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Fast multipole boundary element method for the analysis

of plates with many holes
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A three-node quadratic element version of the fast multipole boundary ele-
ment method (FMBEM) for two-dimensional elastostatic problems is presented.
The method is applied to the analysis of perforated plates. A comparison of conver-
gence and accuracy of the present method using quadratic elements with the method
using constant elements, presented by other authors, is given. Stress results for
a square plate with a circular hole are investigated. Effective material properties
of plates with many holes are estimated and compared to analytical results. Imple-
mentation of quadratic-element version of the FMBEM resulted in a lower number
of degrees of freedom and expansion terms, and similar accuracy to constant-element
version of the method, for the same structures. Influence of boundary conditions
on the convergence of the iterative solver is investigated. The effectiveness of the
FMBEM in relation to the conventional BEM is presented.
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1. Introduction

The boundary element method (BEM) is one of the efficient numerical

methods being applied to analysis of mechanical structures. For a large group

of problems, solutions are obtained by discretization of the boundaries only.

On the other hand, analysis of structures with large number of degrees of free-

dom (DOF) may become uneconomical (with respect to the the solution time)

or even impossible to perform (with respect to the memory). In the method,

solution time and the required memory are of order O(N2), where N is the num-

ber of DOF. Such very large problems can be solved efficiently by the fast

multipole BEM (FMBEM). The number of operations and memory are reduced

to O(N).

The fast multipole method (FMM) is applied to the analysis of potential

problems with discrete or continuous field sources distribution [1, 2]. The for-

mer case refers to many-particle problems. The latter one refers to integral
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equation formulations of potential problems. The FMM uses a potential expan-

sion at the point, near to integration points (multipole expansion), for far field

interactions. Thus, the terms of the corresponding potentials, resulting from

many integration points, are reduced to a single point. Multipole functions are

further expanded at the point near to collocation points (local expansion), and

the previously reduced interactions are redistributed to many collocation points.

The FMM uses also the multipole-to-multipole (M2M), the multipole-to-local

(M2L), and the local-to-local (L2L) translations [1, 2].

The FMM with all the above-mentioned operations reduces the complex-

ity of potential problem to O(N). One can use only the multipole expansion,

without any of the translations, to obtain the O(N logN) complexity algo-

rithm [3].

The FMM is applied in such fields as: astrophysics, electrostatics, electro-

dynamics, magnetism, heat conduction, fluid mechanics, acoustics, solid me-

chanics and coupled problems. Look in [4] for a wide list of references on the

FMBEM.

In this papers, an analysis of elastic plates with many identical circular holes,

which can model a porous material, is presented. Other authors have already

considered the analysis of such structures by means of the conventional BEM

[5] or FMBEM [6, 7]. However, they used fast multipole codes with one-node

constant boundary elements. In this work, the FMBEM with quadratic three-

node elements is presented. The accuracy of the proposed method was verified

for simple structures, for which analytical results are known [8]. The influence

of discretization on accuracy is ivestigated. The effective Young modulus and

Poisson ratio are calculated for perforated plates. The results are compared with

solutions obtained by other methods. The effectiveness of the present FMBEM

code is also investigated.

2. The FMBEM for 2D elastostatics

A two-dimensional, homogenous, isotropic and linear-elastic bodyΩ, bounded

by the boundary Γ , is considered. Displacements and tractions on the bound-

ary are given as boundary conditions. The problem is described by Somigliana’s

identity [9]. If there are no volume forces, it has the form of the boundary integral

equation:

(2.1) Cij

(

x′
)

uj

(

x′
)

+

∫

Γ

Tij

(

x′, x
)

uj (x) dΓ (x) =

∫

Γ

Uij

(

x′, x
)

tj (x) dΓ (x) ,

where Tij and Uij denote fundamental solutions of elastostatics, which depend

on positions of the collocation point x′ and the integration point x, tj and uj
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are components of boundary tractions and displacements, and Cij is a coefficient

depending on position of the collocation point. The fundamental solutions have

the following forms:

Uij =
1

8πµ (1 − ν)

[

(3 − 4ν) ln

(

1

r

)

δij +
rirj
r2

]

,(2.2)

Tij =
−1

4π (1 − ν) r

{

∂r

∂n

[

(1 − 2ν) δij +
2rirj
r2

]

− (1 − 2ν)
rinj − rjni

r

}

,(2.3)

where µ is the shear modulus, ν is the Poisson ratio, r is a vector connecting

the collocation point with the integration point and n is a unit vector, normal

to the boundary at the integration point.

