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This paper presents a theory of residual stresses, with applications to biomechanics,
especially to arteries. For a hyperelastic material, we use an initial local deformation
tensor K as a descriptor of residual strain. This tensor, in general, is not the gra-
dient of a global deformation, and a stress-free reference configuration, denoted B,
therefore, becomes incompatible. Any compatible reference configuration B0 will, in
general, be residually stressed. However, when a certain curvature tensor vanishes,
there actually exists a compatible and stress-free configuration, and we show that the
traditional treatment of residual stresses in arteries, using the opening–angle method,
relates to such a situation.

Boundary value problems of nonlinear elasticity are preferably formulated on a
fixed integration domain. For residually stressed bodies, three such formulations nat-
urally appear: (i) a formulation relating to B0 with a non-Euclidean metric structure;
(ii) a formulation relating to B0 with a Euclidean metric structure; and (iii) a for-
mulation relating to the incompatible configuration B. We state these formulations,
show that (i) and (ii) coincide in the incompressible case, and that an extra term
appears in a formulation on B, due to the incompatibility.

1. Introduction

Essentially all blood vessels, and soft tissues in general, are subject to a resid-
ual stress when the applied load is removed. Although several studies had
recognized the existence of residual stress in unloaded arteries, it was not until
Vaishnav and Vossoughi [1] and Fung [2] reported their results that atten-
tion was drawn to residual stress in biomechanics. The residual stress in arteries
is a compressive stress at the inner boundary and a tensile stress at the outer
boundary. In addition, arteries may also experience residual stress in the axial
direction. Residual stress is important from a physiological point of view since it
redistributes the total stress and also gives a more uniform stress distribution;
this is advantageous from an optimal operation point of view, since each part of
the vessel wall carries a similar load.
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Over the last decades, it has been suggested that growth and remodeling of
the tissue may cause the residual stress, see the pioneering work in Rodriquez

et al. [3] and Skalak et al. [4]. The term growth refers to a local process that in-
creases the mass of the tissue, while remodeling is a change in the tissue structure
that is achieved by reorganizing the existing constituents or by producing new
constituents with a different organization. Both processes are natural processes
in biological tissues and play an important role in the adaption to changes in
their environment.

The general theory that we will use to model residual stress in this paper
goes back to several sources, discussed by Maugin [5]. Firstly, it relates to the
multiplicative decomposition of the deformation gradient, often used in plas-
ticity theory. Secondly, there is the geometric line of development, initiated by
Kondo with important contributions by Truesdell and Noll [6] and Noll [7].
Finally, there is the development of configurational or material forces of Eshelby,
recently discussed by Gurtin [8]. This presentation will combine ideas of in-
compatible reference configurations, inherent in a multiplicative decomposition
of the deformation gradient, with a geometrical viewpoint. Initial inspiration for
this work was provided by the explicit construction of the incompatible reference
configuration in Johnson and Hoger [9], and the use of the theory of Kondo
in a biomechanics context by Takamizawa and Matsuda [10].

When dealing with arteries, the prevailing method of describing residual
stress is the opening–angle method, proposed by Choung and Fung [11], see
also St̊alhand et al. [12], and St̊alhand and Klarbring [13]. The method
is based on the assumption that a radially cut artery opens up into a stress-free
circular sector, the cut-open state. The residual strain is taken to be the strain
produced by the deformation map shown in Fig. 1, i.e., the closure of a circular
sector.

r
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Θ̃

R̃i

Fig. 1. A schematic picture of the opening–angle method. To the left is the cut–open confi-
guration B̃ with the opening angle Φ0 and to the right is a residually stressed configuration.

Θ̃ is a circumferential coordinate, and R̃i is the inner radius in the cut–open state.
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A more complete approach to residual stresses in arteries can be built on

a general theory of residual stress as described above. One may then think

that to obtain a stress-free configuration, the single cut of Fig. 1 is not enough

(a thought supported by experiments). In fact, one can consider the idea that

the body needs to be cut into infinitesimally small parts to become stress free.

For a rotationally symmetric structure, as an artery, we may then think of

concentric infinitesimal cylinders. A local tangent map K, as shown in Fig. 2,

then represents the initial strain. Such a method was used for identification of

residual stresses in Olsson et al. [14].
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Fig. 2. A residually stressed reference configuration B0 is locally relaxed to form the stress
free but incompatible configuration B.

In this paper we will show that the the opening–angle method is included in

the general method. The connection is based on the result that when a certain

curvature tensor vanishes, there exists a stress-free compatible reference con-

figuration of the body, see Blume [15] and Klarbring and Olsson [16], and

related work in Steinmann [17] and Ganghoffer and Haussy [18].

