.), by set-
ting approximately θ = θΓ. In this case, one obtains instead of (2.17) a Robin
boundary condition being linear in uc1

(2.18) −dc1(θ)
∂

∂ν
(uc1) = δc1(θ)µ

0
c(θ)

(

uc1 −
ccΓ
ρ

)

at ∂Ω×]0, T [,

where µ0
c is a temperature-dependent parameter. Relation (2.9) leads to the

initial condition

(2.19) uc1(x, 0) = uc10(x).

Remark 1. For convenience, we use the carbon concentration as the primary
variable instead of a thermodynamic potential. Besides this, the Henry coefficient
is taken equal to one.
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(i) Assume that no (macroscopic) diffusion of carbon in austenite happens
and hence, by assumption 3 in 2.1, no diffusion in steel happens at all. Then it
follows from (2.16) that

(2.20)
N
∑

j=1

∂

∂t
(ucjpj) = 0.

From (2.20) we can recover the so-called lever rule (cf. [7, 8], e.g.) for the total
mass fraction u of carbon in steel

(2.21)
N
∑

j=1

ucjpj = u(x) for x ∈ Ω.

In case of a homogeneous carbon distribution u is constant also with respect
to x.

(ii) Frequently, additional quantities are defined in order to relate the macro
to the micro-(meso) scale. For instance, in contrast to (2.1),

(2.22) ρci(x, t) :=

(∫

V

γi(x, t, y)dy

)−1 ∫

V

ρ̃ci(x, t, y)γi(x, t, y)dy

denotes the mass concentration (= partial density) of carbon dissolved in phase
i, referring to the part of V occupied by phase i (intrinsic phase average of (ρ̃c).
Then it is clear that

(2.23) ρci =
cci
pi
.

We refer to [6, 14, 15, 41] for further discussions.
(iii) If carbon diffusion in the other phases needs to be taken into account,

then a diffusion equation analogous to (2.6) has to be employed for each cci:

(2.24)
∂cci
∂t

− div

(

dci(θ)pi∇
(

cci
pi

))

= fi i = 1, ..., N in Ω×]0, T [.

If, in contrast to assumption 2 in 2.1, we would admit all transformations i → j
(i 6= j), then we can associate a carbon sink –fij (fij ≥ 0) (from the viewpoint
of i) to each transformation. In this case, the right-hand side fi in (2.24) reads:

(2.25) fi = −
N
∑

j=1, j 6=i

fij +
N
∑

j=1, j 6=i

fji.
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The fij for the particular transformations need to be determined from additional
considerations (e.g., from the iron-carbon diagram, see Fig. 1, and, for instance,
[22, 33, 36]). The sum of the fi from 1 to N has to be zero for consistency with
the conservation of mass. From (2.24), it follows that the quantity

(2.26) J :=

N
∑

j=1

dci(θ)pi∇
(

cci
pi

)

can be regarded as flux density of carbon diffusion through the bulk mater-
ial. The model (2.24), (2.25) is able to describe much more general situations
than those considered in this work, namely, diffusion of a (low-concentrated)
substance through a mixture or a material undergoing phase transformations.
If necessary, one has to distinguish between mass and volume fractions of the
different phases.

(iv) In engineering applications, percentage of the mass fractions uci is often
used for calculations instead of the mass fractions itself. Therefore, if necessary,
the above equations as well as the initial and boundary conditions need to be
modified by multiplying uci by the factor 100.

2.3. Modelling of heat conduction

We consider now the heat equation in connection with carbon diffusion in
austenite and phase transformations. For the temperature θ, we employ the
parabolic Eq. (cf. [19, 44, 45, 48]) (uc stands for (uc1,..., ucN ))

(2.27) ρceθ
′ − div(κ∇θ) = ρ

N
∑

i=2

Li(uc, θ)p
′
i, in Ω×]0, T [.

For the sake of brevity, from now on, the time derivatives (ordinary as well as
partial) are also denoted by a prime. The quantities in (2.27) are: ρ – density
in reference configuration (by assumption 2 in 2.1, this coincides with the den-
sity of austenite at initial temperature θ0 and initial concentration of carbon in
austenite uc10), ce – specific heat, κ – heat conductivity, Li – latent heat associ-
ated to the transformation of austenite into phase i (i = 2, ..., N). For κ and ce
we adopt a rule of mixtures which is linear with respect to the phase fractions:

ce(uc, θ,p) :=
N
∑

i=1

cei(uci, θ)pi,(2.28)

κ(uc, θ,p) :=
N
∑

i=1

κi(uci, θ)pi.(2.29)
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(p stands for (p1, p2, . . ., pN )). We choose the following initial and boundary
conditions:

θ(x, 0) = θ0(x) in Ω,(2.30)

−κ(uc, θ,p)
∂θ

∂ν
= δθ(uc, θ,p)(θ − θΓ ) at ∂Ω×]0, T [,(2.31)

where θ0 denotes the initial temperature, θΓ – the ambient temperature and δθ
– the heat-transfer coefficient which in general has to be computed by a rule of
mixture analogous to (2.28), (2.29).

