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Effect of aggregate structure on fracture process in concrete

using 2D lattice model
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The 2D lattice model was used to analyse fracture processes in concrete at the
meso–level. Concrete was described as a three–phase material (aggregate, interfacial
transition zone and cement matrix). The calculations were carried out for concrete
specimens subject mainly to uniaxial extension. The effect of the aggregate density
was investigated. In addition, a deterministic size effect was studied. The advantages
and disadvantages of the model were outlined.
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1. Introduction

Fracture process is a fundamental phenomenon in brittle materials [3]. It is a
major reason of damage in brittle materials under mechanical loading, contribut-
ing to a significant degradation of the material strength. It is highly complex
due to a heterogeneous structure of brittle materials over many different length
scales, changing e.g. in concrete from a few nanometers (hydrated cement) to the
millimeters (aggregate particles). Therefore, the material heterogeneity should
be taken into account when modelling the material behavior. At the meso–level,
concrete can be considered as a three–phase material consisting of aggregate,
cement matrix and interfacial transition zone (bond). A realistic description of
the fracture process is of major importance to ensure safety of the structure and
to optimize the behavior of material.

The phenomenon of propagation of the fracture process in brittle materials
can be modelled with continuous and discrete models. Continuum models de-
scribing the mechanical behavior of concrete were formulated within, among oth-
ers, nonlinear elasticity [24, 29, 33], rate-independent plasticity [9, 23, 30, 31, 37],
damage theory [10, 17, 19, 36], endochronic theory [4, 7], coupled damage and
plasticity [16, 22, 23] and microplane theory [6]. To model the thickness and spac-
ing of strain localization properly, continuum models require an extension in the
form of a characteristic length. Such an extension can by done with strain gra-
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dient [13, 32, 34–36, 51], viscous [41, 42] and non-local terms [2, 5, 8, 38]. Other
numerical technique which also enables to remedy the drawbacks of a standard
FE-method and to obtain mesh-independent results during the description of
the formation of strain localization, is a strong discontinuity approach allowing
for a finite element with a displacement discontinuity [1, 40, 50].

Within discrete methods, the most popular ones are: classical particle DEM
[15, 18], interface element [12] and lattice methods [21, 28, 39, 44, 48, 49].

The lattice models are the simplest discrete models to simulate the develop-
ment and propagation of fracture in brittle materials consisting of a main crack
with various branches, secondary cracks and microcracks. They allow a straight-
forward implementation of the material heterogeneity which is projected on a
lattice and the corresponding properties are assigned to relevant lattice elements.

The intention of the paper is to describe and to understand the mechanism
of fracture in concrete specimens during uniaxial extension. The own 2D lattice
model was used. In contrast to other lattice models [28, 39, 44, 48], a geometric
type lattice model was used what is a novelty. The calculations were performed
with concrete considered as a three-phase material (aggregate, cement matrix
and interfacial transition zone). Attention was paid to the effect of the aggre-
gate density (ratio between the number of aggregate elements and total number
of elements) on the material behavior. For comparison, the numerical experi-
ments were also carried out with concrete specimens described (for the sake of
simplicity) as a one- and two-phase material (aggregate and cement matrix). In
addition, the deterministic (energetic) size effect was analyzed with two notched
specimens of different dimensions. The numerical results were compared with
those obtained with a conventional lattice model [28, 39, 44, 48].

2. Model

In the case of lattice models, one can distinguish two quite different types.
In the first type model (used to describe the fracture process in concrete or
reinforced concrete [48, 44, 39, 28]), each quasi-brittle material is discretized
as a network of two-noded Bernoulli beams that transfer normal forces, shear
forces and bending moments. Fracture is simulated by performing a linear elastic
analysis up to failure under loading and removing a beam element that exceeds
the tensile strength. Normal forces, shear forces and moments are calculated us-
ing a conventional simple beam theory. A special factor α is used for varying the
amount of bending. When it decreases, the compressive behavior changes from
brittle to a ductile one. The stiffness matrix is constructed for the entire lat-
tice. The displacement vector is calculated similarly as in the conventional FEM
(by multiplication of the inverse global stiffness matrix with the load vector).
The heterogeneity of the material is taken into account by assigning different
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strengths to beams (using a Gaussian or Weibull distribution) or by assuming
random dimensions of beams and random geometry of the lattice mesh, or by
mapping of different material properties to beams corresponding to the cement
matrix, aggregate and interfacial transition zone (Fig. 1) in the case of concrete.
To obtain aggregate overlay in the lattice, a Fuller curve is usually chosen for
the distribution of grains. The ratio between the beam height and the beam
length determines the Poisson’s ratio. The beam length in concrete should be
less than lb < dmin

a /3 (where dmin
a is the minimum aggregate diameter).