A configuration of a body, denoted by B in this paper, is a set in the physical

space occupied by material points. It is useful to take a such particular config-

uration, denoted by B0, as a reference, and any other configuration can then

be mapped one-to-one onto this reference configuration. In the classical theory

of elastic bodies it is usually assumed that B0 represents a stress-free state

to which the body may relax when all external loads are removed. However,

in the more general theory, which is necessary for modeling residual stresses,

we may only assume that this relaxation takes place locally for each mater-
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ial point. This leads to an incompatible, but stress free, reference configuration,

denoted B in this paper. Thus, for a residually stressed body two essentially dif-

ferent reference configurations appear: the residually stressed, but compatible,

configuration B0 and the stress-free but incompatible configuration B. When

formulating the boundary value problems of static elasticity, it is necessary to

decide which of these two reference configurations to use as a fixed integration

domain. Takamizawa and Matsuda [10] used B0, but concluded that the ini-

tial stress induces a possibly non-Euclidean metric and the integration domain

becomes a general Riemannian manifold. Noll [7], on the other hand, states the

equilibrium equations in relation to B, but concludes that a non-classical term,

due to incompatibility, appears. In the present paper, these results are given

in a uniform setting and a second formulation on B0, that uses the Euclidean

metric, is given. We do not make any definite conclusions as to which of the

formulations is to be preferred in a particular application, but we do find the

result that the non-Euclidean structure of the natural equilibrium equation on

B0 disappears for an incompressible material. The derivation of the equilibrium

equation of Noll [7] is based on a generalization of Piola’s identity to the in-

compatible situation. A direct proof of this generalized Piola identity is given in

the Appendix.

2. General theory of a residually stressed body

2.1. Geometry

Let an elastic body be represented by a subset B0 of the three–dimensional

physical space with the Euclidean metric G. A differentiable one–to–one map f

deforms this body into another subset, say B, with the Euclidean metric g, i.e.,

f : B0 → B.

We call B0 a reference configuration (later we will construct other reference

configurations) and B a spatial configuration. These and other configurations

appearing in the theory are shown in Fig. 3.

Let the coordinates (X1, X2, X3) represent a point in the reference config-

uration and (x1, x2, x3) a point in the spatial configuration. We will use the

abbreviation XA and xa, respectively, for these coordinates. The deformation

can then be written in component form as

xa = fa(X1, X2, X3), a = 1, 2, 3.

Since f is differentiable, we can construct a tangent map (deformation gradient)

F with components

F a
A =

∂fa

∂XA
.
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F

K

B0

B̃

B

B

ϕ

f

Fig. 3. Configurations, i.e., sets in the Euclidean space, used in the theory. f and ϕ are
point mappings, while F and K are tangent maps. The drawing alludes to an arterial

geometry, but is generally valid.

The deformation gradient is a two–point tensor that maps tangent vectors in
B0 into tangent vectors in B, i.e.,

F : TB0 → TB,

where TB0 and TB denote the union of all tangent spaces (tangent bundle) in
B0 and B, respectively.

For later use we introduce the Einstein summation convention: for any term
involving indices, a summation is enforced for an index that appears both as an
upper and a lower index. Note also that we use lower case indices when referring
to B and capital indices when referring to B0.

It is often assumed that the body in an unloaded reference configuration is
stress free. This cannot be assumed to be generally true. As an example, take
a thin rubber tube and turn it inside out. This inverted tube is unloaded but
it is not stress free. A radial cut will relieve the stress and the tube will try
to obtain its original shape. This example shows that an unloaded body is not
necessarily stress free, and if our constitutive material law is such that it refers
to a stress free state, as an hyperelastic law usually does, the choice of reference
configuration must be made carefully.

Now, the reference configuration B0 introduced above cannot in general be
assumed stress free. However, for an elastic body, it is true that each infinitesi-
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mal part of B0, or any other configuration, can be made stress-free by removing
(cutting) it from the main body and letting it deform independently of its neigh-
bors into a stress free state, see Johnson and Hoger [9] and Takamizawa and
Matsuda [10]. This local deformation can be described by an invertible two–
point tensor K−1 that takes vectors in a tangent space of B0 and places them
into another tangent space. This later space is here taken as a tangent space of
a subset B of the physical space with Euclidean metric γ, i.e., as T

B
. Thus,

(2.1) K−1 : TB0 → T
B
.

Since rigid body rotation is not accommodated by stress, we may assume that
K−1 is determined by unloading only up to such a rigid body rotation. The
stress that may exist in the configuration B0 is termed initial stress and should
be distinguished from the stress that exists in a particular spatial configuration
B that is free of external loading, which is called residual stress. The inverse of
K−1, denoted K, may be called an initial local deformation.

Care should be taken in interpreting the subset B: since the mapping (2.1)
is only between tangent spaces, any point mapping between B0 and B is im-
material. For instance, it is plausible, and sometimes preferable, to let the sets
B0 and B coincide. Moreover, the tensor K−1 is certainly not, in general, the
gradient of a deformation. An intuitive view of B may be that it is a subset of
Euclidean space where we have placed, at each point, an infinitesimal, locally
deformed, material part, which does not fit together with its neighbors. In other
words, it is an incompatible configuration of the body.