2.4. Modelling of phase transformations – a general approach

Using suggestions for multi-phase modelling of phase transformations in
[16, 29, 30, 38], we choose a rather general modelling approach which includes
several known ones (see [4, 20, 21, 49], e.g.) As an advantage of this proce-
dure, we do not need to fix prior a particular transformation law such as that
of Johnson–Mehl–Avrami or that of Leblond–Devaux (see also Remark 2 and
[9–12, 23, 29–31] and references therein). Moreover, the concretions for our sit-
uation will be specified later. We assume that N ≥ 2 phases are distinguished
for the process that needs to be modelled (e.g., quenching of a hypoeutectoid
steel workpiece). Then the phase fractions pj satisfy the general balance as well
as non-negativity conditions:

N
∑

i=1

pi(x, t) = 1 in Ω×]0, T [,(2.32)

pi(x, t) ≥ 0 for i = 1, ..., N in Ω×]0, T [.(2.33)

Let us assume, that the transformation of the i-th phase into the j-th phase
(i 6= j), abbreviated as i → j, has its transformation rate –aij , i.e., for the
transformation i → j (for i, j = 1, . . ., N, i 6= j) the change of pi for pj can be
described by the transformation law

(2.34) p′i = −aij .

In accordance with (2.34) the growth of pj at expense of pi is expressed as

(2.35) p′j = aij .

As a consequence of (2.34), (2.35), we set

(2.36) aii := 0 i = 1, . . . , N
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and

(2.37) aij ≥ 0 i, j = 1, . . . , N.

Clearly, in case of impossibility of the transformation i → j we have aij = 0,
too. Here, we let the aij depend on θ, uc, but, generally, they can depend on
further variables (cf. [46, 49] e.g.). Based on experimental experience, we assume
for phase transformations in steel (cf. [9, 29–31] and references therein):

(2.38) For i, j ∈ {1, ..., N} with i 6= j, there exists a value pij = pij(θ,uc)
(k 6= i, j), such that the phase transformation pi → pj is only possible
if pi > 0 and pij −pj > 0. In case of general impossibility of the phase
transformation, we set pij = 0.

(2.39) For each phase j there exist two temperatures θjf and θjs generally
depending on uc such that the transformation i→ j may only occur,
if θjf ≤ θ < θjs. This last condition can be taken into account by
a switch-off function Gij , which is equal to one, if the condition is
fulfilled, and which is equal to zero otherwise.

Remark 2. Sometimes, the value pij can be regarded as “equilibrium frac-
tion” pi of the i-th phase (cf. [29, 30]). The approach here is more general, and
we avoid the discussion about the precise notion of an equilibrium. Additionally,
the controlling condition in (2.38) is more general as in [29, 30].

As usual, we define the Heaviside-function H by

(2.40) H(s) := 0 when s ≤ 0, H(s) = 1 when s > 0.

Taking the assumptions (2.34), (2.35), (2.38) and (2.39) into account, we propose
the subsequent general model for PT in steel

(2.41) p′i = −
N
∑

j=1

aijH(pi)H(pij − pj)Gij +
N
∑

j=1

ajiH(pj)H(pij − pi)Gji,

i = 1, . . . , N.

In this work, we deal with an unalloyed hypoeutectoid steel. Thus, the oc-
curring phases are numbered as follows:

Table 1. Occurring phases in our situation of an unalloyed hypoeutectoid steel.

index 1 2 3 4 5

phase austenite ferrite pearlite bainite martensite
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Pre-eutectoid ferrite will also be denoted by the index 2. Based on the above,
we write the following differential equations for the possible phase transforma-
tions in our situation:

p′1 = −
5
∑

j=2

a1jH(p1)H(p1j − pj)G1j + a21H(p2)H(p21 − p1)G21,(2.42)

p′2 = a12H(p1)H(p12 − p2)G12 − a21H(p2)H(p21 − p1)G21,(2.43)

p′i = a1iH(p1)H(p1i − pi)G1i, i = 3, 4, 5.(2.44)

The switch-off functions Gij are defined below as characteristic functions
of specific regions in the iron-carbon diagram (cf. [7, 8, 22, 28, 33, 36], e.g.).
By the Heaviside functions in (2.42) – (2.44), condition (2.38) is taken into ac-
count. Equation (2.42) describes the transformation of austenite into the ferritic
phases as well as the inverse transformation of ferrite into austenite. Equa-
tion (2.43) describes the forming and depletion of ferrite, while (2.44) describes
the forming of the remaining ferritic phases from austenite. The aij are mod-
elled according to the concrete situation. Possible choices are the approaches
by Johnson–Mehl–Avrami for diffusion-controlled transformations or that of
Koistinen–Marburger for martensitic transformations). We make a general ap-
proach (see [20, 21, 49] for detailed discussions and also Remark 3):

(2.45) aij := (eij(θ,uc) + pj)
rij(θ,uc)(pj − pj)

sij(θ,uc)gij(θ,uc),

The parameters eij , rij , sij and gij are subject to the conditions:

(2.46) eij ≥ 0, rij ≥ 0, sij ≥ 1, gij ≥ 0 for all admissible arguments.

Therefore, for each transformation i → j (i 6= j), no more than four para-
meters have to be determined, either from dilatometer experiments for different
relevant situations or from particular transformation diagrams (cf. [20, 49]). We
will return to this in Sec. 4.2. We remark that there also exist approaches that
account for an explicit dependence on the change in temperature θ′ by an ad-
ditional parameter (cf. [9, 10, 23]). In the present work, such a dependence is
omitted. According to (2.32) it suffices to take only N − 1 (= 4) differential
equations into account. We will therefore consider only (2.43) and (2.44) below.
In our situation, specified by assumption 2 in 2.1, we add the following initial
conditions:

(2.47) p1(x, 0) = 1, pj(x, 0) = 0 for j = 2, ..., N.

