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Effective yield strengths of random materials
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The problem of determining the effective yield strength domain of a material con-
taining random distributed heterogeneities is dealt with. This material is represented
by a set of microstructures, each occupying a volume of the order of the hetero-
geneities. A homogeneous comparison material is used, characterized by its own yield
strength domain, in which these microstructures are placed. The equivalent homoge-
neous material is envisaged as the solution of a system of self-consistent equations.
The problems of non-existence or non-uniqueness of the solutions of this system lead
to modifying it, using an equality to “within ε”. “Extremal” solutions are highlighted
for each of the equations of the system transformed in this way, which bound the
effective domain sought for. The proposed homogenization method is applied to a
defect material and the result is compared with a structure calculation.
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1. Introduction

Determining the limit loads that can potentially be withstood by a mechan-
ical system by yield design methods (Salençon [1]) presents almost inherent
difficulties when the constituent materials are highly heterogeneous. A prelimi-
nary homogenization step proves indispensable.

In the favourable case where the materials are periodically heterogeneous,
mechanically well-founded processes capable of integrating all the available mi-
crostructural information have been developed (Suquet [2], Bouchitte and
Suquet [3], De Buhan and Salençon [4], De Buhan [5]) and applied in
different situations (see De Buhan and Taliercio [6] for example). In the case
where the periodicity assumption no longer holds, the complexity of the homog-
enization problem is quite different. This complexity on the one hand and the
constant development of composites on the other hand, result in a very abundant
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bibliography. An exhaustive presentation can be found in Bornert et al. [7] of
the methods relating to the different extensions of the self-consistent model, ini-
tially designed for linear behaviour, and followed by those of Hill [8]. These
extensions (see for example Masson et al. [9], Ponte Castaňeda [10] and
Pastor and Ponte Castaňeda [11]) for a comparison with numerical limit
analysis results) find their justification in the insufficiency of the conventional ex-
tension (Gilormini [12]). The self-consistency concept has also been used with
a non-linear comparison material in the case of porous media (Leblond and
Perrin [13], Barthelemy and Dormieux [14]). The extremal heterogeneous
model (Arminjon [15] and Arminjon et al. [16] for applications of this model)
constitutes an alternative approach. It describes a continuous transition between
the Reuss and Voigt bounds by variation of an experimentally fixed parameter.
Other works specific to limit analysis or to yield design have been proposed for
particular applications (Ponte Castaňeda and De Botton [17], Sab [18]).

The object of the homogenization method presented in this paper is to pre-
dict the effective yield strength domain of a material containing random dis-
tributed heterogeneities. It is based on the concept of comparison material, the
latter being homogeneous and directly characterized by its yield strength do-
main. It constitutes a generalization of the method developed in Turgeman
and Guessab [19] necessary to make this method effectively predictive.

The basic ideas on which the proposed homogenization method is based are
the following. The samples (denoted by E) under consideration are made of ran-
domly distributed inclusions, which are placed within a homogeneous matrix of
yield strength domain G. The inclusions are representative of the heterogeneous
material (denoted by Mha). For example, the inclusions are small volumes ω
taken from distinct positions of Mha. The smallest distance between these inclu-
sions Fig. 1 in a given sample E is characterized by a number ρ, which ranges
from 0 to 1 (ρ = 0 if two inclusions are tangential; ρ = 1 if the distance between
both inclusions is infinite).

We submit the samples to two load processes that are: a load process of
Reuss type (uniform stress boundary conditions) and a load process of Voigt
type (uniform strain rate boundary conditions). We then determine, under some
consistency conditions, the domain KR(E) (respectively KV (E)) of admissible
loads by any sample E for a loading of Reuss type (respectively of Voigt type).

We form the following self-consistent equations:

KR(E) = G for every E,(1.1)

KV (E) = G for every E(1.2)

which means that samples behave as if they were just composed of their own
homogeneous matrix. In other words, the inclusions that are representative of
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Mha and that can be found in any sample E, do not alter or strengthen the
homogeneous matrix of E. We therefore define the macroscopic yield strength
domain of Mha as the one of the matrix.

Fig. 1. Choice of inclusions representative of the heterogeneous material Mha and examples
of samples E.

