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THE INTERIOR NEUMANN PROBLEM for the Stokes resolvent system is studied from
the point of view of the potential theory. The existence and uniqueness results as well
as boundary integral representations of the classical solution are given in the case
of a bounded domain in R", having a compact but not connected boundary of class
cH* (0<a<).
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1. Introduction

LET D' C R" and D; C R" (n € N, n > 2) be two bounded domains with
connected boundaries I and I of class C* (0 < a < 1), such that D; C D',
Also let D C R™ be the bounded domain given by D = D'\ Dy, and let I =
I U Iy be its boundary. We assume that the origin of R™ belongs to Di, and
denote by n the unit normal to I" pointing outside the domain D (see Fig. 1).

Fic. 1. Bounded domain in R".

The following equations:

(1.1) V-u=0, -Vg+(VZ—x>)u+f=0 inD
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determine the Stokes resolvent system in the bounded domain D. Note that
x? is a complex number such that y2 € C\ {z € C: Rez < 0, Imz = 0},
u = (u1,...,u,) and g are unknown functions, and f = (fi,..., f,) is a given
vector function. All functions occurring in this paper are complex-valued. In
addition, V is the n-dimensional gradient operator and V? denotes the Laplace
operator.

The Stokes resolvent system (1.1) can be obtained by applying the Laplace
transform to the system of the continuity and Navier—Stokes equations which,
in the case n = 2 or n = 3, describes the low Reynolds number flow of a viscous
incompressible fluid (for details see [12], Sec. 1.5). Thus, in this case, u and ¢
are the Laplace transforms of the flow velocity and pressure fields, and f is the
Laplace transform of a given body force.

The solution of the Stokes resolvent system can be used to obtain the exis-
tence, stability, and asymptotic properties of solutions to the Navier-Stokes equa-
tion, by applying some results of the functional analysis or pseudo-differential
operator theory (for details see [2, 21]). On the other hand, the potential the-
ory for the Stokes resolvent system in the general case n > 2 was developed
by Varnhorn (see [25, 26]), and extension of this theory to the case of domains
with connected boundaries of Lyapunov type (i.e., of class C1® (0 < a < 1))
was recently obtained in [27]. In addition, the fundamental solution for the sys-
tem of equations (1.1) in R3 was obtained by MCCRAKEN in [16]. Also the
Dirichlet problems for the Stokes resolvent equations on bounded and exterior
domains in R™ with compact but not connected boundaries of Lypaunov type
have been studied recently in [11], and a mixed boundary value problem for the
same equations has been treated in [10].

The aim of this paper is to use the potential theory in order to prove the
existence and uniqueness result of the classical solution to the interior Neumann
problem for the Stokes resolvent system (1.1), in the case of the bounded domain
D with compact but not connected boundary of Lyapunov type.

2. The potential theory for the Stokes resolvent system

The first part of this paper is devoted to the presentation of the potential
theory for the Stokes resolvent system.

2.1. Preliminary results

Let us assume that the fields u and ¢ satisfy the system of equations (1.1).
Then the corresponding Cauchy stress tensor ¥(u) is given by the relation

(2.1) S(u) = —¢I, + Vu+ (Vu)7,
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where I, denotes the n x n identity matrix and (Vu)? is the transposed matrix
to Vu = (8u¢/8mj)i,j:1wn.

From the equations (1.1) we find that
(2.2) M:X%j—fjinp, j=1,...,n,

oxy,
where X;;(u) are the components of 3(u), 4,5 = 1,...,n. Note that in (2.2) we
have used the repeated-index summation convention. From now on, we take into
account this rule.

Let us now denote by T a continuous vector field on I'. Then the interior
Neumann problem for the Stokes resolvent system (1.1) in the bounded domain
D is the boundary value problem, due to the system of equations (1.1) and the
boundary condition of the Neumann type

(2.3) ¥(u) n=TonI.

Let (-, ) : C" x C™ — C be the inner product given by relation

(2.4) (z,m) = 27,
forall z=1(z1,...,2n), n = (M,...,nn) € C", where w is the complex conjugate
of w e C.

