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Application of density as a parameter in description

of failure stress under uniaxial loading of softwood

in LR orthotropy plane

J. GALICKI

Department of Mechanics, Technical University of Bialystok
Bialystok, Poland

A description of failure stress for tension and compression of pinewood in the
LR orthotropy plane, in accordance with the Mises, Ashkenazi–Ganov and Tsai–Wu
criteria, is presented in the work. The tests for pinewood has shown that strength de-
pends on density along the L-direction. This dependence was used for the description
of the pinewood failure stress. The choice of the criterion was determined by the possi-
bility to describe correctly the failure stress, assuming that the failure stress function
goes through the values of strength obtained from the tests in the L and R directions.
An analysis of the above criteria leads to the choice of the Ashkenazi–Ganov criterion
as the most precise criterion describing the experimental data.

1. Introduction

In the LR plane of wood the failure stresses for compression and tension are
dependent on the loading direction relative to the grain. The tests have shown
that failure stress for tension and compression decrease for an increasing grain
angle measured from the L direction (e.g. Reiterer and Stanzl–Tschegg [1],
Liu [2]). This is a result of the occurrence of different failure mechanisms for
different grain angles. These mechanisms are described in the cited above [1] and
Tabarsa and Chui [3], Poulsen et al. [4], Vural and Revichandran [5],
Byskov et al. [6]. Additionally, a significant influence of density on tensile and
compression strength in the L direction was observed in the case of wood (e.g.
Galicki and Czech [7], Thibaut et al. [8], Gindl and Teischinger [9]). This
dependence of strength on density is a result of the varying latewood content
in the tested volume of wood. Compression strength in the L direction depends
on density and on the kind of failure mechanism. In the case of pine, wood has
failed by kinking. Failure criteria for anisotropic bodies are applied to describe
the failure stress of wood which is an orthotropic material. Among others, the
Mises [10], Ashkenazi and Ganov [11] and Tsai and Wu [12] criteria were
chosen to describe the pinewood failure stress. These criteria in the uniaxial
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stress state take the forms, respectively:

(F1111 cos4Θ +D1 sin2 2Θ + F2222 sin4Θ)σ2
Θ = 1,(1.1)

(A1111 cos4Θ +D2 sin2 2Θ +A2222 sin4Θ)σΘ = 1,(1.2)

(1.3) (a11 cos2Θ + a22 sin2Θ)σΘ

+ (a1111 cos4Θ +D3 sin2 2Θ + a2222 sin4Θ)σ2
Θ = 1,

where D1 = 2F1122 + 4F1212, D2 = 2A1122 + 4A1212, D3 = 2a1122 + 4a1212,

aij – components of the strength second-rank tensor, Fijkl,, Aijkl, and aijkl –

components of the strength fourth-rank tensor, σΘ – strength in the direction

inclined to the direction L at angle Θ (Fig. 1). The strength components are

expressed by strength as follows: F1111 = 1/σ2
0, F2222=1/σ2

90, A1111 = 1/σ0,

A2222 = 1/σ90, a11 = 1/σt,0 − 1/σc,0, a22 = 1/σt,90 − 1/σc,90, a1111 = 1/σt,0σc,0,

a2222 = 1/σt,90σc,90, where σt and σc – tension and compression strength respec-

tively, σ0, σ90 – strength for the grain angle Θ equal to 0◦ and 90◦ respectively.

The components F1122, F1212, A1122, A1212, a1122 and a1212 of the fourth rank

strength tensor are determined using the least square method for other stress

states.

Fig. 1. Relation of the loading of wood specimens to principal axes LRT.

The results of compressive and tensile tests of pinewood (pinus silvestris)

(Galicki and Czech [7, 13]) show that the failure stresses for tension and

compression are functions of density ρ for different grain angles Θ. These func-

tions and experimental values of failure stress are presented in Fig. 2. For the

grain angle Θ equal to 0◦ a linear regression was used to determine these func-

tions. For other angles two hypotheses were assumed – H: r = 0 and alternately
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K: r 6= 0, where r is the coefficient of linear correlation. A comparison of the

random values of t in the Student test for α = 0.05 coefficient level and values

of t calculated for linear correlation r for angles Θ different than 0◦, allows to

assume the hypothesis H: r = 0 to be true. Therefore, for these grain angles

the compression and tensile failure stress are not correlated with density. Then

the failure stresses for different angles Θ an be taken as average values. Such

an approach allows to replace the experimental data with empirical functions of

tensile and compressive failure stress, dependent on density for different grain

angles Θ. Observation of the failure structure of wood leads to the same conclu-

sion. Failure of wood for grain angles different from 0◦ takes place in early-wood

where cell wall thickness is the smallest, while for an angle of 0◦ both early-

wood and late-wood are involved in the failure process. Therefore, as soft-wood

density depends mainly on the late-wood content, it is not surprising that the

influence of density is observed only for Θ = 0◦.