The boundary Γ is discretized using a certain type of boundary elements.

Eq. (2.1) is applied for every boundary node as a collocation point. Thus,

one obtains a system of linear equations, which can be written in the matrix

form:

(2.4) [H] {U} = [G] {T} ,

where the matrices [H] and [G] depend on the fundamental solutions and inter-

polation functions of boundary quantities within the boundary elements (shape

functions), {U} and {T} are vectors of boundary displacements and tractions

respectively.

The matrices in Eq. (2.4) are dense and nonsymmetric. The computation

time of all the entries and memory required to store them are proportional to

N2, where N is the number of DOF. For this reason, the conventional BEM

can be applied to the analysis of relatively small structures. To overcome this

difficulty, the fast multipole version of BEM can be applied. The algorithm has

been described in detail for example in [4, 6, 7] and [11]. Only a brief description

of the method, will be given here.

The integrals in Eq. (2.1) describe interactions between integration points

and collocation points. The basic idea of the FMM consists in approximate

calculation of the interactions between points, which are located far enough

from each other. The integrals are approximated using their Taylor expansions.

Let us consider a term of the single layer potential resulting from integration

along elements β, located within the cluster α (Fig. 1):

(2.5) Iiα(x′) =
∑

β

∫

Γβ

Uij

(

x′, x
)

tjβ (x) dΓ (x).
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Fig. 1. Scheme of multipole and local expansions.

The point c is determined, at which the complex Taylor expansion will be
constructed. The series has the following form [10]:

I1α(x′) =
1

8πµ(1 − ν)
Re

{

(4ν − 3)
∞
∑

k=0

f (z, k)A1α (k)

+
∞
∑

k=0

fRe (z, k + 1) a1α (k) −
∞
∑
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f (z, k + 1) aRe
1α (k)
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∞
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(2.6)
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1
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.

In the expansion, functions depending on the vector z occur:

(2.7)
f(z, k) =







ln (z) , k = 0,

z−k, k = 1, 2, ..., ∞,

fRe(z, k) = z−k Re z, f Im(z, k) = z−k Im z,
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and also the coefficients depending on the vector y:

(2.8)

aiα (k) =
∑

β

∫

Γβ

yktiβdΓ (x),

aRe
iα (k) =

∑

β

∫

Γβ

yk Rey tiβdΓ (x),

aIm
iα (k) =

∑

β

∫

Γβ

yk Imy tiβ dΓ (x),

Aiα (k) =







aiα (k) , k = 0,

−1

k
aiα (k) , k = 1, 2, ..., ∞.

This type of expansion is called multipole. It is convergent, if the following
condition is satisfied:

(2.9) y ≤ 1

2
z.

Thus, the far and near-fields are determined for all collocation points. The func-
tions (2.7) are expanded further at the point c′ determined for the square α′,
containing the collocation point (Fig. 1). This expansion is called local. It has
a form similar to the multipole expansion (2.6). Definitions of local functions
and coefficients can be found in [4, 6, 7] and [11]. The local coefficients can be
obtained from the multipole ones by using multipole-to-local translation (M2L).
We can say, that the interactions coming from integration points in the cluster
α (far field) are reduced to the point c, translated to the point c′, and then
redistributed to many collocation points in the cluster α′.

In order to construct the expansions, one has to perform clustering of the
boundary elements. First, the body Ω is enclosed within a rectangle (Fig. 2a).
The rectangle is divided into four smaller ones. Each of them is divided further,
until the smallest ones contain a certain number of boundary elements. All
the rectangles form a boundary element clusters (Fig. 2b). The hierarchy of
the clusters can be mapped using a tree structure (Fig. 2c). The root of the
tree stands for the largest cluster, which contains all the boundary elements.
The tree consists of nodes, their children and parents. The nodes on the highest
level are called leaves. The multipole coefficients are calculated only for leaves.
Then, the coefficients for their parents are evaluated using the multipole-to-
multipole translation (M2M). It consists in translation of the expansion points
and summation of the corresponding children’s coefficients (Fig. 2a). In order
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to calculate the coefficients for all the clusters, an upward pass is performed.
Then, the M2L translation is performed for all the clusters. Next step is a
downward pass and calculation of local coefficients for children with local-to-
local translation (L2L) [4, 6, 7, 11]. Finally, the far-field terms of potentials
are evaluated. The order of transformations is shown in Fig. 3. The multipole
coefficients are denoted by Aiα(k), local coefficients by Biα(k) and local functions
by g(k, y′).