Using the equations (2.2) we get the following result (see e.g. [12] p. 24, for
f=0):

LEMMA 1. If the fields u = (uy,...,u,) and q satisfy the Stokes resolvent
system (1.1), then we have the identity

25) [ Sinmdr =3 [ w2 [ BB (¢ wix,
r D

D D

where

1 /0u; Ou;
2. Eij(u) = = . J ,i=1,...,n.
( 6) J(u) 2 <6[E] + 81’1) ) (W) ’ ,

2.2. Uniqueness result of the classical solution to the interior Neumann
problem (1.1), (2.3)

DEFINITION 1. The pair (u, q) is a classical solution to the interior Neumann
problem consisting of the system of equations (1.1) and the boundary condition
(2.3) if (u,q) € (C*(D)NCY(D)) x (CH{D)NC°D)), X(u) -n € C%TI"), and u
and q satisfy the Equations (1.1) and the boundary condition (2.3) at each point
of D and I' respectively.
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THEOREM 1. The interior Neumann problem consisting of the system of
equations (1.1) and the boundary condition of the Neumann type (2.3) has at
most one classical solution (u,q).

P r o o f. Let us assume that the pairs (u(l), q(l)) and (u(2)7 q(2)) are two clas-
sical solutions of the interior Neumann problem (1.1), (2.3), and let (u(®, ¢(®)
be their difference. Then applying the identity (2.5) to the fields u(® and ¢(®,
one obtains the equality

(2.7) / T (aOyn;u0dr = ¥ / @ 2dx + 2 / Eij(u®)E;; (u©®)dx,
I D D

which, in view of the boundary condition X(u(®)).n = 0 on I', takes the form

(2.8) / [X2\u<0>\2 +2E;;(u)E; -(u<0>)] dx = 0.
D

In addition, since |arg x?| < m, we find that u® = 0 in D, and in view of the
homogeneous Stokes resolvent equation

Ve + (= vHu» =0in D,
we deduce that ¢(°) = ag € C in D. Finally, using the fact that X(u®).n =10
on I, one obtains that ag = 0. This completes the proof of Theorem 1. ]
2.3. The fundamental solution of the Stokes resolvent system

Next, we refer to the system of the continuity and singularly Stokes resolvent
equations

(2.9) V-u=0, —-Vg+ (V?>-x*)u+gdix)=0,
where g = (¢g1,...,9n) is a constant vector and ¢ is the Dirac distribution or the
delta function in R™. Also the fields u = (u1,- -+ ,uy) and ¢ are complex-valued,

and x? € C\ {z € C: Rez <0, Imz = 0}.

2.3.1. The Green function and its associate pressure vector. The unsteady Stokes-

2
let or the free-space Green function G’ (G’i(j ) and the corresponding pressure
2
vector HXQ(H X7) to the Stokes resolvent system are defined by the relations

1

2w,

2 1 2
GY X)g5, ax) = 511 (x)g5.
n

(2.10) wi(x) =

where w,, is the surface area of the (n — 1)-dimensional unit sphere in R™.
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Substituting the expressions (2.10) into the Eqgs. (2.9), one obtains the equa-
tions

2
(2.11) 964 _ o io1m
* axz - ) j - AR )
O (x) .
(2.12) B T + (V2 = x7)Gy; (x) = —2wn0p56(x),  j.k=1,....n

Note that dj; is the Kronecker symbol, i.e., dx; = 1 for k = j, and dy; = 0 for
k # 7. ,
Let 33X (u) be the stress field corresponding to the fields u and ¢. Using the
relations (2.1) and (2.10) we find that
X2 I o :
(2.13) 2N (u)(x) = ESijk(x)gj, Lk=1,...,n,

2
where Szxj .. are the components of the stress tensor SXQ, associated to the Green
function and the pressure vector GX* and HX2, and having the form
2 2
(9G§<j (x) (‘3sz (x)

X () — ¢ , .
(2.14) Sik(x) = =17 (x)dik + B2, + oz, i,5,k=1,...,n.