Fig. 2. Tensile and compression strength (for Θ = 0◦ and 90◦) and failure stress
(for Θ 6=0◦ and 90◦) as functions of density for different grain angles.

2. Choice of the criterion to describe pinewood strength

The description of failure stress is usually (e.g. Eberhardsteiner [14])

obtained by determination of the strength tensor components in Eq. (1.1), (1.2)

and (1.3) using the least square method. When the Ashkenazi–Ganov criterion

is used to describe compression and tensile failure stress, the sum of squared

deviation takes the form:

(2.1) Φ =
n∑

i=1

[(
A1111 cos4Θi +D2 sin2 2Θi +A2222 sin4Θi

)
σΘi

− 1
]2
,
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where n – number of tests. The parameters A1111, D2 and A2222 are calculated

from a system of equations:

(2.2) ∂Φ/∂A1111 = 0, ∂Φ/∂D2 = 0, ∂Φ/∂A2222 = 0.

Additionally, the condition:

(2.3) |dσΘ/dΘ| ≤ 0

must be satisfied for a correct description of failure stress in the range from 0◦ to
90◦ of angle Θ. In general, an appropriate choice of failure criterion and a correct
determination of the parameters for this criterion enable us to obtain a correct
description of the failure stress. In this case, while the components F1111, F2222,
A1111, A2222, a11, a22, a1111 and a2222 are determined on the basis of uniaxial
stress states, the constant D is determined using the least square method (for
example Eq. (2.2)2 for Ashkenazi–Ganov criterion. Then the function σΘ = σ(Θ)
goes through the values of σ0 and σ90 strengths for tension and compression. It
follows from the condition (2.3) that the constants D can take different values
in a defined range. For the Mises criterion: 2F1111 ≤ D1 ≤ 2F2222 and for
the Ashkenazi–Ganov criterion: 2A1111 ≤ D2 ≤ 2A2222. Hence for values of
σ0 and σ90, both the compression and tension failure curves can take different
forms for different values of D. In Fig. 3 the border curves (for the lowest and
the highest values of D) and experimental data for pinewood are presented. It
follows from Fig. 3 that the most correct description of failure stress is obtained
for the Ashkenazi–Ganov criterion, because all experimental data lie between
the border failure curves both for the maximal and minimal values of density.
The Mises and Tsai–Wu descriptions are possible but they are not accurate.
Therefore, the Mises and Tsai–Wu criteria were not considered to describe the
tensile and compressive stress failure.

Fig. 3. Failure border curves for the Mises, Tsai–Wu and Ashkenazi criteria.
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3. Methods of determination of the parameter D

3.1. D as a constant independent of density

The dependencies σΘi
= σΘi

(ρ) were determined on the basis of the tension

and compression tests. Then Eq. (2.1) takes the form:

(3.1) Φ =
∞∑

j=1

m∑

i=1

{[

(σ−1
0 (ρj) cos4Θi +D2 sin2 2Θi

+ σ−1
90 (ρj) sin4Θi

]

σΘi
(ρj) − 1

}2
,

where m is the number of the grain angles Θ for which the tests were conducted

and ρj is density from the range 〈ρmin, ρmax〉; ρmin, ρmax – minimal and maximal

density of specimens used in the tests. According to Eq. (1.1), (1.2), (1.3) the

constants D are dependent on F1122 and F1212, A1122 and A1212, a1122 and a1212

respectively for the assumed criterion. It follows from Eq. (3.1) that D can

be determined as constant on the assumption that the above strength tensor

components are constants. However, the influence of density on the failure stress

is obvious. For the Ashkenazi–Ganov criterion, D2 is equal to

(3.2) D2 = lim
n→∞








n∑

j=1

m∑

i=1
σΘi

(ρj) sin2 2Θi −
n∑

j=1

m∑

i=1

σ2
Θι

(ρj)

σ0(ρj)
cos4Θi sin

2 2Θi

n∑

j=1

m∑

i=1
σ2

Θι
(ρj) sin4 2Θi

−

n∑

j=1

m∑

i=1

σ2
Θι

(ρj)