Since the material in B is considered to be stress free, for a hyperelastic
material, it is the local deformation out of this state that determines the stress
in a general spatial configuration B. This local deformation is a composition of
K and the deformation gradient F , and can be written

H = FK, H : T
B

→ TB.

By introducing Greek indices when referring to B, we can write this total tan-
gent map in components as

Ha
α = F a

AK
A

α.

Volume elements (or forms) defined on the tangent spaces of the three con-
figurations B0, B and B, are denoted dvB0 , dvB and dv

B
, respectively. These

volume elements are related by the determinants of the tangent maps, i.e.,

(2.2) dvB = detFdvB0 , dvB0 = detKdv
B
, dvB = detHdvB0 ,

where the last equation is a consequence of the first two. Note that the determi-
nant of a two-point tensor depends on the metrics of the two involved manifolds.
This fact is of some importance in Sec. 4.2, where further details are given.
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Defining density functions ρ0, ρ and ρRef on the configurations B0, B and
B, conservation of mass implies ρ dvB = ρRef dvB

= ρ0 dvB0 , and we then get
from Eqs. (2.2) that

(2.3) ρ detF = ρ0, ρdetH = ρRef, ρ0 detK = ρRef,

where the first two equations imply the last equation. The index Ref is used to
indicate that the density of a stress-free material may act as a reference and as
a known quantity in many natural problem formulations.

In the following we are particularly interested in the case when the material
is incompressible, which, as discussed in Olsson et al. [14], we take to imply
that

(2.4) detH = detF = detK = 1,

and which, with (2.3), gives ρ = ρ0 = ρRef.

2.2. Balance and constitutive laws

The material is assumed to be hyperelastic with a strain–energy per unit
mass Ψ . Since B is regarded as stress free and the tangent map H = FK
is a local deformation out of this state, it is natural to take Ψ as a function
of H. Furthermore, objectivity requires that Ψ depends on H only through a
dependence on the right Cauchy–Green deformation tensor Z with components

Zαβ = Ha
α gabH

b
β .

That is, Ψ = Ψ(Z). This assumption is used together with the energy equation,
with heat flux terms neglected:

(2.5) ρΨ̇ = σabdab,

where the superimposed dot means rate of change with respect to time, σab are
the components of the Cauchy stress tensor, and dab are the components of the
rate–of–deformation tensor. Standard arguments then imply that

(2.6) σab = 2ρHa
α
∂Ψ

∂Zαβ
Hb

β.

For an incompressible material, the constraint (2.4) implies that the argu-
ments that produced (2.6) as a consequence of (2.5) have to be modified. Instead
of (2.6) we arrive at

(2.7) σab = −pgab + 2ρHa
α
∂Ψ

∂Zαβ
Hb

β ,
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where gab are the components of the inverse of the metric g and p is a multiplier
sometimes called the hydrostatic pressure.

Finally, we need an equilibrium equation. On the domain B we classically
have the following equation:

(2.8) ∇bσ
ab + ρba = 0,

where ba are the components of an external force per unit mass vector and ∇b

is the covariant derivative associated with the metric in B.

2.3. Existence of a stress-free compatible reference configuration

Now, it does happen in special cases that, in addition to the incompatible
configuration B, there exists a compatible stress-free configuration of the body.
In fact, as will be shown in Sec. 3.2, the opening angle method is based on
such an assumption. However, in this section we will still be concerned with the
general situation, which was discussed in Takamizawa and Matsuda [10] and
in Klarbring and Olsson [16]. It was concluded in [16] that an important
theorem can be framed in terms of the curvature tensor R of the strain–like
tensor m with components

(2.9) mAB = (K−1)α
A γαβ(K−1)

β
B,

where γαβ are the components of a Euclidean metric tensor on B. The tensor m
is a metric tensor, but not generally a Euclidean metric tensor. The components
of the curvature tensor read

RABCD = mDK

(

∂

∂XB
ΓK

AC − ∂

∂XA
ΓK

BC + ΓL
ACΓ

K
LB − ΓL

BCΓ
K
LA

)

,

where ΓK
AC are the Christoffel symbols of the second kind of m viewed as a

metric in B0. The theorem is a slight reinterpretation of a result of Blume [15]
and says that if B0 is simply connected and the curvature tensor vanishes, then
there is a mapping ϕ−1 from B0 to a subset B̃ of the Euclidean space with
metric γ∗ such that

(2.10)
∂(ϕ−1)α̃

∂XA
γ∗

α̃β̃

∂(ϕ−1)β̃

∂XB
= (K−1)

α
A γαβ(K−1)

β
B.

This means that K−1 and the gradient of ϕ−1 have the same stretch tensor and
differ only by the product of an orthogonal tensor. Note that this correlation
is local with the orthogonal tensor being possibly different at each point. The
mapping ϕ−1 is locally invertible, but not necessarily globally invertible, e.g., its
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image could be overlapping. Assuming, however, that B0 is properly chosen so
that ϕ−1 is globally invertible, we can define ϕ, the inverse of ϕ−1, as a mapping
from B̃ to B0, see Fig. 3.