In Sec. 4.2 concrete descriptions for the bainitic and martensitic transformations
are given.
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Remark 3. Well-known models for phase transformations in steel are in-
cluded by the approach presented above. The linear model suggested by
Leblond and Devaux [29, 30] reads for the formation of phase j from phase i
(under conditions (2.38), (2.39))

(2.48) p′j =
pi − pi

τij
,

where τij is a non-negative parameter having the dimension of time and charac-
terising the transformation. This law is obtained by setting in the Eqs. (2.42)–
(2.44)

(2.49) aij := τ−1
ij .

The well-known model by Johnson, Mehl, Avrami and Kolmogoroff for
diffusion-controlled transformations (see [9, 11, 12, 29, 30, 31], e.g.) reads for
the formation of phase j from phase i (at constant temperature and under con-
ditions (2.38), (2.39))

(2.50) pj(t) = pj

(

1 − exp

(

−
(

t

τij(θ)

)nij(θ)
))

,

where τij > 0 and nij > 1 are parameters depending on temperature. From
(2.50), follows in case of constant θ the differential equation

(2.51) p′j(t) = (pj − pj(t))
ni(θ)

τij(θ)

(

−ln
(

1 − pj(t)p
−1
j

)

)1− 1
nij(θ)

.

Application of this equation for non-isothermal transformations is often inaccu-
rate. Therefore, various modifications have been suggested (see [9, 10, 23, 29,
30, 37, 50], e.g.). We also note that the right-hand side of (2.51) does not have
the structure of (2.45). However, this structure is obtained by linearising the
logarithm in (2.51) in accordance with −ln(1 − x) ≈ x for small x:

(2.52) p′j(t) = (pj − pj(t))
nij(θ)

τij(θ)

(

pj(t)p
−1
j

)1− 1
nij(θ)

.

3. Phase transformations in an unalloyed hypoeutectoid steel

3.1. Determination of domains for the (macroscopic) carbon concentration
and for the temperature

Now we describe the specific phase transformations occurring during quench-
ing. In order to limit the modelling effort, we restrict to hypoeutectoid unalloyed
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steel and we assume for the total mass fraction of carbon and for the tempera-
ture:

0.00025 ≤ u ≤ 0.0083,(3.1)

−100 ≤ θ ≤ 1300.(3.2)

The temperature is measured in ◦C. For simplicity, we omit this unit in the
equations. Thus, we consider (solid) steel being completely in the austenitic
phase at equilibrium (with uc1 = u) at a temperature above 900◦ C (with u
and θ subject to (3.1), (3.2)). Conditions (3.1), (3.2) define the section from the
iron-carbon diagram in Fig. 1 relevant for our situation (cf. [7, 8, 22, 33, 36],
e.g.).The lower bound for the temperature range (−100◦ C) is chosen rather
arbitrarily, however, it allows for a low quenching temperature. For low-alloyed
steel, one needs to take discrepancies in the iron-carbon diagram into account
(see [7, 8, 22, 33, 36], e.g., and citations therein). The initial conditions (2.19),
(2.30) are assumed to be compatible with (3.1) and (3.2). While in materials

Fig. 1. Fe-Fe3 C phase diagram (taken from [36]).
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science often the mass percentages are employed, we use mass fractions in the
following equations, for consistency with the a.m.

We introduce the following curves in the iron-carbon diagram as graphs of
functions depending on the carbon content u:

curve GP: θ = fGP (u) for 0 ≤ u ≤ 0.00025;(3.3)

curve GS: θ = fGS(u) for 0 ≤ u ≤ 0.0083;(3.4)

curve SE: θ = fSE(u) for 0.0083 ≤ u ≤ 0.0206;(3.5)

curve QP: θ = fQP (u) for 0 ≤ u ≤ 0.00025.(3.6)

We denote by fSE the curve (dashed in Fig. 2) that is extended below 723◦ C for
thermodynamic reasons. It represents the limit value for cementite (in pearlite).
(f1

SE(θ) is the minimum C concentration in austenite at which cementite can
still be formed (as a constituent of pearlite)).

Fig. 2. Admissible carbon-temperature domains for the model under consideration (left),
and a possible path of temperature and carbon mass fraction in austenite (right, see text).

The occurring phases are numbered in accordance with Table 1. Since only
austenite is present at the beginning, we assume further

(3.7) θ0(x) ≥ fGS(uc10(x)) for x ∈ Ω.
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Motivated by the Fe-Fe3C diagram (Fig. 1), we define regions for temperature
and carbon content, which split the range given in (3.1), (3.2) into disjoint parts
(see Fig. 2):

G1 : 0.00025 ≤ u ≤ 0.0083, fGS(u) < θ ≤ 1300;(3.8)

G2 : 0.00025 ≤ u ≤ 0.0083, 723 < θ ≤ fGS(u);(3.9)

G3 : θ4s(u) < θ ≤ 723 0.00025 ≤ u ≤ 0.0083;(3.10)

G4 : θ5s(u) < θ ≤ θ4s(u) 0.00025 ≤ u ≤ 0.0083;(3.11)

G5 : −100 ≤ θ ≤ θ5s(u) 0.00025 ≤ u ≤ 0.0083.(3.12)

Here the curves θ4s and θ5s represent the bainite and martensite start temper-
ature. For unalloyed steel the martensite start temperature is a monotonically
decreasing function w.r.t. carbon content in austenite. For the modelling, this
monotonicity is not of importance. Corresponding to the domains Gi, we define
characteristic functions via

(3.13) χGi(u, θ) := 1, if (u, θ) ∈ Gj , χGi(u, θ) := 0 otherwise

for j = 1, ..., 5.