Fig. 1. Lattice of beams for concrete consisting of aggregate, cement matrix and
interface [44].

The model can identify micro-cracking, crack branching, crack tortuosity
and bridging which lead to the fracture process, to be followed until complete
failure [44, 49]. It enables also to capture a deterministic size effect during ten-
sion [46, 49].

The advantages of this approach are simplicity and a direct insight in the
fracture process on the level of the micro-structure. A complex crack pattern-
ing can be reproduced. Therein a limited number of parameters is needed. By
applying an elastic-purely brittle local fracture law at the particle level, global
softening behavior is observed. The fracture process is realistically described, in
particular, when the mode I failure prevails. The disadvantages of this model
are the following: the results depend on the beam size and direction of load-
ing, the response of the material is too brittle (due to the assumed brittleness
of single beams), the compressed beam elements overlap each other and a big
computational effort on the structure level is needed. The first disadvantage
can be removed by assuming a heterogeneous structure [39]. In turn, the sec-
ond drawback can be improved by 3D calculations and consideration of very
small particles [28] which increase the amount of crack face bridging and the
dissipated energy, and by applying a non-local approach in calculations of beam
deformations [39]. In turn, the computational effort was significantly reduced
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by using a special version of a conjugate gradient solver [39]. In this algorithm,
breaking an element and thus removing it from the lattice was a local effect,
and the solution required only a few iterations. To improve the lattice behavior
in a compression regime, aggregate interlock needs to be considered.

In the second type model (called particle model) [14, 43], the lattice struts
connecting adjacent particles transmit axial and shear forces. The struts are
not removed. The shear response of struts exhibits friction and cohesion, and
the tensile and shear behavior are sensitive to the confining pressure. Due to
that the model is suitable for the failure mode I and II. The disadvantage of
the model is the fact that it uses a complex macroscopic nonlinear stress-strain
relationship to describe a microscopic local behavior.

In our 2D-lattice model, the quasi-brittle material was discretized in the form
of a triangular grid including beam elements (as in the lattice model by [39, 28]).
The distribution of elements was assumed to be completely random analogously
to a Voronoi’s construction scheme. First, a triangular grid was created in the
material with the side dimensions equal to g (Fig. 2). In each triangle of the grid,
additional interior squares were assumed with an area of s× s. Next, one point
was selected at random within these interior squares. Later, all points inside the
squares were connected with the neighboring ones within a distance of rmax to
create a non-uniform mesh of elements, where the maximum element length was
rmax (e.g. rmax = 2g), the minimum element length was rmin (e.g. rmin = 0.1g
for s = 0.6g) and the minimum angle between elements was assumed to be α
(e.g. α = 20◦). A uniform triangular mesh could be obtained with parameter

Fig. 2. Scheme to assume a non-uniform distribution of beams in the lattice (s – size of
interior squares, rmax – maximum beam radius, a – minimum angle between two beams, g –

size of triangular grid)
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s = 0. Using this grid generation method, the elements could cross each other
in two-dimensional calculations (similarly as in [11]) but they did not intersect
each other in three-dimensional analysis. The elements possessed a longitudinal
stiffness described by the parameter kl (which controls the changes of the element
length) and a bending stiffness described by the parameter kb (which controls
the changes of the angle between elements).

In contrast to the lattice method by [39], the model was of a kinematic
type, i.e. the calculations of beam displacements were carried out on the basis of
consideration of successive geometry changes of elements (which did not posses
explicitly any cross-sectional area) due to translation, rotation and deformation
(normal and bending). Thus, the global stiffness matrix was not built and the
calculation method had a purely explicit character. The displacement of the
center of each beam was calculated as the average displacement of two end
nodes belonging to the element from the previous iteration step:

(2.1) ∆Xi =
∆XA

i +∆XB
i

2
,

wherein∆XA
i and∆XB

i – displacements of the end nodesA andB in the element
i, respectively. The displacement vector of each element node was calculated
by averaging the displacements of the ends of elements belonging to this node
caused by translation, rotation, normal and bending deformations (Fig. 3):
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1
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wherein:
∆Xj – resultant node displacements,