The fundamental solution (GX*, TIX*) of the Stokes resolvent system (2.11),
(2.12) can be obtained by the Fourier transform method in the form (see [2] and
[28] for n = 2; [23| for n = 3; p. 81-82 [12], for n = 2,3; p. 60 [25]; [26]; [27] in
the general case n > 2):

2 0; Tix
G (%) = =L Ay (xIx]) + T2 E Aa (xIx]),

[x|"—2 x|
(2.15)
I (x) =29 jk=1,...
J (X) ‘X‘n7 ]’k ) 7n’
where
z\m—1 Z\m
(5) K@ (G) Knt)
Ai(z) =2 | ~2 422
I'(m) I'(m)z2 22 |7
(2.16)
z m+1
2(2) = 22 I'(m)z2 ’
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m = n/2, I'(z) is the Gamma function, x is the particular square root of
x2 € C\{z € C: Rez <0, Imz = 0}, which has a positive real part, i.e.,
Rex > 0, and K, is the modified Bessel function of the order v > 0. For details
see e.g. [1].

2.3.2. The stress tensor associated with the Green function. Taking into account
the relations (2.14), (2.15) and (2.16), one obtains the components of the stress
tensor SX” in the form (see e.g. p. 61-62 [25]; [27]):

211 5500 = ~2{ou T D (cbel + (5 2 + 2% ) Dl |

x .
[x[" [x T

— 27 e Dalx),
where
zZ\ m+1
5 m (Z) n
Dl(Z) _8<2> F(m)z;-l 222 +1’
z\m+1 2\m
= Kmi1(2) o, =) Kn(z)
(2.18) Da(2) = 8<2> T = 9 (Q)F( ) ’
2\ m+2
95 Knta(2) 2n(n + 2
Dy(2) = —16 (2) o (Z2+ ).

2.3.3. The pressure tensor associated with the stress tensor. Now, using the prop-
erties (2.11), (2.12) and (2.15) we deduce that

2
_ oAY (x—y)

(219)  (VZ = x)Shly —x) = =5
J

ik forx#y, i,5,k=1,...,n,

where (see [12] Chapter 2, for n = 2,3; p. 61-62 [25], for n > 2)
Ty

1 for n =2

0:
—28x% Inr — 4% + 8
2 T r
(2.20) A (x—y) = i ' , L
X Lilk

denote the components of the pressure tensor AX” associated with the stress
tensor SX°, and K =x —y = (Z1,...,%n), r = |X|.
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In addition, making use of the Eqgs. (2.11) as well as the expression of the
pressure vector HXQ, we get the property

OSink(y - X)

2.21
(2.21) o

=0 forx#y, i,k=1,...,n.

2.4. The potential theory for the Stokes resolvent system

Let us denote by f = (f1,..., f,) and h = (hy, ..., hy) two complex vector-
valued functions in the class CO(I").

2.4.1. The single- and double-layer potentials for the Stokes resolvent system.
By the single-layer potential with density f we mean the complex vector-valued

function V2, (-, f) defined as follows:

(222)  Ve,(xg) = / G (x—y) E(y)dl(y), xe€R"\T,
I

where GX” is the Green function of the Stokes resolvent system (see the relations
(2.15) and (2.16)). Similarly, by the double-layer potential with density h we
mean the complex vector-valued function W,z ,, (-, fl) whose j*'-component has
the form

~ 2 ~
(2.23)  (Wyen)j(x,h) = /Sixjk(y = x)ng(y)hi(y)dl’(y),
r
xeR"\I,j=1,...,n,
where SX” is the stress tensor associated with the Green function GX’ (see the
relations (2.17) and (2.18)).

Now, let us denote by P’ N f) and P;g A h) the functions defined at each
point x € R™\ I" by the relations

(2.24) Pg (x, 1) = / X (x = ) fi(y)dl'(y),
r

(2.25) P, (x,h) = / A5 (x — y)mi(y)ha(y)dI (y),

where ITX" and AX” are the pressure vector and the pressure tensor respectively,
associated with the Green function GX* and having the forms (2.15) and (2.20).
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Taking into account the Egs. (2.11), (2.12), (2.19) and (2.21), one obtains

the result that the pairs (V,2 , (-, f), P A () and (W2 . (-, h), P)?Q A h)) are

classical solutions of the homogeneous Stokes resolvent system in R™\ I'; i.e.,

(226)  V-Vye, () =0, =VP% () + (V> = x*)V,2,(.f) =0
in R"\ I,

(227)  V-Wye,(,h)=0, —VP% (- h)+ (V> = x*)W,2,(,h) =0
in R"\ I.