The necessity of considering the two load processes is justified by the following
results: Eq. (1.1) admits a greater solution G+

R(ρ) which increases according to
ρ, Eq. (1.2) admits a smaller solution G−

V (ρ) which decreases according to ρ.
Figure 2 shows the variations of the extremal solutions according to ρ in an
ideal case in which the set of Eqs. (1.1) and (1.2) admits a unique solution Gh

for ρ = ρh, ρh ∈ [0.1[. Even in this ideal case, the fact of considering only the

Fig. 2. Extremal solutions of self-coherent equations in an ideal case.



208 S. Turgeman, B. Guessab, P. Doremus

load process of Reuss type (respectively of Voigt) does not enable to distinguish
Gh from the infinity of possible solutions that (1.1) presents (respectively (1.2)).
On the other hand, the conjunction of these two equations enables to present
the unique solution Gh.

Unfortunately, this system of equations does not in general admit any solution
when the distance separating the inclusions is finite, and presents an infinity of
solutions when this distance is infinite (Fig. 3). This means that the equation
“response of the heterogeneous samples equals that of the same homogeneous
samples constituted by the comparison material only” is not discriminant in the
sense that it does not enable the comparison materials to be distinguished, either
by absence of solutions, or on the contrary, by a multiplicity of solutions.

Fig. 3. Extremal solutions of self-coherent equations in a general case.

It follows that the only indications obtained on the effective yield strength
domain sought for by this comparison process are the generalized Reuss or Voigt
bounds, unless the parameter ρ is fixed arbitrarily.

In this work, we have sought to solve this problem linked to the non-existence
or non-uniqueness of the solutions of the self-consistent system by remaining in
the domain of finite distances between the inclusions and modifying the self-
consistency equations using an approximated equality so that the set of solutions,
characterized by its diameter, is non-void.

This process, based on a definition of the equality of convex sets to “within
ε”, leads to a system of ε-self-consistent equations, now parameterized by ρ and
by ε. These parameters are fixed so that the diameter of the set of solutions is
minimum. This amounts to making the choice of the pair (ρ, ε) that is the most
discriminant.
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Effective implementation of this characterization of the equivalent homoge-
neous material is complex since it assumes determination of the solutions of the
ε-self-consistent system in order to deduce therefrom the diameter which is to be
minimized. This difficulty is overcome by reducing the initial problem to separate
resolution of each of the two equations which form the system. For this purpose
we show that each of the two equations admits an extremal solution (G+

R(ρ, ε)
for the load process of Reuss type, G−

V (ρ, ε) for the load process of Voigt type)
that is a function of (ρ, ε), and that any solution of the ε-self-consistent system
is bounded by these particular solutions (Fig. 4). The reciprocal of the latter
property, necessary to achieve the required simplification, is not established in
all cases. It is true under the assumptions that the extremal solutions are ho-
mothetic and that ε is not too large (but these conditions are certainly not
necessary, as shown by the example dealt with in application). However, on ac-
count of its practical interest, it is used in a heuristic approach. The diameter of
the set of solutions can then be replaced by the distance between the extremal
solutions.

Fig. 4. Extremal solutions of ε-self-coherent equations in a general case.

The proposed method is applied to seeking the effective yield strength do-
main of a defect material. We deliberately chose to place ourselves in a simplified
context (two-dimensional problem, representation of the heterogeneous material
by a single microstructure) for the following two reasons: the first is that predic-
tion of the effective yield strength domain can be obtained analytically with the
consequence of being able to verify that the assumption on the reciprocal prop-
erty referred to above is true in this case, without the extremal solutions however
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being homothetic; the second is that this simplified context enables the effective
yield strength domain sought for to be approached by a structure calculation.
The latter is performed on a series of volumes assumed to be representative of
the heterogeneous material, each comprising a very large number of defects and
being subjected to uniform strain rate boundary conditions or to uniform stress
boundary conditions. Comparison of this direct calculation with the prediction
provided by the proposed homogenization method constitutes a first step of the
validation process.