W – node displacement due to the element translation,
R – node displacement due to the element rotation,
kl – longitudinal stiffness,
kb – bending stiffness,
D – node displacement due to a change of the element length

(induced by the longitudinal stiffness parameter kl),
B – node displacement due to a change of the rotation angle

between elements, (induced by the bending stiffness parameter kb),
d0i

– initial element length,
i – successive element number connected with the node j,
j – node number
n – number of elements belonging to the node j.
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Fig. 3. General scheme to calculate displacements of elements in the lattice.

The node displacements were calculated successively during each calculation
step, beginning first from the beam elements subject to prescribed displace-
ments. Next, the resultant force F in a selected specimen’s cross-sectional area
A is determined (with the aid of the corresponding normal strains ε, shear strains
γ, stiffness parameters kl and kb, modulus of elasticity E and shear modulus G):

(2.3) F = A
∑

(εklE + γkbG) ,

where the sum is extended over all elements that cross a selected specimen’s
cross-section.

For the bending stiffness parameter kb = 0 in Eq. (2.2), the elements be-
have as simple bars. An element is removed from the lattice if the local criti-
cal tensile strain εmin was exceeded. All presented numerical calculations were
strain-controlled. To perform them, the self-written program was used.

3. Numerical results (one-phase material)

The 2D calculations with a simplified one-phase brittle material were car-
ried out with the specimen of the size 100 × 100 mm2 (b × h), composed of
20000 elements distributed non-uniformly (α = 20◦, s = 0.6g, g ≈ 1.5 mm,
rmax = 2g). The minimum element length was about 0.6 mm and the maximum
one was about 3 mm. The modulus of elasticity of all elements was assumed
to be E = 20 GPa. The following strain increments were assumed on the basis
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of initial calculations: 0.000032% (uniaxial compression) and 0.000004% (uni-
axial tension). Smaller strain increments only insignificantly influenced the re-
sults. The computation time with 20000 elements was about 10 hours using PC
3.6 GHz.

Our lattice model allows us to describe the different Poisson’s ratio ν as a
function of the parameter stiffness ratio p = kb/kl. Figure 4 presents the change
of the Poisson’s ratio ν versus p = kb/kl during uniaxial tension, with smooth
horizontal edges at the beginning of the deformation process (the elements were
not removed). If the stiffness parameter p = 0.1, the Poisson’s ratio was 0.3. In
turn, if the parameter p > 1, Poisson’s ratio became negative (with the smallest
value approximately equal to ν = −1.0 at p = 10000). The behavior of elements
with values of p = kb/kl approaching zero corresponded obviously to that of
bars [25, 26, 27].
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Fig. 4. Influence of the ratio between the bending and longitudinal stiffness p = kb/kl on
Poisson’s ratio ν during uniaxial compression with smooth edges (using semi-logarithmic

scale).

The effect of the stiffness parameter p = kb/kl on the evolution of the global
stress-strain curve σ–ε (vertical normal stress versus the vertical strain) and
crack propagation in a specimen during uniaxial compression with smooth edges,
is shown in Figs. 5–6 for εmin = 0.02% (σ = P/b, ε = u2/h, P – global vertical
force, u2 – vertical displacement of the top edge).

The strength and ductility (ratio between the energy consumed during the
fracture process after and before the peak) increase with increasing stiffness
parameter p. The material becomes elastic for p > 0.6, quasi-brittle for 0.025 >
p > 0.01 and brittle for p = 0.001 (ε = 0.3%). In the last case, the vertical global
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strain corresponding to the material strength is about 0.03%. The cracks are
predominantly vertical (parallel to the loading direction) if p > 0.2 (Fig. 6a). In
the case of p < 0.1, the predominant cracks are more inclined (Figs. 6b and 6c).
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Fig. 5. Effect of the stiffness ratio p = kb/kl between the bending stiffness and longitudinal
stiffness on the stress-strain curve during uniaxial compression with smooth edges (elements
were removed when local εmin = 0.02%): a) p = 0.6, b) p = 0.3, c) p = 0.06, d) p = 0.025,

e) p = 0.01, f) p = 0.001 (σ22 – vertical normal stress, ε22 – vertical normal strain).

a) b) c)

Fig. 6. Effect of the stiffness ratio p = kb/kl between the bending and longitudinal stiffness
on the crack pattern during uniaxial compression with smooth edges (elements were removed

when local εmin = 0.02%): a) p = 0.3, b) p = 0.01, c) p = 0.001.