We now show that B̃ can be used as a global compatible stress-free config-
uration on which stress calculations for the hyperelastic material can be based.
Define, in the usual way, the deformation gradient of the composite mapping
f ◦ ϕ (Fig. 3) as the tensor with components

(2.11) Ĥa
α̃ =

∂(f ◦ ϕ)a

∂ξα̃
,

where (ξ1, ξ2, ξ3) are coordinates in the set B̃; such coordinates are labeled by
Greek indices with a superposed tilde. Equation (2.10) then implies that

(2.12) Ha
α = Ĥa

α̃Q
α̃
α,

where Qα̃
α are the components of an orthogonal tensor Q mapping from a tangent

space of B to a tangent space of B̃. Note that orthogonality of such a two-point
tensor means that γ∗ = QT γQ. It can be shown, by use of Eq. (2.12), that (2.6)
can be rewritten as

(2.13) σab = 2ρĤa
α̃

∂Ψ̂

∂Ẑα̃β̃

Ĥb
β̃
,

where Ψ̂ = Ψ̂(Ẑ) = Ψ(Z) for Z and Ẑ related as Zαβ = Qα̃
αẐα̃β̃Q

β̃
β .

In analogy with (2.7), a constitutive law similar to (2.13) holds for the in-
compressible case.

Thus, in conclusion, when the curvature tensor R vanishes on B0, then there
is a stress-free compatible configuration B̃ of the body (possibly cut to make
simply connected) and we can use this configuration as our reference configura-
tion when calculating the stress.

3. Arterial geometry

In many applications an artery can be modeled as a rotationally symmetric
body that also retains this symmetry when loaded. Therefore, when applying
the theory of the previous section to arteries, we will use cylindrical coordi-
nates which are denoted (R,Θ,Z) in B0 and (r, θ, z) in B, respectively. These
coordinates refer to radial, tangential and axial directions.

The mapping f is taken to be a radial expansion, or shrinking, of the cylinder,
i.e.,

r = f r(R), θ = Θ, z = Z,
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with non-zero components of the deformation gradient given by

F r
R =

df r(R)

dR
, F θ

Θ = 1, F z
Z = 1.

The incompressibility constraint (2.4), detF = 1, implies that

(3.1) r = f r(R) =
√

R2 −R2
i + r2i ,

where Ri is the inner radius of the cylindrical tube B0 and ri is the inner radius
of the similar cylinder B.

As indicated above, it is only the tangent spaces of B, and not the set itself,
that play any direct role in the general theory. Therefore, without any loss of
generality, we will let B coincide with the set B0. The latter set now has a dual
interpretation: it is a compatible configuration of the body, but it is also a set
where we have placed individually unloaded parts that form an incompatible
body structure. As a consequence of this identification, the tensor K will map
both from and to TB0 and its components will be indicated by indices R, Θ
and Z, only. For simplicity, these components are assumed to form a diagonal
matrix, i.e. only KR

R, KΘ
Θ and KZ

Z are assumed to be non-zero. Furthermore,
to comply with the assumption of rotational symmetry, they are also assumed to
depend only on the radial coordinate. Moreover, the incompressibility constraint
(2.4) indicates that KΘ

Θ = (KR
RK

Z
Z)−1. The non-zero components of the

tensor H then become

(3.2) HR
R =

R
√

R2 −R2
i + r2i

KR
R, HΘ

Θ = (KR
RK

Z
Z)−1, HZ

Z = KZ
Z .

We now conclude, through the constitutive equation (2.7), that given a con-
figuration B and boundary conditions, the stresses are determined by KR

R,
KZ

Z and Ri. In particular, if B is an unloaded configuration the residual stresses
are in this way parametrized by KR

R, KZ
Z and Ri. In the next subsection we

will see that the case of constant functions KR
R and KZ

Z has played a central
historical role in the mechanical modeling of arteries.

The stress boundary conditions on the cylinder B are that a constant pres-
sure λ acts on the inner surface, with radius ri, and that the outer surface, with
radius ro, is stress free. Moreover, from (3.2) it follows that H, and, thereby,
from the specific form of g for cylindrical coordinates, also Z, depend on the
radial coordinate only. It was shown in Olsson et al. [14] that if the material
behavior, i.e., the strain energy Ψ , varies only in the radial direction, then the
equilibrium Eq. (2.8), with ba = 0, implies that
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• the hydrostatic pressure p depends on the radial coordinate only,
• everywhere in B it holds that

(3.3) σrθ = σrz = 0,

• and

(3.4) λ =

ro
∫

ri

(

rσθθ − σrr

r

)

dr.

Note that the stress components in (3.4) are tensor components and, thus, do
not have uniform physical dimensions.

Condition (3.3) is a constraint on the functional form of the strain energy.