The decay behavior of the single- and double-layer potentials V2 ,,(-,f) and

W, 2 (-, h) at infinity is given by the following relations (see e.g. pp. 78-79 [25]):
(228) Ve, (x,f) =0(x]™), W,z2,(x,h)=0(x|'™") as x| — .

Moreover, if the vector density h of the double-layer potential szm(-, fl) satis-
fies the condition

(2.29) /fl -ndl’ =0,
r

then we have
(2.30) W2, (x,h) = O(|x|™") as |x| — cc.

On the other hand, using the relations (2.14) it follows that the stress ten-

sor 3(V,2,,(-,f)) corresponding to the single-layer potential V 2 (-, f) has the
following components:

O(V2.0);(x, F)

(231) TV (x,0) = —P%, (x, £)dj + Dy

+ 8(VX2C;;;3;(X’ f)_ / SX,.(x —y) fi(y)dl(y), x€R"\T.
Ir

Now, let us denote by v a field defined in a domain U containing I". Then
assuming that there exist the limiting values of this field at an arbitrary point
xo € I', evaluated from D and R"™ \ D respectively, we denote these limiting
values by v~ (x¢) and v (xg). In particular, we use the notations H;’n(-, f) and
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H_, (-, f) for the limiting values of the normal stress due to the single layer
X 7n -

potential V.2, (-,f) on both sides of I'. Note that
(2.32) (H,z2,);j(x0, ) = / Sjir(x — y)ni(x) fi(y)d(y), x€UN\T,
r

where X is the unique projection of x € U onto I

The continuity behavior of the single- and double-layer potentials across the
boundary I" of the domain D is given by the following theorem (see p. 66 [25];
p. 199-201 [12]):

THEOREM 2. Let f and h be two complex vector-valued densities in the class
CoI"), and let V2, (-,f), W,2,(-,h) and Hf([?,n("f) be the complex vector-
valued functions given by the relations (2.22), (2.23) and (2.32). Then for any
point xg € I' we have the relations

(2.33) Vi (x0,F) =V, (x0,F) = V2 (%0, ),
(234) W5 (x0,h) = W}, (x0,h) = @,

X

X())
= W;k(27n(xo, fl) — W;2,TZ(XO’ h),

(235)  HY, (x0,f) = Hjz ,(x0,f) = —wnf(x0)
=H}: (%0, f) — Hp, (%0, ),

where

PV

~ ~ 2
(Wi, )i B) = [ Taly)SELy = xo)m ()l ().

r

(2.36)

PV
(H2,)ix0,D) = [ )85 00— ) (I ()
I

and PV denotes the principal value.

Proof The proof of the properties (2.33)—(2.35) in the two- or three-
dimensional steady case (i.e., for n = 2,3 and the case y = 0) is presented
in [12], Chapter 3. The case x> € C\ {z € C: Rez < 0, Imz = 0}, can be
treated by using the relations

GY(x—y) = GY;(x—y) + Gf;(x — y),
(2.37)

Sy — x)nily) = 8% (v — x)ne(y) + S5 (y — X)),
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where GO(G%) is the steady Stokeslet and SO(S%k) is its associated stress tensor
(which correspond to the case x = 0), given by (see p. 39 [12], for n = 2,3;
p. 16-17 [25])

~ o~

—0jInr + xk;Cj for n =2,
T
(2.38) Ghix—y) = 5 ) o
kj LkLj
R S + o for n > 3,
T;TT
(2.39) S’i‘?k(y —X)=2n ;niZ , m>2,

and G°(G7;) and 8¢(Sf;;) are continuous kernels. Note that X = x —y =
(Z1,...,2y) and r = |X|.