2. Heterogeneous inclusions in a homogeneous comparison medium

2.1. Representation of the random material

A material Mha containing random distributed heterogeneities is considered.
This material occupies a domain of R

3, of sufficiently large volume Ωha to be
representative. The description of Mha is made by means of a small volume ω of
R

3, for example that of a sphere of centre c and diameter δω equal to one or more
heterogeneities. We observe the microstructure which appears in ω, when the
latter moves in Ωha. This microstructure is defined by the yield strength domain
datum at each point of ω, including those of the possible contact conditions. We
then represent Mha by a finite set µ̂s of microstructures µsk (k ∈ m̂ = {1, ..., m}),
each of which occupies a volume ωk (= ω) and is assigned a weighting coefficient
wk (k ∈ m̂) (Arminjon et al. [16]). The yield strength domain at the point x

of the microstructure µsk(x ∈ ωk, k ∈ m̂) is denoted ϕk(x). We assume for the
sake of simplification that the yield strength domains ϕk(x) are in Ĉ, the set
of bounded closed convex sets of R

9
s which contain the zero stress tensor. The

irreducible assumptions are those of convexity, which does not require the yield
design (Salençon [1]), and the property of containing the zero tensor. Given
G ∈ Ĉ, its support function is denoted ΠG:

∀D ∈ R
9
s : ΠG (D) = max (σ � D, σ ∈ G) .

ΠG (D) is equal to the dissipated power rate of the material of the yield strength
domain G in the strain D, for a unit volume.

The generalized REUSS Gg
R and VOIGT Gg

V bounds are associated with the
set of microstructures µ̂s.

The REUSS bound Gg
R is formed by the stress tensors S ∈ R

9
s, balanced by

stress fields σk defined on the volume ωk of µsk(k ∈ m̂) such that:

divσk (x) = 0, ∀x ∈ ωk; σk(x) � n(x) = S � n(x), ∀x ∈ ∂ωk

σk (x) ∈ ϕk (x) , ∀x ∈ ωk

where n(x) is the external normal at the point x of the bound ∂ωk of ωk.
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The VOIGT bound Gg
V is formed by the stress tensors S such that:

S · D ≤ min

(
n∑

k=1

wk〈Πϕk
(x)(dk(x))〉ωk

, dk ∈ U0(D)

)
, ∀D ∈ R

9
s

denoting:
• U0(D) the set of strain rate fields d, defined on ω and derived from displace-
ment velocity fields v such that: v(x) = D � x,∀x ∈ ∂ω;
• 〈 〉ω the mean value in ω.

The bounds Gg
R and Gg

V are in Ĉ, on account of ϕk(x) ∈ Ĉ, ∀x ∈ ωk,∀k ∈ m̂.
A minimum condition for the heterogeneous material Mha to be well repre-

sented by µ̂s is that its yield strength domain Gh is such that:

Gg
R ⊂ Gh ⊂ Gg

V .

The chosen set µ̂s is assumed to comply with this minimum condition.

2.2. Samples E

Samples E are made by placing NE inclusions, each of them occupying a
volume identical to ω, into a homogeneous matrix M(G). The volume ΩE of a
sample E, the number NE of inclusions, and positions of the inclusions defined
by that of their centre ci (i ∈ N̂E = {1, ..., NE}), are variable from one sample
E to another. The matrix M(G) is formed by a homogeneous material with
a yield strength domain G ∈ Ĉ. The inclusions are heterogeneous and have
microstructures belonging to µ̂s. Each microstructure µsk (k ∈ m̂) is represented,
in any sample E, proportionally to its weighting coefficient wk. The yield strength
domain at the point x ∈ ΩE is denoted ΨE(x) and we therefore note ΨE(x) ∈
{G; ϕk (x′) ,∀x′ ∈ ω, ∀k ∈ m̂ }.

Each inclusion is centred in a homothetic volume V (its zone of influence)
of ω. The centre of the homothetic transformation associating V to ω is that of
the inclusion. The homothetic transformation ratio is the maximum ratio such
that two zones of influence are disjointed or tangent, and such that any zone
of influence is contained in ΩE . A sample E is generally characterized by the
number:

ρ (E) =
V − ω

V

(
∈ [0, 1]

)
.

Each inclusion is surrounded by a minimum volume V ′ = V \ω occupied by the
homogeneous material M(G).