3.1. An identification problem

When substituting (2.7) into (3.4), the hydrostatic pressure cancels, and
(3.4) becomes a condition which relates constitutive constants and initial strain
parameters to the pressure. Thus, a relation of the following form is obtained:

(3.5) λ = λ(κ,KR
R, K

Z
Z , Ri, ri, ro),

where κ is a vector of constitutive parameters. This equation may be used to
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Fig. 4. The fitting of the model, in the least square sense, to measurements from Sonneson

et al. [19]
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state an inverse identification problem: if a series of measurements of pairs (λ, ri)
are at hand, we may attempt to find (κ,KR

R, K
Z

Z , Ri, ro) such that the mea-
surements fit the predictions from (3.5) as closely as possible, e.g., in the least
square sense. Such identification results were reported in Olsson et al. [14].
In vivo measurements of pairs (λ, ri) on an abdominal aorta of a 47 year old
female were taken from the study of Sonneson et al. [19]. The strain energy
function was taken from Holzapfel et al. [20], meaning that κ contains three
parameters. The fitting between model and measurements is shown in Fig. 4.

3.2. Compatible stress-free reference configuration

The prevailing method for describing residual strains and stresses in arteries
is the opening–angle method, proposed by Choung and Fung [11], see Fig. 1.
This method is based on the assumption that a radially cut arterial segment
opens up into a stress-free circular sector (often referred to as the cut–open
state). That is, we have a situation as the one described in Sec. 2.3 where a
curvature tensor is zero and there exists a mapping ϕ−1, which is the mapping
that together with f describes the opening of the cut arterial segment. We may
view the cutting as producing a simply connected domain. The coordinates of the
circular sector B̃ (see Fig. 3) are denoted (R̃, Θ̃, Z̃) and the composite mapping
f ◦ ϕ, for an incompressible case, is defined by

(3.6) r =

√

R̃2 − R̃2
i

αδ
+ r2i , Θ = αΘ̃, z = δZ̃,

where R̃i is the inner radius of the circular sector B̃, δ is its axial elongation
and α describes the opening angle. From (3.6) we calculate the components Ĥa

α̃

as defined in (2.11):

Ĥr
R̃

=
R̃

√
αδ
√

R̃2 − R̃2
i + αδr2i

, ĤΘ
Θ̃

= α, Ĥz
Z̃ = δ.

The stresses can be now be calculated by use of a constitutive equation, and,
thus, for a given configuration B they are represented by the three parameters
α, δ and R̃i. In the treatment of the arterial geometry by the more general
method above, we concluded that stresses for a given B were described by two
functions KR

R and KZ
Z and a constant Ri. If we assume that the two functions

are constant through the thickness of the artery, the stresses are again described
by three parameters. Therefore, we may expect that there is a particular choice
of constants KR

R, KZ
Z and parameter Ri that will make this special case of

the general method identical to the opening–angle method. The key to such
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an identification is Eq. (2.12). This equation describes how local deformations,
calculated by means of reference configurations B and B̃, respectively, need to
be related in order to give the same stress. Equation (2.12) holds if

(3.7) QR̃
R = 1, QΘ̃

Θ =
R

R̃
, QZ̃

Z = 1,

and

(3.8) KR
R =

R̃

αδR
, KZ

Z = δ.

The orthogonal tensor represented by (3.7) is such that material line elements
form the same angle with coordinate surfaces in both B̃ and B.

From (3.8) we see that the functions KR
R and KZ

Z are constant when R̃/R
is so. This happens for a particular choice of Ri and R̃i. By identifying (3.1) and
(3.6) we can calculate the function ϕ. In particular, the radial coordinates are
related as

R2 − R̃2

αδ
= R2

i −
R̃2

i

αδ
.

Thus, if parameters are set so that R2
i = R̃2

i /αδ, then the factor R̃/R =
√
αδ is

constant and the opening-angle method can be mimicked by the general method
with constant tensors KR

R and KZ
Z and this particular choice of Ri. Note

that for other choices of Ri, i.e. of B, the general method can still contain the
opening-angle method but not by a choice of constant functions KR

R and KZ
Z .

4. Riemannian manifold

4.1. The tensor m as a metric on B0

The three configurations B, B0 and B and their coordinates have been as-
signed three metric tensors. The components of these metric tensors are denoted
γαβ , GAB and gab, respectively. Now, on the set B0 it is also interesting to use
the tensor m, the components of which are defined in (2.9), as a metric ten-
sor. This is generally not an Euclidean metric since the tensor K−1 may not
be the gradient of a deformation. The set B0 with the metric m constitutes a
general Riemannian manifold, which we denote (B0,m). Note that a change of
metric does not affect the components F a

A of the deformation gradient since its
definition is independent of the metric.

It may be intrinsically difficult to visualize (B0,m) in the physical three-
dimensional case, so for interpretation purposes we may think of a two-dimensio-
nal physical space, a situation that is shown in Fig. 5. The three configurations
B, B0 and B are then flat two-dimensional surfaces, while the manifold (B0,m)
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is a generally curved two-dimensional surface in an embedding three-dimensional
space. This curved surface becomes flat in two ways: firstly, it may be non-
uniformly stretched (flattened out) to become a configuration. Secondly, it may
be teared into (infinitesimal) pieces, and these may be independently placed on
the flat physical surface to form B. In some cases, a finite number of cuts may
give a surface which can be unrolled to become flat. This is the case of zero
curvature, when B̃ exists, as in the opening–angle method.