The decomposition formulas (2.37) yield that the kernel matrices G° and
S® determine the continuity behavior of the potentials V2, (-, f), W, 2,(, h)
and H;EQ n(,f') Therefore, the properties (2.33)—(2.35) are direct consequences
of those ,corresponding to the case x = 0 (for details see e.g. [12], Sec. 3.4). O

2.4.2. Compactness of the single- and double-layer integral operators. For further
considerations, we use the notations

PV

Wi, 00B) = [ () K (v 0dr(),
(2.40) "
PV
(00 = [ B0)D s ()il ),
r

for any x € I', where K2 ,(y,x) and D,2 ,(x,y) are the kernel matrices given
by

(K )i (v,%) = S5 (y = X)ni(y).
(2.41)

2
(Dy2,n)i(%,¥) = S (x — y)ng(x).
Note that
Dx2,n(x7y) = (K:XQ,n(X7Y))T7 x,yel,x 7é Yy,

where the superscript T' denotes the transpose of a matrix.
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Let us now consider the single- and double-layer integral operators
V2 CON) — CUI) and K2, : CY(I") — C°(I), given by the relations

(V2 nf) (x0) = V2 (%0, (200,) ),
(2.42)

(K, 2,,0)(x0) = W, (x0, (2,) " 'h)

XQJL(
for any xo € I and all f,h € C°(I"). Using the formulas (2.37) and the assump-
tion that I" € C'1*, it can be proved that both kernels Gx* (x—y) and K, 2 ,,(y,%)
of the integral operators V,2 , and K, ,, are weakly singular. Therefore, these
operators are compact from C%(I") into CO(I").

Let us introduce the integral operator Hyz ,, : CO(I') — CO(I) given by the
relation

(2.43) (Hy2 ) (x0) = HEz | (0, (200)7'F), x0 € T, £ € CUID),

where € means the complex conjugate of ¢ € C. With respect to the inner product
-,y : C%TI") x C°(I') — C defined by

(2.44) (v,w) = /v -wdl" = /vjwjdl“,

r I

forall v = (vi,- -+ ,vn),w = (w1, -+ ,wp) € CO(I'), the integral operators K, 2 ,,
and Hyz ,, are adjoint, i.e., they satisfy the relation

(2.45) (K

3. The interior Neumann problem

Using the potential theory for the Stokes resolvent system, we are now able
to obtain the existence result of the classical solution to the interior Neumann
problem (1.1), (2.3).

As above, let D = D'\ D; C R™ (n > 2) be a bounded domain with boundary
I'=T1"UTI of class C** (0 < o < 1) and let x? € C\ {z € C: Rez <0,
Imz = 0}. Also, let f € C*(D) be a Holder continuous vector function in D with
Hoélder exponent A € (0,1], and let T € C%(I") be given. First, we refer to the
interior Neumann problem for the homogeneous Stokes resolvent system

(3.1) V-u=0, —-V¢+(V*—x»)u=0inD

(3.2) 3(u)-n=Ton I.
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3.1. Boundary integral representations of the solution

We have proved that this problem has at most one classical solution (u,q)
(see Theorem 1). In order to show the existence of the solution to the Neumann
problem (3.1)—(3.2), we consider the following boundary integral representations:

(3:3)  u(x) = V,2,(x,(2w,) '¥), ¢(x) = P%,, (x,(2w,)'¥), x€ D,

where ¥ € CY(I') is an unknown complex vector-valued density. Applying the
boundary condition (3.2) to these boundary integral representations and using
the jump formulas (2.35), we obtain the Fredholm integral equation of the second
kind with unknown ¥

1
3.4 —I,+H,2,|¥=Tonl.
2 X=,n

Let us consider the homogeneous equation

1
(3.5) <2In + sz,n) Yy=0on T,

as well as its adjoint with respect to the inner product given by the formula
(2.44)

1
(3.6) <2In - KX%) ®)=0onI.

Then we have the following result:

LEMMA 2. Let D = D'\D; C R" (n > 2) be a bounded domain with boundary
I'=T"UTI of class C%* (0 < a < 1) and let x> € C\ {z € C: Rez <0,
Imz = 0}. Then the null spaces of the operators

1

1
(3.7) g+ Moz o) — c'(I), gl T Ky () — c’(n)

are one-dimensional. Moreover, a basis of the space
1 0 (1
N iln_’_HxQ,n =<¥yeC(I): §In+Hx2,n Ug=0o0nlIl;,
is the set {N1}, where

n(x) if x €I,

(3.8) Ny (x) = { 0 ifxel

and n is the unit normal to I' pointing outside D.
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P r o o f. Using the properties

(3.9) V., 2,(x,(2w,) 'N1) =0, x€R"
1 if x € Dy,

3.10 P? 2w,) 1N} ) =

(3.10) o (%, (20) N {OifxeD,

we find the relation

(3.11) H-

2
X°n

(,(2w,'N;)=0on T,

which shows that

1
(3.12) N, e N <2In + HXQJL) .