The left-hand side of Fig. 2 shows the admissible domains. In the right-
hand figure, a path is plotted which represents the possible evolution of carbon
content in austenite and of temperature during carburisation and quenching, at a
fixed position inside. At constant temperature, the pure austenite has a growing
carbon content due to diffusion (carburisation) (part (1) in Fig. 2 (right)). After
that, during cooling down, in G1, there is some small growth due to diffusion.
Further on, in G2, due to the forming ferrite, the carbon content in austenite
grows (part (2). Contrary to that, a re-heating reduces the carbon content in
austenite, but the diffusion shifts the part (3) to the right. Part (4) describes
further carburisation at constant temperature. Finally, during cooling down, at
first the carbon content in austenite remains almost constant (part (5)), followed
by a growth due to ferrite formation (part (6)). Pearlite, bainite and martensite
are formed without changing the carbon content in austenite (part (7)).

3.2. Special assumptions concerning the occurring phase transformations

We need some more assumptions, in addition to the general ones given in
Sec. 2.1, describing the specific development of the possible phase transforma-
tions. Based on the iron-carbon diagram and the restriction given by (3.1), (3.2),
we formulate assumptions which are suitable for practical use.

1. In the region G1 only austenite is present (after sufficiently long time).
According to (3.7), the process starts in this region.
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2. In the region G2 ferrite is formed. After sufficiently long time, we get an
equilibrium between austenite and ferrite. A re-entry of θ and u from G2

into G1 is allowed (see Fig. 3).
3. In the region G3 pre-eutectoid ferrite and pearlite can be formed. A tran-

sition from G3 to G2 (i.e. a re-heating above 723◦ C) is excluded.
4. If θ and uc1 reach values in G4, bainite is formed with the carbon content
uc1. A re-entry of θ and uc1 from G4 into G3 is not allowed.

5. If θ and uc1 reach values in G5, martensite is formed with the carbon
content uc1. A re-entry of θ and uc1 from G5 into G4 is allowed.

6. It is assumed that (local) diffusion of carbon in ferrite is sufficiently fast
such that the carbon content in ferrite is always constant in space. In this
way, we avoid the modelling of coexisting ferrite with different carbon con-
tent at different positions inside the sample. This assumption is motivated
by the following facts: On the one hand, diffusion of carbon in ferrite is
faster than in austenite (cf. [7, 8, 11, 33], e.g.); on the other hand, the
carbon content in ferrite is small and does not change considerably (see
iron-carbon diagram).

The last statement in assumption 3 is in accordance with assumption 2 in 2.1,
which excludes a reverse transformation from pearlite, bainite and martensite
to austenite. In contrast to the model in [47], we allow a transition from G2

to G1. In doing so, we allow for a more general carbon temperature course
during carburisation (cf. Fig. 2 (right), see [27], e.g.). When the temperature
has dropped below the eutectoid temperature (723◦ C), it is not allowed to cross
this value again, according to assumption 3. We have assumed the restriction in
assumptions 4 for the sake of clarity. Otherwise, the model for forming ferrite
and pearlite would be more complex.

3.3. Transformations between austenite and ferrite in the region G2

As it can be read off the iron-carbon diagram, for each u (total carbon
content) and each θ in G2, there exists an equilibrium fraction of ferrite p12(u, θ)
with carbon content f−1

GP (θ) and an equilibrium fraction of austenite p21(u, θ)
with carbon content f−1

GS(θ). From the mass balance of carbon (“lever rule”, see
[7, 8], e.g.) it follows

(3.14) u = f−1
GS(θ)p21(u, θ) + f−1

GP (θ)p12(u, θ)

if only austenite and ferrite are present. The quantities θ, u, uc1, etc. depend on
x and t, which we do not indicate explicitly. Using

(3.15) p21(θ, u) = 1 − p12(θ, u) for (u, θ) ∈ G2,
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Eq. (3.14) gives

(3.16) p12(u, θ) =
f−1

GS(θ) − u

f−1
GS(θ) − f−1

GP (θ)
for (u, θ) ∈ G2

with

(3.17) u = uc1p1 + uc2p2.

In the region G1 it holds, of course,

(3.18) p12(u, θ) = 0, p21(θ, u) = 1 for (u, θ) ∈ G1.

We obtain the following differential equation for the transformation of austenite
into ferrite (and vice versa) (cf. (2.43))

(3.19) p′2 =
{

a12H(p1)H(p12(u, θ) − p2) − a21H(p2)H(p21 − p1)
}

× (χG1(u, θ) + χG2(u, θ)),

where a12 and a21 are both greater or equal to zero (cf. (2.37) and (2.45)). Due
to (3.18), ferrite can be formed only in G2, while austenite in G1 and G2. In
accordance with assumption 6, from 3.2 we set

(3.20) uc2(x, t) = ϕ(θ(x, t))

with ϕ defined (for further use) by

(3.21) ϕ(θ) := f−1
GP (θ)H(θ − 723) + f−1

QP (θ)H(723 − θ).

Remark 4. The description of the carbon content in ferrite becomes more
complicated without assumption 6 in 3.2. We refer to [47] for discussion.