Fig. 2. Clustering of the boundary elements.

Fig. 3. The sequence of multipole coefficient transformations.
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In the FMBEM, Eq. (2.4) has the following form:

(2.10) [H]near {U} + {HU}far = [G]near {T} + {GT}far .

The terms of the far-field vectors are obtained by means of expansions. The
entries of the near-field matrices are calculated directly (Fig. 4). The matrices
have a block or band sparsity pattern, depending on the geometry of the struc-
ture. Modification of the system (2.10) in accordance with boundary conditions
leads to a linear system of equations, which can be solved only by means of
an iterative method:

(2.11)
{

AXi
}

= {B} ,

where {X}i denotes the approximation of the solution after the i-th iteration.

Fig. 4. Fields for the leaf x′: 1 – interaction leaves (integration using expansions),
2 – near-field (direct integration), 3 – parent, 4 – interaction list for parent.

3. Numerical implementation of the FMBEM
using quadratic elements

A FMBEM computer code, for analysis of 2D elastostatic problems, using
quadratic three-node boundary elements is developed. Such elements model bet-
ter the complex geometry, displacements and tractions of real structures than
constant and linear elements. In the present code, all regular integrals are calcu-
lated using the standard 10-point Gaussian quadrature. For calculation of singu-
lar terms of the single layer potential, a special logarithmic Gaussian quadrature
is used. The singular terms of the double layer potential are calculated by a rigid
body movement consideration.

In the quadratic-element version of the FMBEM, the maximum number of
elements in leaves can be lower than for the constant-element version. Usually
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for the latter case it ranges from 20 to 40 [6, 7, 11]. In the present code, it was
set to 10 or 20. For such values, the number of iterations and the computation
time of the near-field contributions are reasonable. An element is assumed to
be located in a cluster, if its middle node is located there. For each cluster,
coordinates of expansion points are calculated as mean values of coordinates of
all nodes contained in the cluster. The extreme nodes of some elements can be
located outside the cluster (Fig. 5). To assure convergence of the expansions, an
additional far criterion is introduced:

(3.1) ymax ≤ 0.4
(

z′ − y′max

)

∧ y′max ≤ 0.4
(

z′ − ymax

)

.

Fig. 5. A scheme for the far criterion formulation.

4. Numerical examples

4.1. Example 1. A square plate with a circular hole

In this section, a numerical example of a square plate with a circular hole at
the center, under tension, is presented (Fig. 6). The same structure was analyzed
by Liu in [7], using the FMBEM with constant elements. Here, the boundaries
of the structure are discretized using three-node quadratic elements. The length
of the edge of the plate is a = 1 m. The radius of the hole is r = 0.1 m (it
satisfies the condition r = 0.1 a, as in the cited article). The material properties
are as follows: Young’s modulus E = 2 · 105 MPa and Poisson’s ratio ν = 0.3.
The plate is in plain stress. The right-hand side edge of the plate is loaded by
the uniformly distributed horizontal traction p = 100 MPa. The hoop stress σΘ

at points A and B on the boundary of the hole is analyzed. The values are close
to the analytical solution for an infinite plate with circular hole, under tension.
However, the ratio r/a is too large to provide convergence to the analytical
solution, which is σA

Θ = 3p and σB
Θ = −p.
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Fig. 6. A square plate with a circular hole under tension.