1
Now, let ¥, be an arbitrary function in the set N/ <2In + sz7n> and let ug
and qg be the fields defined by

(3.13) g =V,2,(2wn) W), q=P%,,((2w,) %) n R"\ I
. 1 .
Since ¥y € N (2In + sz’n> it follows that

(3.14) H, (-,(2w,) '¥y)=0o0n T,

x2n

ie., X7 (ug)-n =0 on ['. In addition, the fields ug and gy satisfy the system of
equations (3.1). Therefore, in view of uniqueness of the solution to the interior
Neumann problem, we get

(3.15) u=0 in D, ¢=0 inD.

In addition, using the uniqueness result of the classical solution of the fol-
lowing exterior Dirichlet problem (see p. 25 [12]):

V-uy =0, —qu—i—(Vz—XQ)ug:Oin]R"\ﬁ,
up=0on I,

(Juol[Vuo]) () = o(|x[*™"),  (luollgo])(x) = o(|x|'™") as |x| — oo,

we deduce that

(3.16) u =0, ¢ =0inR"\D.
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Consequently, we have the relation
(3.17) HY, (-, (2w,) '¥%) =0on I".

On the other hand, since the pair (uy, qo) is a classical solution to the interior
Dirichlet problem

V-uy=0, —Vg+ (V?—x*uy=0in Dy,
uy=0on I,

it follows in view of the uniqueness result that (see Theorem 1)
(3.18) ug = 0, qgo = C1 in Dl,
where ¢; € C. Accordingly, we get the relations

(3.19) H

2
X=,mn

(-, (2w,) ') = —cin on I7.

Now, taking into account the jump formulas (2.35), as well as the relations
(3.14), (3.17) and (3.19), we deduce that

(3.20) Uyp=0onI",

(3.21) Yy =cimnon I

or, equivalently,

(3.22) Yy =c1Nyon I,

where N is the function given by the relation (3.8). Consequently, the set {IN1}
is a basis of the space N %In +Hyzp |-

Finally, applying Fredholm’s alternative (see e.g. [13]), we find that the null
spaces of the operators

1 1
iln +Hy2,  CUI) — CV(D), §In + Kz, c(ry — c(In)

(which are adjoint with respect to the inner product given by the formula (2.44))
have the same dimension, i.e.,

1 1
(323) dlmN (2In + HX2771) = dlmN (2In + KXZ,R> = 1’
where
1 1
N <2In + KXQ’n> = {‘I’o € CO(F) : <2In + KXQJAL) P53 =0 on F} .

This completes the proof of Lemma 2. O
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Using again Fredholm’s alternative, we deduce that the Fredholm integral
equation of the second kind (3.4) has a solution ¥ € C°(I") if and only if the
following orthogonality condition holds:

_ 1
(3.24) /T Bodl =0, VBN (21n - KX%) .

The condition (3.24) is satisfied only in certain particular cases and is the con-
sequence of the fact that we are looking for solutions to the interior Neumann
problem (3.1)—(3.2) in the form of a single-layer potential without any comple-
tion. Note that this restriction does not appear in the case of a bounded domain
with connected boundary, and the solution of the corresponding interior Neu-
mann problem is expressed in terms of a single-layer potential (for details see
e.g. p. 210 [12]; p. 70 [25]).

On the other hand, it is obvious that the result of Lemma 2 holds also for
the operators

1 1
(3.25) §In + K2, co(r) — (), §In +Hy2 co(r) — co(I),
ie.,
1 1

1 1
and a basis of the null space N <2In + sz7n> of the operator iln + Hyz
is the set {N7}, where the function N is given by the relation (3.8). Note that

(3.27) N <;In + KX27n> = {<I> e C'(I): <;In + KX27n> ® =0on F} ,

(3.28) N (;In + sz,n> = {WO € C’O(F) : (;In + Hx2,n> Yy =0 on F} .