3.4. Transformation of austenite into ferrite and pearlite in G3

In G3, (pre-eutectoid) ferrite and pearlite can be formed. Generally, the
transformation starts with the former, enlarging the carbon content in the re-
maining austenite. If this carbon content reaches the value f−1

SE(θ), the remaining
austenite will be transformed into pearlite (cf. [7, 8, 22]). In [47], we have used
this approach of consecutive transformations. However, there is a disadvantage,
when extracting the needed data only from the transformation diagrams. These
diagrams represent an assumed simultaneous transformation (see Sec. 5). Thus,
here we deal with this “simultaneous approach”. Due to the restriction in as-
sumption 4 in 3.3, in G3 only austenite, ferrite and pearlite are present. So we
have (cf. (3.17), (3.20), (3.21))

(3.22) u = uc1p1 + ϕ(θ)p2 + f−1
SE(θ)p3 for θ4s(u) < θ ≤ 723.
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Remark 5. Analogously to ferrite, we approximately assume that all exist-
ing pearlite has the carbon content f−1

SE(θ). This is a compromise which has been
found in the case of the assumed simultaneous transformations of pre-eutectoid
ferrite and pearlite. We will return to this problem in Remark 6.

The equilibrium values for ferrite and pearlite are given by the lever rule
again:

(3.23) u = ϕ(θ)p12 + f−1
SE(θ)p13.

This leads to (cf. (3.15), (3.16), (3.22))

p12(u, θ) =
f−1

SE − u

f−1
SE(θ) − f−1

QP (θ)
for (u, θ) ∈ G3,(3.24)

p13(θ, u) = 1 − p12(θu), for (u, θ) ∈ G3.(3.25)

Therefore we obtain the following differential equation for the formation of ferrite
and pearlite (cf. (3.19))

(3.26) p′2 = a12H(p1)H(p12(u, θ) − p2)χG3(u, θ),

(3.27) p′3 = a13H(p13(u, θ) − p3)H(p1)χG3(u, θ).

where the functions a12 and a13 have to be determined (see Sec. 5).

3.5. Transformation of austenite into bainite and into martensite

Bainite can only be formed if (uc1, θ) ∈ G4. Its carbon content is

(3.28) uc4 = uc1.

The possible final value (p14 is (cf. assumption 5 in 3.2)

(3.29) p14 = 1 − p2 − p3 − p5.

The transformation equation for bainite reads then

(3.30) p′4 = a14H(p14 − p4)H(p1)χG4(uc1, θ).

The formation of martensite is only possible if (uc1, θ) ∈ G5. Clearly, it holds

(3.31) uc5 = uc1.
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The still available austenite can be transformed into martensite by

(3.32) p′5 = a15H(p5 − p5)H(p1)χG5(uc1, θ).

The final value p15 can be determined by the Koistinen-Marburger approach
(see [6, 8, 9, 21, 29], e.g.) as

(3.33) p15 = (1 − p2 − p3 − p4)

(

1 − exp

(

−θ5s(uc1) − θ

θm0(uc1)

))

.

Here, θm0 is a parameter depending on the carbon concentration in austenite
(see Sec. 5).

4. Bulk model of complex material behaviour

4.1. The general case

We summarise the mathematical model for our situation, which is described
by the assumptions given in 3.2. Taking (2.32) , (3.28) and (3.31) into account,
the diffusion equation (2.16) reads as

(4.1)
∂

∂t

(

(1 − p2 − p3)uc1

)

− div
(

dc1(θ)p1 ∇uc1

)

= − ∂

∂t

(

uc2p2

)

− ∂

∂t

(

uc3p3

)

in Ω×]0, T [.

From (2.27) we obtain the heat equation, in our setting:

(4.2) ρceθ
′ − div (κ(uc, θ,p)∇θ) = ρL2(uc1p1 + uc2p2, θ)p

′
2

+ ρL2(uc1, θ)p
′
3 + ρL4(uc1, θ)p

′
4 + ρL5(uc1, θ)p

′
5 in Ω×]0, T [.

The latent heat of the transformations between austenite and ferrite depends on
the carbon content of the mixture of austenite and ferrite, whereas the latent
heats of the remaining transformations depend on the carbon content in austen-
ite. Due to (3.19), (3.26), (3.27), (3.30), (3.32), the transformation equations for
ferrite, pearlite, bainite and martensite read as

(4.3) p′2 =
{

a12H(p1)H(p12(u, θ) − p2) − a21H(p2)H(p21 − p1)
}

×
(

χG1(u, θ) + χG2(u, θ)
)

+ a12H(p1)H(p12(u, θ) − p2)χG3(u, θ)

in Ω×]0, T [,
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p′3 = a13H(p13 − p3)H(p1)χG3(u, θ) in Ω×]0, T [,(4.4)

p′4 = a14H(p14 − p4)H(p1)χG4(uc1, θ) in Ω×]0, T [,(4.5)

p′5 = a15H(p15 − p5)H(p1)χG5(uc1, θ) in Ω×]0, T [,(4.6)

where the maximum values of the phase fractions of austenite, ferrite, pearlite
and bainite are given as follows (cf. (3.16), (3.18), (3.24), (3.25), (3.29), (3.33)):

p12(u, θ) = 0 for (u, θ) ∈ G1,(4.7)

p12(u, θ) =
f−1

GS(θ) − uc1 p1 − uc2 p2

f−1
GS(θ) − f−1

GP (θ)
for (u, θ) ∈ G2,(4.8)

p12(u, θ) =
f−1

SE(θ) − uc1 p1 − uc2 p2 − uc3 p3

f−1
SE(θ) − f−1

QP (θ)
for (u, θ) ∈ G3,(4.9)

p13(θ, u) = 1 − p12(θ, u) for (u, θ) ∈ G3,(4.10)

p14 = 1 − p2 − p3 − p5,(4.11)

p15 = (1 − p2 − p3 − p4)

(

1 − exp

(

−θ5s(uc1) − θ

θm0(uc1)

))

.(4.12)

Moreover, the quantity uc2 and uc3 are given by (cf. Remarks 4 and 5)

(4.13) uc2 = ϕ(θ), uc3 = f−1
SE(θ),

and ϕ is defined by (3.21).