Six discretization schemes were considered. The number of elements used for
discretization of the hole boundary was equal to 6, 8, 12, 16 and 20 respectively.
For the discretization of each side of the square, 25 elements were used. For
the last scheme of the hole edge discretization (20 elements), also 50 elements
for each side were used. The number of degrees of freedom ranged from 424
to 880. The maximum number of elements in leaves was set to 10, except for
the last case when it was set to 20. Each analysis was performed twice: for 5 and
10 terms of both the multipole and the local expansions. The system of equations
was solved using the preconditioned GMRES. The initial guess was a zero vector
and the tolerance for convergence was set to 10−6. The preconditioner sparsity
pattern was based on holes [6]. In most cases the method converged after 19
iterations. Only in the last case it converged after 21 iterations. The number
of iterations was independent of the number of expansion terms. For the finest
discretization scheme, also conventional BEM analysis was carried out. Table 1
shows a comparison of the results obtained by different methods. Table 2 shows
all results obtained by the present method, and Fig. 7 shows the results for
the hoop stress with respect to the number of DOF, obtained by different ver-
sions of the BEM.

Table 1. Hoop stresses obtained by different methods.

Method DOF σA
Θ/p σB

Θ/p

FEM, 4–node quadrilateral elements, Liu [7] 38 440 3.226 −1.192

FMBEM, constant elements, Liu [7] 7 600 3.222 −1.190

Conventional BEM, quadratic elements 880 3.222 −1.190

FMBEM, quadratic elements, 5 expansion terms 880 3.229 −1.196

FMBEM, quadratic elements, 10 expansion terms 880 3.222 −1.191
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Table 2. Present FMBEM results for the hoop stress.

DOF
5 expansion terms 10 expansion terms

σA
Θ/p σB

Θ/p σA
Θ/p σB

Θ/p

424 3.211 −1.179 3.207 −1.175
432 3.224 −1.188 3.220 −1.186
448 3.225 −1.192 3.220 −1.189
464 3.226 −1.193 3.220 −1.189
480 3.226 −1.193 3.220 −1.190
880 3.229 −1.196 3.222 −1.191

Fig. 7. The hoop stress: a) at the point A, b) at the point B.

As it was expected, much lower number of DOF is sufficient for quadratic
elements than for constant ones, to achieve the same or better accuracy (Fig. 7).
Also the number of expansion terms can be from 2 to even 5 times smaller.
The FMBEM version with constant elements requires 20 or 25 terms [6, 7]. Both
versions of the method converge within similar iteration number, which is about
20. It can be seen from Figs. 7a and 7b, that the calculated stresses converge
to a higher value than the conventional BEM result, for the presented version
of the method, with 5 expansion terms. For 10 expansion terms, the results
coincide with the conventional BEM results as the relative difference is less than
0.1%. The small number of DOF in conjunction with small number of expansion
terms can give a significant memory saving.

4.2. Example 2. Square plates with many circular holes

The second example shows an analysis of square perforated plates with dif-
ferent numbers of uniformly and randomly distributed identical circular holes.
Two types of boundary conditions (b. c.) are considered: mixed and of traction
type (Fig. 8). The effective Young modulus and Poisson ratio are evaluated and
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compared to analytical results given in [12]. Once again, to compare two versions
of the FMBEM (constant-element and quadratic-element version), similar struc-
tures to those, proposed in [7], were modeled. Material properties of the plate
are: Young’s modulus E0 = 2 ·105 MPa and Poisson’s ratio ν0 = 0.3. The plate is
loaded by the uniformly distributed horizontal traction p = 100 MPa. The struc-
ture is in plane stress. Table 3 shows dimensions of the analyzed plates, numbers
of holes and number of boundary elements used in discretization. The radii of
holes are equal to 0.1 m and the volume fraction in each case equals 12.56%.
Structures with up to 144 holes and over 14 000 DOF were analyzed. It is known
that such number of holes provides convergence of effective properties to the real
ones. Also, there is no need to impose periodic displacement boundary condi-
tions ([5, 7]) which give more accurate results. Generation process of structures
containing many holes is time the consuming [5]. The procedure was simplified
by the assumption that the holes are initially distributed in an uniform way,
and only random variations for the locations, which assure that the holes do not
overlap each other, are generated. This example shows, that such assumption
gives results consistent with other models.