The results for uniaxial tension in a specimen with with a small notch at
mid-height of the left side and smooth horizontal edges are demonstrated in
Figs. 7, 9a, 10 for the case of εmin = 0.02%. The material behaves in the elastic-
purely brittle way (Fig. 9a). The strength increases with increasing p, and the
brittleness increases with decreasing p (Fig. 7). The overall vertical strain cor-
responding to the peak stress values is about 0.005 − 0.007% (thus it is smaller
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than the local εmin). The crack pattern practically does not depend on the pa-
rameter p (Figs. 9a, 10). The main crack is always initiated at the notch and
then propagates almost horizontally through the specimen.

The ratio of flexural to axial stiffness p has an inverse effect during compres-
sive fracture as the bending factor α used in a conventional lattice model [28, 39,
44, 48]. The compressive behavior changes namely from brittle to ductile when
p increases (α decreases). During tensile fracture, the factor p slightly affects the
material behavior. However, the effect of α is negligible.
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a) b) c) d)

Fig. 9. Effect of the characteristic length lc on the fracture process (elements were removed
when local εmin = 0.02%, p = 0.6): a) lc = 0 (local approach), b) lc = g , c) lc = 2g,

d) lc = 3g (non-local approach).

To decrease the material brittleness in calculations (which is too large [46]
in 2D one-phase material), a non-local approach [5] can be used to calculate
strains [27]. In the calculations, the normal strain in each element was assumed
to be non-local:

(3.1) ε̄k =

∑

w(r)ε(xk + r)l cos(α)
∑

w(r)l cos(α)
,

where xk – global coordinates of the element, w – weighting function, r – distance
between the mid-point of the element and the mid-points of other neighboring el-
ements, l – element length and α – angle between the elements. In general, it is re-
quired that the weighting function should not alter the uniform field which means
that it must satisfy the normalizing condition [5]. Therefore, as a weighting func-
tion w(r) in Eq. 3.1, a Gauss distribution function for 2D problems was used:

(3.2) w(r) =
1

lc
√
π
e−(r/lc)

2

,

where the parameter lc is a characteristic length of micro-structure. The aver-
aging in Eq. 3.1 is restricted to a small representative area around each mate-
rial point (the influence of points at the distance of r = 3lc is only of 0.1%).
Figures 8–9 demonstrate the results for a non-local approach during uniaxial
tension. In the calculations, the different values of lc (lc = 0, 1 × g, 2 × g and
3×g) were used. The results show that the strength, normal strain corresponding
to the peak and material ductility increase with increasing lc.

4. Numerical results (two-phase material)

Figures 10–11 show the effect of aggregates on the fracture behavior of 2D
specimens under uniaxial extension (without interfacial transition zones).
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Fig. 10. 2D specimen subject to uniaxial extension (one-phase material): p = kb/kl = 0.7
(with kl = 0.1) and local εmin = 0.02%.
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Fig. 11. 2D specimen subject to uniaxial extension (two-phase material): cement matrix:
pm = kb/kl = 0.7 (with kl = 0.1), local εmin = 0.02% and aggregate: pa = kb/kl = 0.7

(with kl = 0.3), local εmin = 0.0133% .

The 2D calculations were carried out with a specimen size of 200× 200 mm2

(b × h) composed of 180000 elements distributed non-uniformly (α = 20◦,
s = 0.6g, g = 1 mm, rmax = 2g). The minimum element length was about
0.3 mm and the maximum one was about 2 mm. The moduli of elasticity were:
E = 60 GPa (aggregate) and E = 20 GPa (matrix), respectively [44]. The
computation time was about 15 hours using the processor AMD 4600+.