Remark 6. In our model, pre-eutectoid ferrite and pearlite are formed si-
multaneously (in G3). But, actually, most of the pearlite is formed when the
formation of ferrite is nearly finished, and uc1 has reached f−1

SE(θ). Thus, it
makes sense to change uc3 in the last term in (4.1) for uc1. Therefore, under this
assumption, instead of (4.1), we obtain the equation

(4.14)
∂

∂t

(

(1 − p2)uc1

)

− div (dc1(θ)p1∇(uc1)) = − ∂

∂t

(

uc2p2

)

in Ω×]0, T [.

The initial conditions for uc1, θ and p are

uc1(x, 0) = uc10(x), θ(x, 0) = θ0(x) for x ∈ Ω,(4.15)

p1(x, 0) = 1, pi(x, 0) = 0 for i = 2, ..., 5 for x ∈ Ω.(4.16)
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Moreover, the boundary conditions (2.18) (or, alternatively, (2.17)) for u and
(2.27) for θ have to be added:

−dc1(θ)
∂

∂ν
(uc1) = δc1(θ)µ

0
c(θ)

(

uc1 −
ccΓ
ρ

)

at ∂Ω×]0, T [,(4.17)

−κ ∂θ
∂ν

= δθ(θ − θΓ ) at ∂Ω×]0, T [.(4.18)

Here, θ0 and uc10 have to satisfy condition (3.7).
Summing up, the mathematical model for the macroscopic modelling of car-

bon diffusion (in austenite), heat conduction and phase transformations, consists
of an initial-boundary-value problem for a coupled system of two parabolic par-
tial differential equations (4.1) (or, alternatively, (4.14)) and (4.2), and of several
ordinary differential equations (4.3)–(4.6), in which the spatial variable x is a pa-
rameter. The equilibrium fractions of the phases (4.7)–(4.12) as well as (4.13)
can be plugged into Eqs. (4.1)–(4.6) and can therefore be (formally) eliminated.
Due to various nonlinearities, the mathematical and numerical investigations
are nontrivial. A suitable solution theory for the bulk model would essentially
exceed the scope of the present paper. This can be done basing on the concept
of weak solutions (cf. [40, 51], e.g., for details and discussion). We refer to [25]
for some mathematical results.

4.2. A special case – transformation of austenite only into bainite
and martensite

The general mathematical model is rather complex. Therefore it has to be
investigated which simplifications can be made. For instance, if the workpiece
intended for case hardening is not too large, then it is reasonable to assume that
austenite transforms only into bainite and martensite. As a special case of the
problem described in 4.1, one obtains the following equations (where (4.19) is
a special case of (4.1))

(4.19) u′c1 − div(dc1(θ)p1∇uc1) = 0 in Ω×]0, T [,

(4.20) ρceθ
′ − div(κ(uc, θ,p)∇θ)

= ρL4(uc1)p
′
4 + ρL5(uc1)p

′
5 in Ω×]0, T [,

p′4 = a14H(1 − p5 − p4)H(p1)χG4(uc1, θ) in Ω×]0, T [,(4.21)

p′5 = a15H(p15 − p5)H(p1)χG5(uc1, θ) in Ω×]0, T [,(4.22)
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p15 = (1 − p4)

(

1 − exp

(

−θ5s(uc1) − θ

θm0(uc1)

))

in Ω×]0, T [,(4.23)

p1 = 1 − p4 − p5 in Ω×]0, T [.(4.24)

The initial and boundary conditions have to be chosen as in 4.1.

4.3. Separation of diffusion and phase transformations

A second essential simplification can be made by considering the different
time scales at which diffusion and phase transformations take place (during
quenching). If carbon diffusion happens only in region G1, then (in G1) dif-
fusion and heat conduction can be described by two coupled parabolic partial
differential equations without sources:

u′c1 − div(dc1(θ)∇uc1) = 0 in Ω×]0, T [,(4.25)

ρceθ
′ − div(κ(uc, θ)∇θ) = 0 in Ω×]0, T [.(4.26)

(Of course p1 is equal to one inG1). Here we have to add the initial and boundary
conditions (4.15), (4.17), (4.18) for uc1 and θ. The solution of (4.25), (4.26) gives
the carbon distribution in the workpieces.

Assuming that quenching starts at time t1 > 0, one can neglect macro-
scopic carbon diffusion after this moment. Hence, the second part of the problem
consists in solving the coupled system of the heat equation and of the phase-
transformation equations, using the already known uc1 = uc1(x, t1).

Such a separation between diffusion during carburisation and subsequent
quenching (with fixed carbon content) is also performed in commercial simula-
tion software such as SYSWELD. We mote that our model covers more com-
plicated situations, when phase transformations (between austenite and ferrite,
e.g.) take place during carburisation.