Fig. 8. Perforated plates: a) uniform distribution of holes and mixed b. c., b) uniform
distribution of holes and traction b. c., c) random distribution of holes and mixed b. c.,

d) random distribution of holes and traction b. c.
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Table 3. Geometry and discretization of analyzed structures

Number of
holes

Square side
length [m]

Number of elements Total number
of DOFper hole per square side

4 (2×2) 1

20
for each case

32 832
16 (4×4) 2 60 2 240
36 (6×6) 3 100 4 480
64 (8×8) 4 120 7 040

100 (10×10) 5 150 10 400
144 (12×12) 6 200 14 720

Effective Young’s modulus and Poisson’s ratio for each structure was eval-
uated and compared to analytical estimations given by Kachanov in [12]. It
corresponds to Mori–Tanaka’s (MT) method. It is shown in [14] that the MT
method, for relatively small volume ratios, as in this example, is compatible with
other models (the self-consistent and the differential-scheme methods). It is also
supported by experimental results for effective shear modulus, for volume ratios
up to about 45% [12].

The system of equations was solved by the preconditioned GMRES, as in
the previous example. For each analysis, the maximum number of elements in
the leaf was set to 10, and the number of terms of all of expansions was set to 5.

The effective material properties are evaluated as follows:

(4.1) E′ =
p

ε̄11
, ν ′ =

−ε̄22
ε̄11

.

The average strain components can be calculated as integrals along the external
boundary Γ0 of the structure [13]:

(4.2) ε̄ij =
1

A

∫

Γ0

uinj dΓ0,

where A is the area bounded by the external boundary, ui are the boundary
displacement components and ni are the components of the unit vector normal
to the boundary (i = 1, 2). Table 4 shows results for the E′/E0 ratio obtained by

Table 4. Ratio E′/E0 obtained by different methods.

Method
Number of

holes
Distribution of holes

uniform random

FMBEM, constant elements, mixed b. c., Liu [7] 1 600 0.721 558 0.675 261
FMBEM, quadratic elements, mixed b. c. 144 0.719 430 0.701 290
FMBEM, quadratic elements, traction b. c. 144 0.717 300 0.697 710
Kachanov’s analytical method − 0.726 164 0.698 658
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Table 5. Present FMBEM results for uniform distribution of holes.

Number of
holes

Mixed boundary conditions Traction boundary conditions

E′/E0 ν′ E′/E0 ν′

4 0.676 100 0.319 010 0.684 480 0.320 840
16 0.695 610 0.296 900 0.705 940 0.301 160
36 0.717 590 0.293 720 0.711 670 0.295 970
64 0.718 760 0.291 570 0.714 730 0.293 060

100 0.719 190 0.290 490 0.716 360 0.291 730
144 0.719 430 0.289 930 0.717 300 0.290 930

Table 6. Present FMBEM results for random distribution of holes.

Number of
holes

Mixed boundary conditions Traction boundary conditions

E′/E0 ν′ E′/E0 ν′

4 0.646 070 0.334 110 0.648 970 0.331 930
16 0.677 140 0.305 160 0.651 680 0.325 360
36 0.678 680 0.310 240 0.675 730 0.315 300
64 0.701 240 0.306 040 0.680 210 0.311 980

100 0.699 120 0.307 570 0.693 340 0.307 540
144 0.701 290 0.305 400 0.697 710 0.301 830

different FMBEM versions, compared to the analytical results. All the present
results for effective material properties are shown in Tables 5 and 6. Figure 9
shows the convergence of the iterative solver with respect to the number of DOF
and type of the boundary conditions.

Fig. 9. Number of iterations as a function of number of DOF.

As we can see, the obtained values of apparent Young’s modulus are close
to the values given in References [5] and [7]. Both the values of Young’s modu-
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lus and Poisson’s ratio are close to those determined by Kachanov’s analytical
method. The analytical results for E′/E0 are given in Table 4. The results for
Poisson’s ratio are ν ′ = 0.309 128 for uniform, and ν ′ = 0.310 045 for random
distribution of holes. As we can see, the relative difference of Poisson ratio, ob-
tained by the FMBEM, for the case of uniformly distributed holes, is larger than
for the case of randomly distributed holes.