The ratios between the parameters kl and εmin for the cement matrix and
aggregate were assumed on the basis of ratios between the elastic Young’s moduli
and tensile strengths, respectively, assumed in [44]. One choses pm = kb/kl = 0.7
(with kl = 0.1) and εmin = 0.02% in the cement matrix, and pa = kb/kl = 0.7
(with kl = 0.3) and εmin = 0.0133% in the aggregate. The particle distribution
curve for aggregate is shown in Fig. 11 with the mean aggregate diameter of
d50 = 3.5 mm. The aggregate volume density was taken as 50%. This 2D density
is smaller than the particle density in real 3D concrete specimen usually equal
to 70–75%.
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The aggregate distribution was generated following the method given in [20].
First, a grading curve was chosen (Fig. 11). Next, certain amounts of parti-
cles with defined diameters were generated according to this curve. Finally, the
spheres describing aggregates were randomly placed in the specimen preserving
the particle density and a certain mutual minimum distance [44]:

(4.1) D > 1.1
D1 +D2

2
,

where D is the distance between two neighboring particle centers and D1 and
D2 are the diameters of these two particles.

The results of the uniaxial tensile test in Fig. 11 show evidently that the
presence of only the aggregate (without interfacial zone) does not significantly
affect the load-displacement curve which remains still too brittle as compared
to experiments with concrete specimens [47, 46]. The overall vertical strain ε22
corresponding to the peak is about 4 times smaller than the assumed local εmin

of cement matrix, and 10 times too large as compared to experiments [46].

5. Numerical results (three-phase material)

Figures 12–15 present the results concerning a square concrete specimen con-
sidered as a three-phase material. The 2D calculations were carried out mainly
with a specimen size of 200 × 200 mm2 (b × h) composed of 180000 elements
distributed non–uniformly (α = 20◦, s = 0.6g, g = 1 mm, rmax = 2g). The
minimum element length was about 0.3 mm and the maximum one was about
2 mm. The assumed material parameters are given in Table 1. The interface
had the lowest strength. The aggregate density was assumed to be 25% or 50%,
respectively. The mean aggregate diameter d50 was taken as 3.5 mm for the
aggregate size of the range 2 − 8 mm and 12 mm for the aggregate size of the
range 2–16 mm. Five simulations were performed for each case. The interfacial
zones were added by assigning different properties to the beams which previously
connected directly the aggregate with the cement matrix (Fig. 1).

Table 1. Paramaters used in calculation with three-phase material.

Phase Young’s modulus p = kb/kl kl local εmin

Cement matrix Em = 20 GPa pm = 0.7 0.010 εm = 0.2%
Aggregate Ea = 60 GPa pa = 0.7 0.030 εa = 0.133%
Interface bond Eb = 14 GPa pb = 0.7 0.007 εb = 0.05%

The strength and pre-peak nonlinearity decrease with increasing aggregate
density and decreasing mean aggregate diameter. In turn, the material ductil-
ity increases when the density increases. The vertical strain corresponding to
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the peak increases with decreasing particle density. At the low particle con-
tent, de-bonding occurs extensively near the isolated aggregates (most of the
fractured elements are in bonds). This micro-cracking is responsible for the non-
linear behavior in the pre-peak part of the stress-strain diagram. Next, after
the peak, the fracture process progressively spreads through the entire specimen
in the form of a macro-crack linking the de-bonded aggregates in lines. With
increasing number of aggregates, the fraction of bond elements increases and de-
bonding prevails. At the high particle density, percolation of bond zones occurs,
and the condition for macro-crack nucleation and growth occurs early in the
loading history. The material becomes significantly weaker (since the interface
strength is the weakest component of the system) and the pre-peak nonlinear-
ity does not appear. Since the amount of aggregates is large, the cracks cannot
propagate in long lines. Instead of this, several discontinuous macro-cracks prop-
agate in a tortuous manner. The cracks overlap and form branches. As a result,
the material ductility grows after the peak. All curves with consideration of
interfacial transition zones resemble qualitatively the experimental curves for
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Fig. 12. 2D concrete specimen subject to uniaxial extension (three-phase material),
aggregate area percentage 50%, d50 = 3.5 mm, material parameters as in

Table 1 (σ22 – vertical normal stress, ε22 – vertical normal strain).
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Fig. 13. 2D concrete specimen subject to uniaxial extension (three-phase material)
aggregate area percentage 50%, d50 = 12 mm, material parameters as in Table 1.