1 —
Let {®1} be a basis of the null space N <2In + K;&n) . Then {®,} is a basis

1
of the null space N/ <2In + KX27n>. Also let u; and ¢; be the fields given by

(3.29) u(x) = Wz (%, (2w,) 7 @1),  qu(x) = P, (x, (20) ' @1),
x e R"\ I
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Applying the identity (2.5) to the fields u; and ¢; in the bounded domain D, we
obtain the formula

(330) /(X2|u1|2 + 2Eij(u1)EU(u1))dx = /{2_(111) . 1’1} . ul_dl"
D r

1
Since ®; €¢ N <2In + sz’n>, it follows that uf = 0 on I and thus, in view

of the jump formulas (2.34), we deduce that uj = —®; on I'. Therefore, the
formula (3.30) becomes

(3.31) (2> + 2B (0) Eij(u))dx = — [ {Z~(w;) -n} - ®1dT.
/ /

On the other hand, from the identity

1
—5@1 = Kx2,n(1)1 on I'

and the regularizing properties of the double-layer integral operator K,o , :
CO(I') — C%(I"), we find that (see e.g. [15] in the case x = 0; [24]; [27])

®, c CH(D).

Hence the normal stress due to the double-layer potential u; has equal limiting
values on both sides of I" (see p. 47, 103 [7]; [12] Theorem 3.4.11, in the case
n=3, x=0),ie,

(3.32) X7 (W,2,(,(2w,) '®1)) n=3"(W,z,(,(2w,) '®;)) nonI.
Further, integrating both sides of the equation
V-W,2,(, (2w,) '®) =0in D

over the domain D, and using the divergence theorem, as well as the boundary
condition

W (5 (200) 71 @1) = —@y on I
we obtain the relation
(3.33) / &, -ndl =0,
r

which, in view of the properties (2.30), yields the result

(3.34) W 2, (%, (200,) ' @1) = O(|x| ™) as [x| — cc.



THE INTERIOR NEUMANN PROBLEM ... 299

This result is sufficient to show that the fields
u; = szm,('y (2wn)_1¢’1)7 q1 = P§27n('7 (2@71)_1@1)

satisfy the far-field conditions
(335 (lullVai)x) = o(xI"™), (Jwillas)(x) = of}x|'™) as [x| — oo.

In addition, the fields u; and ¢ satisfy the system of equations

V-u =0, —Vg +(V2=xHu; =0in CD/,
as well as the property
ul = W;27n(-, (200,) " '®1) =0 on I".

Taking into account the uniqueness result of the solution to the exterior Dirichlet
problem (see p. 25 [12]), we thus deduce that

(3.36) u; =0, ¢ =0inR"\ D’
and hence
(837) T (Wyo,(-(2%,) @) -n
=3 (W2,(-, (2c0,) ' ®1)) - n=0 on I".

Also the relation W;Q (-,(2t9,)"'®1) = 0 on I (note that the plus sign
applies here for the internal side of I) together with the uniqueness result of
the solution to the interior Dirichlet problem (see p. 25 [12]) lead to

(3.38) W2, (5 (2) ' @1) =0, Ph (-, (20,) ' @1) = &} in Dy,
and thus
(3:39)  ZT(Wye,( (2w,) '®1)) - n
=3 (W,2,(,, (2w,) '®1)) - n=—cn on I,

where ¢ € C.
Now, in view of the relations (3.29), (3.37) and (3.39), the formula (3.31)
becomes

(340) /(X2|u1 ’2 + 2Eij (ul)Eij (ul))dx
D

- _/{2—(szm(-,(2wn)—1<§1))-n}-<I>1drzc9/q>1-ndr1.

r In
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If
[+ 28 () Byl =
D

then uy = 0 in D, and hence u; = 0 on I'. In addition, uf =0 on I', and thus,
according to the jump formulas (2.34), we obtain ®; = 0. This result contradicts
the property ®; # 0 on I'. (Note that the set {®;} is a basis of the null space

1
N <2In + KX27n), and hence ®; # 0 on I'.) Therefore, we must have

(3.41) cg’/q>1 -ndI # 0,
I
ie.,
(3.42) /<I>1 -ndl} #0, ) #0.
Iy

3.2. The completion of the boundary integral representations (3.3)

Recall that the boundary integral representation of the velocity field for the
interior Neumann problem in terms of a single-layer potential without any com-
pletion leads to the boundary integral equation (3.4), which admits solutions in
CY(I') only if the condition (3.24) holds.