5. Numerical simulations

The bulk model summarised in 4.1 can be solved numerically, for instance,
by the Finite-Element Method. In one space dimension, this can be established
with relatively low effort using the MATLAB-routine pdepe. The system is first
discretised in space, and the resulting system of ordinary differential equations is
integrated by a solver that selects the time steps dynamically. Alternatively, it is
possible to discretise the system, at first, in time (in an implicit or semi-implicit
way). This allows for decoupling of the equations to be solved in each time step
and is therefore expected to work more efficiently with the numerous nonlineari-
ties in the model. This will become vitally important when doing simulations in
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two or three space dimensions. An additional difficulty is given by the Heaviside
and the characteristic functions occurring in the model. We approximate them
by smooth functions.

Presenting some calculations, we show how the model developed above can
be applied in concrete situations. The general problem consists in determin-
ing the material parameters. As we do not have complete experimental data,
we act as follows: we withdraw the parameters concerning the phase trans-
formation from TTT diagrams for two hypoeutectoid steels differing by car-
bon content. By interpolation between the corresponding values for “low” and
“high” carbon content, we obtain the parameters as functions for arbitrary car-
bon content (between the boundary values). For the sake of simplicity, we use
a given carbon content (cf. the discussion in Sec. 4.3). Therefore, one has a
coupling of the heat-conduction equation and of the PT equations. From the
TTT diagrams we obtain the coefficients τ and n for the Johnson–Mehl–Avrami
approach (for forming of the ferrite, pearlite and bainite). The more general
approach presented in Sec. 2.4 needs more experimental data. The marten-
sitic transformation is modelled by the approach due to Leblond–Devaux

[29, 30].
Thus, the coefficients a1j (j = 2, . . . , 5) are (cf. (2.51))

a1j : = (p1j(u, θ) − pj(t))
n1i

τ1j

(

− ln(1 − pj(t)p
−1

1j )
)1− 1

n1j(θ)
, j = 2, 3, 4,(5.1)

a15 = p15(u, θ) − p5(t))µ15.(5.2)

Inserting (5.1) and (5.2) into (4.3) (only with respect toG3), and into (4.4)–(4.6),
we get the system describing the phase transformations:

(5.3) p′j = max
{

p1j(u, θ) − pj , 0
}n1i

τ1j

·
(

− ln(1 − pj(t)p
−1
1j )
)1− 1

n1j(θ)
H(p1)χG3(u, θ) for j = 2, 3,

(5.4) p′4 = max
{

p14(u, θ) − p4, 0
}n14

τ14

·
(

− ln(1 − p4(t)p
−1
14 )
)1− 1

n14(θ)
H(p1)χG4(u, θ),

p′5 = max
{

p15 − p5, 0
}

µ5H(p1)χG5(u, θ).(5.5)
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The limit values are given by (4.9)–(4.12). In (5.1)–(5.5), u is the given
(total) carbon concentration being equal to the initial value of uc1. The switch-
off function χGj will be constructed in accordance with information from the
TTT diagrams.

In order to obtain realistic data, we take TTT diagrams for the steels 1320
(carburised with 0.4% C – named as steel 0.4) and 1320 (carburised with 0.6% C
– named as steel 0.6) from [42] (page 17). As usual in the TTT diagrams, the
information about the transformation of austenite into ferrite and vice versa be-
tween austenite-start and final temperature (Ac1 and Ac3) is incomplete. Hence,
we neglect phase transformations above 730◦ C. The cited diagrams yield the
subsequent information (cf. [25] for details).

For the domains of PT:

G3 : 525◦C ≤ θ ≤ 730◦C for both steels 0.4 and 0.6,(5.6)

(5.7)
G4 : 333◦C ≤ θ ≤ 525◦C for the steel 0.4,

G4 : 256◦C ≤ θ ≤ 525◦C for the steel 0.6.

For steels with carbon content between 0.4% and 0.6% we obtain G4 by linear
interpolation. Hence, the martensite-start temperature is given by

(5.8) θ5s(u) = 256
u− 0.004

0.002
+ 333

0.006 − u

0.002
[◦C]

for 0.004 ≤ u ≤ 0.006.

The Koistinen–Marburger parameter θm0 (cf. (3.33)) can be obtained via the
line indicating 90% of martensite forming. Thus, we have

(5.9) θm0(u) = 60.37
u− 0.004

0.002
+ 46.04

0.004 − u

0.002
[◦C]

for 0.004 ≤ u ≤ 0.006.

For the parameter µ5 in (5.5), we take the value

(5.10) µ5 = 50 [sec−1],

using a suggestion in [29]. (This information cannot be taken from the diagram).
The parameters n and τ for the JMAK approach in (5.3), (5.4) can be

extracted from the diagrams, using the 1% and 99% curves for some discrete
temperature values. For technical reasons, we limit the values for n by 1 from
below (cf. (5.3), (5.4)). The parameters for the bainitic transformation are listed
in the Tables 2 and 3:
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Table 2. Parameter n4 and τ4 for the bainitic transformation for the steel 0.4.

θ [◦ C] 369 400 428 447 489

n4 1.198 1.33 1.348 1.312 1.074

τ4 [sec−1] 139.7 63.5 51.6 50.0 72.4

Table 3. Parameter n4 and τ4 for the bainitic transformation for the steel 0.6.