378 J. Kozicki, J. Tejchman

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 0  0.02  0.04  0.06

S
tr

es
s 

σ 2
2 

[M
P

a]

Strain ε22 [%]

average
min
max

10

20

30

40

50

60

70

80

90

2 3 4 8 16

si
ev

e 
pa

ss
in

g 
[m

as
s 

- 
%

]

sieve size [mm]

Fig. 14. 2D concrete specimen subject to uniaxial extension (three-phase material)
aggregate area percentage 25%, d50 = 3.5 mm, material parameters as in Table 1.
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Fig. 15. 2D concrete specimen subject to uniaxial extension (three-phase material)
aggregate area percentage 25%, d50 = 12 mm, material parameters as in Table 1

real concrete [46]. The uniaxial tensile strength changes between 0.7–1.7 MPa.
The scatter of the material strength increases with decreasing particle density
due to the larger possibility at the choice of the propagation way. The vertical
strain ε22 corresponding to the peak varies between 0.02–0.06%.

Finally, Figures 16–18 show a deterministic size effect during uniaxial ten-
sion (with the grading curve of Fig. 12). Several numerical simulations were
carrried out with two different rectangular concrete specimens: 10× 10 cm2 and
20 × 20 cm2, using the same beam distribution. The results show that the ma-
terial strength and ductility increase with decreasing specimen size (as in the
experiments (Fig. 17)) while the crack pattern remains similar (Fig. 18). In turn,
the fracture energy decreases.

The obtained results of numerical experiments for uniaxial tension are qual-
itatively in agreement with numerical solutions given in [28, 46, 45].
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Fig. 16. Deterministic size effect for 2D concrete specimens subject to uniaxial extension
with sizes 10 × 10 cm2 and 20 × 20 cm2, aggregate area percentage 50%, d50 = 3.5 mm,

material parameters as in Table 1.

Fig. 17. Experimental force-deformation diagram for 3 different dog-bone shaped specimens
h × b: A) 75 × 50 mm2 , B) 150 × 75 mm2, C) 300 × 200 mm2 [46] (h – height, b – width).

Fig. 18. Fracture in 2 concrete specimens of different sizes (20 × 20 cm2 and 10 × 10 cm2).
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6. Conclusion

The lattice model is a simple approach to the fracture behavior in hetero-

geneous quasi-brittle materials. It is very useful in studying and understanding

the phenomenon of the crack formation and crack propagation during uniaxial

tension, since it can reproduce fracture processes observed in real laboratory ex-

periments. Owing to this, novel (stronger and better) engineering materials can

be developed. By using an elastic-purely brittle local fracture law at the particle

level of the material, global softening behavior is obtained. The heterogeneous

2D-lattice model for concrete used in the paper requires 4 material parameters

(kl, kb, E, εmin) for each phase and 4 grid parameters (g, s, α and rmax) related to

the distribution, quantity and length of beam elements. The obtained results of

crack patterns and stress-strain curves for a three-phase concrete material dur-

ing uniaxial tension are qualitatively in agreement with the experimental ones

for concrete, and compare quite well with the results published in [46, 28, 45].

The material composition has a significant effect on the material behav-

ior, in particular the particle density and distribution of weak bond zones. The

strength and pre-peak nonlinearity decrease with increasing aggregate density

and decreasing mean aggregate diameter during uniaxial tension. The mater-

ial ductility increases when the aggregate density increases. The vertical strain

corresponding to the peak increases with decreasing particle density. At the low

particle content debonding occurs extensively near the isolated aggregates. At

the high particle density, percolation of bond zones occurs, and the condition for

macro-crack nucleation and growth appears. The pre-peak nonlinearity cannot

be ignored at low particle density. The macro-crack process occurs before the

maximum load.

The simulations of a deterministic size effect show a decrease of nominal

strength with increasing specimen size as well as an increase of fracture energy

with size.

The brittleness in one-phase material can be decreased by using a non-local

approach when calculating the strain.

If no bond phase is included, the material strength and material ductility do

not depend on the particle density.

The calculations with a lattice model will be continued. First, the model will

be extended to 3D. Due to the fact that a realistic aggregate distribution is an

essential factor in simulations, the material heterogeneity will be assumed on

the basis of digital images of a real concrete specimen. The material parame-

ters for three different phases (kl, kb and εmin) will be identified, on the basis

of comparisons of numerical simulations, with different experiments involving

strain localization in concrete elements (e.g. bending of notched beams). Sec-
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ond, a multiscale model will be used linking the lattice model with the continuum

elasto-plastic model with non-local softening [8, 10], wherein the first model will

be only restricted to the damaged part of the structure.
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