Let us now consider the completed boundary integral representations

(3.43)  u(x) =V,2,(x, (2w0,) 1) + LW, 2 ,,(x, (2w,) @), xe€ D,

(344) q(X) = Ps2,n(xa (2wn)_1\11) + ﬁlP)?Q,n(Xv (2wn)_1q)1)7 x €D,

where 3; € C is an unknown constant, ¥ € C°(I") is an unknown vector density,
1

and the set {®1} is a basis of the space N §In + K;&n)-

Applying the boundary condition (3.2) to the boundary integral representa-
tions (3.43) and (3.44), and using the jump formulas (2.35), we obtain the fol-
lowing Fredholm integral equation of the second kind with unknown density ¥:

(345) (;In + HX2’7L> v=T- 612_(WX2,H(., (an)—hI)l) -non I.

Now, according to the properties (3.39) and (3.42), we can choose the number
51 € C such that
-1
(3.46) B = / {E(szﬂ(', (200,) "1 ®1)) - n} - ®dl’ /T - ®dI.
r

r
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Therefore, we get the relation

(3.47) / {T — BET (W2 (-, (2mn) ' @1)) - n} - ®dl" =0,

which is just the condition required by Fredholm’s alternative in order to have
a solution of the Eq. (3.45) in the space C°(I"). Recall that {®;} is a basis of

1
the space N §In + K2,
Concluding the above arguments, we obtain the following property:
THEOREM 3. Let D = D'\ D; C R" (n > 2) be a bounded domain with

boundary I' = I'" U Ty of class CY* (0 < a < 1) and let x> € C\ {2 € C :
Rez < 0, Imz = 0}. Also, let T € C°(I') be given. Assume that the set {®1} is

1
a basis of the space N (21n + KX2,n> . Then there exists the uniquely determined

constant 31 € C such that the Fredholm integral equation of the second kind (3.45)
has a solution ¥ € C°(I"). Moreover, the boundary integral representations (3.43)
and (3.44), obtained with the density ¥ and the constant 31, determine the unique
classical solution of the interior Neumann problem (3.1)—(3.2).

Taking into account the previous property, we can obtain the existence and
uniqueness result for the classical solution of the interior Neumann problem
associated with the non-homogeneous Stokes resolvent system

(3.48) V-u=0, —-Vg+(V*—x)u=-finD

(3.49) Y(u) n=Ton I.
This result is given by the following theorem:

THEOREM 4. Let D = D'\ D be a bounded domain with boundary I' =
I"UTy of class CY® (0 < a < 1) and let x> € C\ {2 € C: Rez <0, Imz = 0}.
Also, let £ € CMN(D) be a Hélder continuous vector function in D (0 < X < 1),
and let T € CO(I') be given. Then the boundary integral representations

(3.50) u(x) = V2 ,(x, (20,) ' ®) + Wz, (x, (2,) ' @)

1

+2w

[0y twiy,
" D
(3.51) q(x) = P% (%, (2,) ') + P (%, (200,) ' @)

1

+Qw

/HX2 (x—y) f(y)dy,

n
D
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x € D, determine the unique classical solution of the interior Neumann problem
(3.48)(3.49), where ¥ € C°(I') is a solution of the Fredholm integral equation
of the second kind

1 _ _
(3.52) <2In + HX27n> g L ) (W2, (- (200) 1®))-n on I,
T = (T0,--- ,T9) is the vector function with the components
(353) T =T — 5 melx / -V fiy)dy, xer
2w,

1
j=1,...,n, and the function ® €¢ N (21n + KXQJ.L) 1s uniquely determined in
the form ® = G1 Py, with

-1

(3.54) f = /{E(Wxgm(-,(an)1‘I>1)).n}‘<1>1df F/TO-<I>1dF.

r

4. Conclusions

In this paper we have used the results of the potential theory for the Stokes
resolvent system in order to obtain the existence and uniqueness result of the
classical solution to the interior Neumann problem, associated with the Stokes
resolvent system in a bounded domain with compact but not connected bound-
ary.
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