B0

B
B

B

(B0,m)

2D

2D

f

Fig. 5. If we view the Euclidean space as two-dimensional, the manifold (B0,m) may be seen
as a curved three-dimensional surface. This surface may then be made two-dimensional in two
ways: On the top it is flattened, but stretched. On the bottom it is teared into infinitesimal

pieces that generally do not fit together.

4.2. Determinants, volume elements and densities

The determinant of a two-point tensor, mapping between tangent spaces of
two manifolds, depends on the metric tensors of the manifolds. This is clear from
the following formula, which holds when the deformation gradient maps from a
tangent space of B0, with metric G, to a tangent space of B, with metric g:

(4.1) detF =

√

det(gab)
√

det(GAB)
det(F a

A),

where det(F a
A) is the determinant of the matrix formed from the components

of the deformation gradient F, and similarly for det(gab) and det(GAB).
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If we regard F as a mapping from a tangent space of B0 with metric m to
a tangent space of B, its determinant will be different from that in (4.1). To
indicate this, we write the corresponding operator with an index m, and it holds
that

detmF =

√

det(gab)
√

det(mAB)
det(F a

A).

Formulas for the other determinants of two-point tensors are

detK =

√

det(GAB)
√

det(γαβ)
det(KA

α), detH =

√

det(gab)
√

det(γαβ)
det(Ha

α).

A volume element of the manifold (B0,m) is denoted dv(B0,m) and is defined
by

dvB = (detmF) dv(B0,m).

By introducing a density ρ̂0 on (B0,m) by the mass conservation requirement
ρ̂0dv(B0,m) = ρdvB, we get

(4.2) ρ̂0 = ρ detmF.

This equation together with (2.3)2 implies that ρ̂0 detH = ρRef detmF. Now,
from the definition of m and the above formulas for determinants, it follows
that detmF = detH and we conclude that

(4.3) ρ̂0 = ρRef.

That is, the reference density ρRef can be regarded both as the density of the
incompatible configuration B and as the density of the Riemannian manifold
(B0,m).

5. Boundary value problems

Boundary value problems of static elasticity are based on a constitutive law
such as (2.6) and the equilibrium equation (2.8). As generally recognized, a pos-
sible inconvenience of such a formulation is that the equilibrium equation is a
differential equation whose independent variable belongs to a domain that de-
pends on the solution of the problem, i.e., B depends on the mapping f . When
a stress-free compatible reference configuration is available, this difficulty is cir-
cumvented by making a Piola transform which defines the first Piola–Kirchhoff
stress as a function on the stress-free configuration. Now, in the present situ-
ation, when there is no compatible stress-free configuration available, this idea
has to be modified. We will discuss three different ways to choose a fixed set on
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which to write the equilibrium equations. Firstly, we formulate the boundary
value problem on the Riemannian manifold (B0,m). Secondly, we do the same
for the initially stressed manifold (B0,G) and, lastly, we formulate the problem
in the local stress-free configuration B. Formulating the equilibrium equations
on B requires a modified Piola identity, which is derived in the Appendix (see
also Noll [7]) and which is valid even if one configuration is incompatible.

The formulations are derived for the compressible case and the incompress-
ible case is discussed in Sec. 5.4.

5.1. Boundary value problem on B0 with metric m

We use a Piola transformation to define the first Piola–Kirchhoff stress tensor
on the manifold (B0,m) as follows:

(5.1) P aA
m

= (detmF)σab(F−1)A
b.

Using this definition in (2.6) we obtain the constitutive relation

(5.2) P aA
m

= 2 (detmF) ρHa
α

∂Ψ

∂Zαβ
KA

β .

From equations (4.2), (4.3) and the chain rule, we find that (5.2) can be further
rewritten as

(5.3) P aA
m

= 2ρRefF
a
B

∂Ψ̃

∂CAB
,

where Ψ̃(C,K) = Ψ(Z) and C has components CAB = gabF
a
A F

b
B.

Since F is the gradient of a deformation f , detmF is the Jacobian of f and
the standard Piola identity, given in Marsden and Hughes [21], holds:

∇̂AP
aA
m

= detmF∇bσ
ab,

where ∇̂A is the covariant derivative on (B0,m). We then obtain from (2.8) the
equilibrium equation

(5.4) ∇̂AP
aA
m

+ ρRefb
a = 0.