The type of boundary conditions does not influence significantly the results.
However, in this example, traction boundary conditions require smaller number
of iterations than mixed boundary conditions (Figure 9). Although the struc-
tures with randomly distributed holes are nonsymmetric, the boundary condi-
tion scheme shown in Fig. 8d gives satisfactory results, and about two times
smaller number of iterations, than for mixed boundary conditions, for models
with 100 holes and more. It is known, that mixed boundary conditions cause a
high condition number of the main matrix of the system of equations in the BEM
(the system is badly conditioned). The constant-element version of the FMBEM
converges faster, in spite of much larger number of DOF. For example, the num-
ber of iterations for analysis of the structure with 144 holes (108 480 DOF) and
mixed boundary conditions, equals 28 [7], which is over two times less than for
the method, presented here. An influence of geometry on the convergence can
be also observed. For the uniform distribution of holes, the tree structure is bal-
anced better, and the number of iterations is slightly lower, than for the random
distribution.

Figure 10 shows comparison of the time of analysis for the conventional
BEM and the FMBEM. The absolute computation time depends on efficiency
of the facility used, accessible physical memory, programming language, etc. In

Fig. 10. Analysis time as a function of number of DOF for the conventional BEM and the
FMBEM; for the FMBEM: uniform and random distribution of holes, mixed and traction

boundary conditions.
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Fig. 10, normalized values are given, which are related to approximate time of
analysis of structure with 15 000 DOF, by the conventional BEM, using three-
node quadratic elements. The conventional BEM code allowed only the analysis
of structures with up to 6 400 DOF to be performed, because of memory limita-
tion. The computation time for larger numbers of DOF was extrapolated using
a quadratic function. Data points for extrapolation (whose number was equal
to 7) were obtained by analyses of different structures, not included in this arti-
cle. For the solution of the system of equations, Gaussian elimination was used.
The efficiency of the standard BEM depends neither on the geometry nor on the
boundary conditions of the analysed structure, when the system of equations is
solved by a direct method.

The figure above shows that for structures with up to 5 000 DOF, the com-
putation time of the conventional BEM and the FMBEM is similar. Making this
observation, one can determine an approximate upper bound for DOF, for which
the analysis can be performed efficiently by the conventional quadratic element
BEM (for constant elements this limit is less than 1 000 [7]). In this context, the
application of the FMBEM for analysis of structures included in Example 1, is
not efficient. The example is included only to show accuracy and stability of the
method.

There is a noticeable coincidence between the computation time (Fig. 10)
and the number of iterations (Fig. 9) for the FMBEM. Initially, the number of
iterations grows with the number of DOF, and the computation time is similar
to the one of the conventional BEM. For large number of DOF, the number of
iterations stabilizes and the dependence of time on DOF is close to linear. Figure
10 shows four distinct plots for the FMBEM, one for each case of geometry and
boundary conditions. It is obvious that the computation time depends on the
type of the boundary conditions and the geometry.

5. Conclusions

In this paper, a quadratic-element version of the FMBEM for two-dimensional
elastostatics is presented. The method was applied to the analysis of perforated
plates. It was demonstrated, that the number of DOF of structures discretized by
quadratic elements is much smaller than for the constant element case. Stresses
and displacements were investigated. The displacements were used to determine
effective material properties of the perforated plates. The properties were com-
pared to analytical estimations. The numerical results agree with the analytical
ones. For the present version of the FMBEM, much lower number of expansion
terms in comparison with the method using constant elements, is sufficient to
provide the same accuracy [6, 7, 11]. In contradiction, the convergence of iter-
ative process of solution of the system of equations, is better for the constant
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element version. It is also shown that conditioning of the system of equations
depends strongly on the type of the boundary conditions. The number of itera-
tions can be reduced twice, for the presented structures, by replacing mixed by
traction boundary conditions.

It is shown that for the present code, the FMBEM analysis is more efficient
than the conventional BEM one, for structures with more than 5 000 DOF. For
the constant element version the bound is less than 1 000 [7].

Small number of DOF and number of expansion terms gives a significant
memory saving, in comparison to the constant element version of the FMBEM.
In this work, the complex Taylor expansion given in [10] has been used. It is
characterized by relatively large group of moments (4 and 5 for single and dou-
ble layer potential kernels, respectively). In the Reference [7], another complex
Taylor series is presented, which consists of 2 groups of moments only, for each
kernel. Using this expansion with quadratic boundary elements would reduce
further the memory requirements.
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