θ [◦ C] 314 350 389 425 483 500

n4 1.567 1.459 1.331 1.320 1.223 1.200

τ4 [sec−1] 1886 702.2 158.7 88.05 86.05 92.43

By linear interpolation, we obtain the parameters in Tables 1 and 2 as func-
tions of θ, keeping the outer values constant up to the boundary of the existence
interval of bainite. After this, interpolating over the carbon content, we have

(5.11) n4(θ, u) = n4,0.6(θ)
u− 0.004

0.002
+ n4,0.4(θ)

0.006 − u

0.002

for 0.004 ≤ u ≤ 0.006,

and, analogously, for τ4. For the transformation into pre-eutectoid ferrite and
pearlite one needs the values of the functions fQP and fSE (cf. Fig. 2, left).
These values have been provided from the Institut für Werkstofftechnik Bremen
(IWT). Hence, one can calculate the equilibrium values p12, p13 by formulas
(4.9) and (4.10). Using the diagrams again, we obtain the parameters n and τ
for the transformations into ferrite and pearlite. (In this area, the middle curve
is regarded as the 99% curve of p12 as well as the 1% curve of pearlite, (cf. [25,
50] for details). The parameters are listed in the Tables 4 and 5.

Table 4. Parameter n2, n3, τ2 and τ3 for the transformation into ferrite and
pearlite for the steel 0.4.

θ [◦ C] 567 592 622 650 661

n2 4.981 1.742 1.0 1.0 1.0

τ2 [sec−1] 2.267 14.03 384.7 12310 8802

n3 1.0 1.078 1.610 1.439 1.0

τ3 [sec−1] 1244 712.3 3482 122315 1015652

Again, we obtain functions depending on θ, and u (cf. (5.11)). The remaining
values needed for calculations are the parameters of heat conduction.

We simulate spatially one-dimensional problems which can model the evo-
lution of phases and temperature over the depth of a workpiece. At one end of
the interval (the assumed quenching side), we employ the boundary condition
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Table 5. Parameter n2, n3, τ2 and τ3 for the transformation into ferrite and
pearlite for the steel 0.6.

θ [◦ C] 569 606 622 644 661

n2 4.730 2.267 1.658 1.296 1.028

τ2 [sec−1] 7.935 45.67 144.2 696.6 4392

n3 1.455 2.272 2.248 2.218 1.486

τ3 [sec−1] 118.2 151.5 386.9 1591 22069

(4.18), while at the other end (inside the body), we assume thermal insula-
tion (i.e. δθ = 0). We assume the depth of penetration of 50 mm. We consider
alternatively two cooling situations:

• Quenching by gas nozzles with δθ = 455

[

W

m2K

]

;

• Quenching by water as during the Jominy test with δθ = δθ(θ) given in
Fig. 3 (taken from [35]).

For the sake of simplicity, we chose for density and specific heat:

(5.12) ρ = 7800

[

kg

m3

]

, ce = 600

[

J

kgK

]

.

The heat conductivities and the latent heats are given in Fig. 3.

Fig. 3. Heat conductivities of the phases (left) and latent heats of the transformation of
austenite into the ferrictic phases (right) as functions of temperature.

We perform simulations for a constant carbon content of 0.4% as well as for
a given carbon profile decreasing from 0.6% near the boundary to 0.4% in the
middle of the body (see Fig. 4).

In Figs. 5 and 6, on can see the influence of carbon content and quenching
regime on the final phase distribution over the depth of the workpiece. For
instance, moderate quenching may lead to a nearly equal phase distribution over
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Fig. 4. Carbon profile over the depth (left) and heat-exchange coefficient for quenching
during the Jominy test (right – cf. [35]).

Fig. 5. Final phase distribution over the depth after quenching by gas nozzles (δθ = 455
[W/m2 K] for 0.4% C (left) and for a carbon distribution as in Fig. 4 (right).

Fig. 6. Final phase distribution over the depth after quenching like during the Jominy test
(see Fig. 4) for 0.4% C (left) and for a carbon distribution as in Fig. 4 (right).
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the depth in the case of constant carbon content (Fig. 5, left), while the same
quenching gives a qualitatively different result for the inhomogeneous carbon
profile (Fig. 5, right). As expected, the very fast quenching as that during the
Jominy test yields a large martensite fraction near the boundary (Fig. 6).

6. Summary and several remarks

We have modelled carbon diffusion, heat conduction and ferritic phase trans-
formations in an unalloyed hypoeutectoid steel. The resulting mathematical
model consists of a coupled system of two parabolic partial differential equa-
tions for carbon diffusion through the austenite and for heat conduction as well
as ordinary differential equations for the evolution of the phase-fraction.

For a special case we have performed numerical simulations with realistic
data. Hence, we have demonstrated how to apply the model developed for con-
crete situations. The results of the simulations describe the expected scenarios
qualitatively correct.

We conclude with several remarks:
1. The model presented above can be extended via the “building-block prin-

ciple”. Hence, it is possible to extend this model to a more general material
behaviour (cf. [19, 32, 34] for basics, e.g.) of steel, taking mechanical move-
ment into account (plasticity, transformation-induced plasticity, e.g.) (cf.
[3, 13–15, 26, 31, 44–46, 48] for details and discussions concerning steel
specifics). This work remains for future investigations.

2. The grain size of austenite plays an important role for the properties of
the final workpiece. In [29], a differential equation for the average austenite
grain size depending on temperature and phase evolution was proposed. In
principle, one can add such an equation to the model of material behaviour
(taking mechanical behaviour into account or not).

3. The hardness of the steel workpiece essentially depends on martensite
fraction and on the carbon content (cf. [7, 8, 33, 36] e.g.). Using a formula
describing the hardness as a function of martensite fraction and of carbon
content, one can calculate a posteriori the hardness near the boundary.
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2. C. Acht, T. Lübben, F. Hoffmann, H.-W. Zoch, Einfluss von Prozessparametern
und Abmessungsvarianten auf die Maß– und Formänderung einsatzgehärteter Scheiben
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