Equation (5.4), without body forces, is also given in Takamizawa and Mat-

suda [10]; it represents the equilibrium equations referring to (B0,m).
To form a well defined boundary value problem, (5.4) needs to be combined

with an appropriate boundary condition. One such condition is obtained by
prescribing a traction vector t on the boundary of the domain. This vector is
given through the Cauchy stress tensor by Cauchy’s theorem as

(5.5) ta = σabnb,
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where nb are the components of an outward unit vector n at the boundary ∂B.
The boundary condition for the equilibrium equation (5.4) is obtained by using
the Piola transformation (5.1) in (5.5). We then get

(5.6) ta = (detmF)−1P aA
m
F b

A nb = P aA
m
n̂A,

where we have used the notation

n̂A = (detmF)−1F b
A nb,

which is a covariant unit vector defined on ∂B0, the boundary of B0.
The complete boundary value problem, referring to the Riemannian manifold

(B0,m), can now be stated as:

B.V. Problem on (B0,m)

Given ρRef, K, b and t, find f such that

∇̂AP
aA
m

+ ρRefb
a = 0 on B0

P aA
m

= 2ρRefF
a
B

∂Ψ̃

∂CAB
on B0

ta = P aA
m
n̂A on ∂B0.

5.2. Boundary value problem on B0 with metric G

To obtain a constitutive equation that fits the equilibrium equation written
for the Euclidean manifold (B0,G), we use the Piola transformation

(5.7) P aA = (detF)σab(F−1)A
b,

which gives

(5.8) P aA = 2ρ0F
a
B

∂Ψ̃

∂CAB
.

By using ρ0 = ρRef(detK)−1, the definition of detK in Sec. 4.2, (2.9) and
standard properties of determinants, we get

(5.9) ρ0 = ρRef

√

det(mAB)
√

det(GCD)
.

This means that the difference between constitutive equations for the manifold
(B0,G) and for the manifold (B0,m) is that in the former case, when we con-
sider ρRef as fixed, the density (5.9), which appears in (5.8), must be dependent
on the tangent map K through the metric m.
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Since detF is a Jacobian, the Piola transformation (5.7) gives a Piola identity
which reads

∇AP
aA = detF∇bσ

ab,

where ∇A is the derivative operator of the manifold (B0,G). The equilibrium
equation (2.8) then becomes

∇AP
aA + ρ0b

a = 0.

A boundary condition for this equilibrium equation is obtained by using the
Piola transformation (5.7) in the same way as in (5.6). The result reads

ta = P aAnA,

where

nA = (detF)−1F b
A nb,

are the components of the outward unit vector at the boundary of B0. The
following boundary value problem can now be formulated:

B.V. Problem on (B0,G)

Given ρRef, K, b and t, find f such that

∇AP
aA + ρ0b

a = 0 on B0

P aA = 2ρ0F
a
B

∂Ψ̃

∂CBA
on B0

ta = P aAnA on ∂B0

where

ρ0 = ρRef

√

det(mAB)
√

det(GCD)
.

5.3. Boundary value problem on B with metric γ

By using the Piola transformation

(5.10) P aα = (detH)σab(H−1)α
b,

it is shown in Theorem 1 of the Appendix (see also Noll [7]) that

detH∇bσ
ab = ∇αP

aα + P aαsα,
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where sα vanishes if B is compatible. That is, sα is a measure of the incom-
patibility of the configuration. The equilibrium Eq. (2.8) can now be written
as

∇αP
aα + P aαsα + ρRefb

a = 0.

This equation is also derived in Noll [7] and there referred to as Cauchy’s
modified equation of balance.

The constitutive Eq. (2.6) can be rewritten by using the transformation
(5.10) and then it becomes

P aα = 2ρRefH
a
β
∂Ψ

∂Zαβ
.

Also the boundary condition in B is rewritten by using the Piola transformation
(5.10) and becomes

ta = P aαnα,

where
nα = (detH)−1Hb

αnb,

is a unit vector at the boundary ∂B. The following boundary value problem can
now be formulated:

B.V. Problem on B

Given ρRef, K, b and t, find f such that

∇αP
aα + P aαsα + ρRefb

a = 0 on B

P aα = 2ρRefH
a
β
∂Ψ

∂Zαβ
on B

ta = P aαnα on ∂B.

5.4. Incompressibility

For an incompressible material, (2.4) and (5.9) give that

(5.11)
√

det(GAB) =
√

det(mAB).

Thus, for an incompressible material, the determinant of the Euclidean metric
G on configuration B0 is equal to the determinant of the initial strain induced
metric m.

Now, an important conclusion, in relation to (5.11), is that the divergence of
the first Piola–Kirchhoff stress tensor (that appears in the equilibrium equation)
is dependent on the metric only trough its determinant. This can be seen from
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the following formula, which is a generalization of the formula for the divergence
of a vector field given in Marsden and Hughes [21]:

(5.12) (∇̂AP
aA
m

)ga =
1

√

det(mBC)

∂

∂XA

(

√

det(mBC)P aA
m

ga

)

,

where ga is a natural basis in B. A similar formula holds for the Piola–Kirchhoff
stress P aA, which, due to (5.11), turns out to coincide with P aA

m
in the incom-

pressible case. Comparing this formula with (5.12), again taking account of
(5.11), we find that

(5.13) ∇̂AP
aA
m

= ∇AP
aA.