σ90(ρj)
sin4Θi sin

2 2Θi

n∑

j=1

m∑

i=1
σ2

Θι
(ρj) sin4 2Θi







,

where n is a natural number. On the basis of experimental results displayed in

Fig. 2 and assuming

(3.3)
n∑

j=0

1

σ0(ρj)
=

1

σ0(ρmin)
+

n∑

j=1

1

σ0

(

ρmin + j
ρmax − ρmin

n

) ,

where j is an integer, it follows that Eq. (3.2) takes the form presented below

for σΘi
(Θi 6= 0◦) being constants
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(3.4) D2 = lim
n→∞







(n+ 1)
m∑

i=1
σΘi

(ρj) sin2 2Θi

(n+ 1)
m∑

i=1
σ2

Θι
(ρj) sin4 2Θi

−

n∑

j=0

1

σ0(ρj)

m∑

i=1
σ2

Θι
(ρj) cos4Θi sin

2 2Θi

(n+ 1)
m∑

i=1
σ2

Θι
(ρj) sin4 2Θi

−

(n+ 1)

σ90

m∑

i=1

σ2
Θι

(ρj) sin4Θi sin
2 2Θi

(n+ 1)
m∑

i=1
σ2

Θι
(ρj) sin4 2Θi

.









In this way two series of D2 = D2(n), one for tension and the other for com-

pression, were obtained – Fig. 4. From Fig. 4 it follows that these series are

convergent. Furthermore, the values of constants D2 vary insignificantly in the

range of n from 1 to 100. Therefore n = 1 can be taken for the calculation of

D2 from Eq. (3.4).

Fig. 4. Values of D2 for increasing number n.

3.2. D as a function of density

In case when the experimental dependences between the failure stress σΘi

and density ρ are functions σΘi
= σΘi

(ρ), then it follows from Eq. (2.1) that
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(3.5) D2(ρ) =

m∑

i=1
σΘi

(ρ) sin2 2Θi −
m∑

i=1

σ2
Θi

(ρ)

σ0(ρ)
cos4Θi sin

2 2Θi

m∑

i=1
σ2

Θi
(ρ) sin4 2Θi

−

m∑

i=1

σ2
Θi

(ρ)

σ90(ρ)
sin4Θi sin

2 2Θi

m∑

i=1
σ2

Θi
(ρ) sin4 2Θi

.

It follows from Eq. (3.5) that the parameters (components of strength tensor)

determined from the tests for an assumed criterion are dependent on density.

According to Fig. 2

(3.6) σ0 = a+ bρ,

where a, b are coefficients. On the assumption that σΘi
and σ90 are constants in

the entire range of ρ, D2 = D2(ρ) takes the form

(3.7) D2 =

m∑

i=1
σΘi

sin2 2Θi −
1

a+ bρ

m∑

i=1

σ2
Θi

cos4Θi sin
2 2Θi

m∑

i=1
σ2

Θi
sin4 2Θi

−

1

σ90

m∑

i=1

σ2
Θi

sin4Θi sin
2 2Θi

m∑

i=1
σ2

Θi
sin4 2Θi

.

Dependences of tensile and compressive failure stress on grain angle and density

for pinewood according to Eq. (3.7) are presented in Figs. 5 and 6. Another

description of strength was obtained by using Eq. (3.4). The difference between

this description and the description determined from Eq. (3.7) expressed in |MD|
(mean deviation) is presented in Figs. 7 and 8. In this way the parameters of the

applied criterions can be determined by means of three methods. Two methods

presented above (Eq. (3.4) and Eq. (3.7)) allow to determine these parameters

using the experimental curves of σΘi
= σΘi

(ρ). Such an approach in the case

of Eq. (3.7) allows to obtain the parameter D2 as a function of density. These

methods allow to determine parameters D2 dependent on density, taking into

consideration the interval (ρmax, ρmin). Using the third method (Eqs. (2.2)), the

determination of the criterion parameters D2, A1111 and A2222 is based directly
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on the experimental data. Although these parameters depend on density, when

they are determined for a limited number of specimens then description of the

failure stress can be incorrect, particularly when A1111 is a constant.

Fig. 5. Tensile failure stress as a function of density and the grain angle.

Fig. 6. Compression failure stress as a function of density and the grain angle.
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Fig. 7. Variation of |MD| of tensile failure stress for D2 = 0.0433 in relation to tensile failure
stress for D2 = D2(ρ).

Fig. 8. Variation of |MD| of compression failure stress for D2 = −0.0433 in relation to
compression failure stress for D2 = D2(ρ).