This result implies that the boundary value problem in Sec. 5.1 coincide with
that of Sec. 5.2. However, the metric tensors G and m can obviously be different
even though their determinants coincide, so (5.13) does not imply that the non-
Euclidean nature of the initially stretched configuration disappears.

5.5. Comparison of formulations

The present investigation does not give any conclusive answer as to when
one formulation is to be preferred over another. Nevertheless, the equilibrium
equation on B obviously has a non-classical appearance due to the presence of
sα. The boundary value problem referring to (B0,G) looks classical except for
the density ρ0, which depends on the initial deformation K. For the boundary
value problem referring to (B0,m), this possible shortage is removed on the
expense of having to deal with a non-Euclidean structure. The formulation based
on (B0,G) is probably the most intuitively appealing since this manifold can
be thought of as a compatible configuration in physical space. Note that the
opening-angle method is based on a cutting operation that generates a simply
connected domain B̃. Thus, in this special case, a fourth formulation, not covered
in this section, is possible.

Appendix – Piola Identity

We will here derive a generalized Piola identity. This generalization is valid
for configurations that are incompatible. Another proof of this theorem is given
in Noll [7].

Theorem 1. A generalization of the Piola identity. Given two config-
urations B and B and a tangent map (not necessarily a deformation gradient)
H, the following formula, which is a generalization of the Piola identity, holds

∇bσ
ab = (detH)−1 (∇αP

aα + P aαsα) ,
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where

P aα = (detH)σab(H−1)α
b and sα = (H−1)γ

b

(

∇γH
b
α −∇αH

b
γ

)

,

and where the divergence operator on B is defined as

∇β = Hb
β∇b.

To prove this theorem we need the following Lemma.

Lemma 1. The gradient of the inverted determinant (detH)−1 is given by

∇b(detH)−1 = −(detH)−1
(

(H−1)γ
c∇bH

c
γ

)

.

P r o o f of Lemma 1:

By using the chain rule we get

∇b(detH)−1 =

√

det(γην)
√

det(gmn)
∇b(det(Ha

α))−1

= −
√

det(γην)
√

det(gmn)
(det(Ha

α))−2∇b(det(Ha
α))

= −
√

det(γην)
√

det(gmn)
(det(Ha

α))−2∂ det(Ha
α)

∂Hc
γ

∇bH
c
γ ,

and by noticing that

∂ det(Ha
α)

∂Hc
γ

= (H−1)γ
c det(Ha

α),

we arrive at the final expression

∇b(detH)−1 = −(detH)−1
(

(H−1)γ
c∇bH

c
γ

)

,

and Lemma 1 is proved. 2

We are now ready to prove the theorem.
P r o o f of Theorem 1:

The first Piola–Kirchhoff stress tensor is defined as

P aα = (detH)σab(H−1)α
b.

Solving for σab yields

(5.14) σab = (detH)−1P aαHb
α.
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We can now differentiate the left hand side of (5.14), and by using Liebnitz rule
(differentiation of a product) we get

∇bσ
ab = P aαHb

α∇b(detH)−1 + (detH)−1Hb
α∇bP

aα

+ (detH)−1P aα∇bH
b
α.

(5.15)

Utilizing Lemma 1 for the first term on the right-hand side of (5.15) we obtain

P aαHb
α∇b(detH)−1 = −P aαHb

α(detH)−1
(

(H−1)γ
c∇bH

c
γ

)

.(5.16)

Now, using (5.16) and (5.15) we get

(5.17) (detH)∇bσ
ab = Hb

α∇bP
aα + P aα

(

∇bH
b
α −Hb

α(∇bH
c
γ)(H−1)γ

c

)

.

We now define the derivative operator on B as the pull–back of the derivative
operator on B, that is,

∇β = Hb
β∇b.

Equation (5.17) can now be expressed in material setting as

(detH)∇bσ
ab = ∇αP

aα + P aαsα,

where

sα = (H−1)γ
b

(

∇γH
b
α −∇αH

b
γ

)

and Theorem 1 is proved. 2

Note that the covariant vector sα is a measure of the incompatibility of
the configuration. If sα vanishes, as is the case when H is the derivative of
a deformation, then we obtain the ordinary Piola identity.

References

1. R.N. Vaishnav and J. Vossoughi, Estimation of residual strains in aortic segments, [in:]

C.W. Hall [Ed.], Biomedical engineering II, Recent developments, Pergamon Press, New

York 1983.

2. Y.C. Fung, On the foundations of biomechanics, Journal of Applied Mechanics, 50, 1003–

1009, 1983.

3. E.K. Rodriguez, A. Hoger and A.D. McCulloch, Stress–Dependent Finite Growth

in Soft Elastic Tissues, Journal of Biomechanics, 27, 455–467, 1994.



Theory of residual stresses ... 363

4. R. Skalak, S. Zargaryan, R. Jain, P. Netti and A. Hoger, Compatibility and the

genesis of residual stress by volumetric growth, Journal of Mathematical Biology, 34,

889–914, 1996.

5. G.A. Maugin, Geometry and thermodynamics of structural rearangements: Ekkehart
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