4. Discussion

Equation (2.1) is often used for determination of the strength tensor com-

ponents for different failure criteria. This approach can be applied when failure
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stress depends only on the loading direction. In the case of pine, the tests showed

that strength along the grain was linearly dependent on density (Eq. (3.6)).

Therefore application of the parameters a, b,D2 and A2222 is necessary to de-

scribe correctly the failure stress. Then the method expressed by Eq. (2.2) can

be used to determine these parameters. However, in result of the use of the least

square method for large anisotropy of the failure stress in the range <0◦, 90◦>

of Θ angle in LR orthotropy plane the large values of MD can be obtained for

angle Θ equal to 90◦. Thus, application of the least square method for MD is a

necessary condition for correct description of the failure stress for larger values

of angles Θ. This is why the least square method was used to calculate D2 as a

constant and as a function of density, on the assumption that failure surface goes

trough empirical straight lines for Θ = 0◦ and 90◦. Then D2 can be determined

from Eq. (3.4) or Eq. (3.7). Furthermore, such an approach seems to be correct

because in the other case from the least square method applied to LT and RT

planes, other values of the failure stress can be obtained than those calculated for

LR plane on L and R directions. However, both the methods of determination

of D2 described above are based on the empirical functions σΘi
= σΘi

(ρ). Ap-

plication of these functions is important because testing such materials as wood

it is difficult to obtain a proportional distribution of the experimental points

in the space of failure stress, grain angle and density. In case of concentration

of these points in any part of this space, the failure stress surface moves in the

direction of these points. The determination of D2 as a constant by using the

functions σΘi excludes the influence of concentration of experimental data on

the description of failure stress in the considered space. Furthermore, although

these functions are determined from the conducted tests, the graphs of these

functions can be insignificantly changed after applying a statistical verification.

For example, for Θ 6= 00 (Fig. 2) an accurate description of failure stress has the

form σΘi
= ai + biρ, but it can be proved for density as variable in the interval

<ρmin, ρmax> that failure stress is independent of density after applying the

Student t tests. Therefore, these functions as constants were used to describe

the failure stress. In this case a more accurate description is obtained using

Eq. (3.7). Three parameters Ω2, MD and ∆σ defined as

Ω2 =

ρmax∫

ρmin

∑

i

[σt(Θi, ρ) − σex(Θi, ρ)]
2dρ,(4.1)

MD =
[σt(Θi, ρ) − σex(Θi, ρ)]

σt(Θi, ρ)
,(4.2)

∆σ = σt(Θi, ρ) − σex(Θi, ρ)(4.3)
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where σt(Θi, ρ) and σex(Θi, ρ) – theoretical and experimental strength curves,

were used to estimate the correctness of the two methods. Maximal and minimal

values of ∆σ in the entire range of ρ and the values of Ω2 for grain angles Θi

for tensive and compressive failure stress are presented in Table 1. Functions

of MD for Θi angles in the entire range of ρ for tension and compression are

presented in Figs. 9 and 10. It follows from the analysis of ∆σ and Ω2 from

Table 1 that the Ashkenazi–Ganov criterion describes experimental data more

accurately when D2 is a function of density, contrary to the cases when D2

are constant values. Then, on the basis of the experimental curves for grain

angles 25◦ and 45◦ for compression and 30◦ and 45◦ for tension, it can be con-

cluded that the maximal deviations of tensile failure stress in MPa is σt + 1.59

≥ σ ≥ σt − 0.91 and compressive failure stress in MPa is σt + 1.31 ≥ σ ≥
σt − 2.82.

Table 1. Parameters of correctness of failure stress values.

tension compression

D2 Ω2
30 Ω2

45 Ω2∗ ∆σmax ∆σmin

MPa−1 MPa MPa

0.0425 0.576 0.139 0.715 2.20 −0.91

0.0442 0.503 0.148 0.651 2.08 −0.94

D2 = D2(ρ) 0.443 0.147 0.590 1.59 −0.91

D2 Ω2
25 Ω2

45 Ω2∗∗ ∆σmax ∆σmin

MPa−1 MPa MPa

−0.0433 1.516 0.214 1.720 1.20 −4.14

−0.0441 1.276 0.237 1.513 1.25 −3.87

D2 = D2(ρ) 1.036 0.245 1.281 1.31 −2.82

∗Ω2 = Ω2
30 +Ω2

45,
∗∗Ω2 = Ω2

25 +Ω2
45

Fig. 9. Variation of MD tensile failure stress for grain angles equal to 30◦ and 45◦.
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Fig. 10. Variation of MD compression failure stress for grain angles equal to 25◦ and 45◦.
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