The samples E form a set Ê. The equivalence relation ⊥ is considered in Ê:
two elements E1 ∈ Ê and E2 ∈ Ê are equivalent if and only if their matrix is
formed by the same material M(G) and if ρ(E1) = ρ(E2). An element of Ê/⊥ is
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denoted ˙(G, ρ). A base B(G, ρ) formed by m mechanical systems Bk (k ∈ m̂) is
associated to each equivalence class ˙(G, ρ). Each system Bk occupies a volume
Vk equal to V , in which an inclusion of volume ωk (equal to ω ) and having the
microstructure µsk(k ∈ m̂) is centered. The volume V ′

k = Vk\ωk is formed by the
homogeneous material M(G). Thus any sample E ∈ ˙(G, ρ) admits a breakdown
into sub-sets that is either identical to an element of B(G, ρ) or homogeneous
and formed by the material M(G) Fig. 5.

Fig. 5. Breakdown of sample E into the base elements and the homogeneous complementary
region.

2.3. Consistent loads of a sample E

Let there be a sample E ∈ ( ˙(G, ρ)) (G ∈ Ĉ, ρ ∈ [0, 1]), of volume ΩE and
bound ∂ΩE . It is subjected to a limit loading process corresponding to uniform
stress (REUSS type) or uniform strain rate (VOIGT type) boundary conditions.

In the case of REUSS type conditions, the convex set KR(E) ∈ Ĉ made up
of loads S, called R-consistent, is formed:

KR (E) =
{
S ∈ R

9
s/∃σ defined on ΩE such that:

div σ(x) = 0, ∀x ∈ ΩE ; σ(x) · n(x) = S · n(x), ∀x ∈ ∂ΩE(2.1)

σ(x) ∈ ΨE (x) , ∀x ∈ ΩE(2.2)

S ∈ Gg
V

}
(2.3)
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Any R-consistent load S is therefore balanced by a stress field σ, called
R-consistent, which is statically admissible (cf. (2.1)), meets the yield strength
conditions (cf. (2.2)), and which complies with a consistency condition (cf. (2.3)).

In the case of VOIGT type conditions, the convex set KV (E) ∈ Ĉ made up
of loads S, called V -consistent, is formed. For this purpose, the set UE(D) (D ∈
R

9
s) is determined, the elements d(x) (x ∈ ΩE) of which are strain rate fields

deriving from displacement velocity fields v(x), x∈ ΩE (cf. (2.4)) that are kine-
matically admissible (cf. (2.5)) and comply with a consistency condition (2.6):

UE(D) =
{
d(x),x ∈ ΩE such that ∃v(x),x ∈ ΩE with:

dij = (vi,j + vj,i)/2
(
i ∈ {1, 2, 3}; j ∈ {1, 2, 3}

)
(2.4)

v(x) = D � x, ∀x ∈ ∂ΩE(2.5)

〈d(x)〉ω′ = D
}

(2.6)

where ω′ = NE � ω is the volume occupied by all the inclusions.
The elements d of UE(D) are called V -consistent for E in the direction D.
We define:

KV (E) =
{
S ∈ R

9
s/∀D ∈ R

9
s, S � D ≤ min(HE (d) ,d ∈ UE (D)

}

where HE(d) = 〈ΠΨE(x)(d(x))〉ΩE
is the mean dissipated power rate in ΩE .

The convex sets KR(E) and KV (E) are such that KV (E) ⊃ KR(E),

∀E ∈ ˙(G, ρ)

If the consistency condition (2.3) (respectively (2.6)) were omitted, the set
KR(E) (respectively KV (E)) would represent the set of loads potentially able to
be withstood E for the REUSS type (respectively VOIGT type) loading process
(Salençon [1]).

But then the mean fields in the matrix and in the inclusions would only be
slightly correlative: the matrix would lose its potential status of representing
the homogenized material. A consistency condition on the stresses symmetrical
to (2.6) can on the contrary, be envisaged. The choice made, which favours a
strong strain rate correlation and a low stress correlation, presents the advantage
of generality as it only takes into account the conditions necessary for subsequent
mathematical developments. From this point of view, it can be qualified as min-
imalistic.

The sets of R-consistent loads KR(G, ρ) and V-consistent loads KV (G, ρ) are
likewise formed for the base B(G, ρ):
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KR(G, ρ) =
{
S ∈ G ∩ Gg

V /∀k ∈ m̂ : ∃σk defined on Vk such that:

(2.7)
div σk = 0 on Vk; σk(x) · n(x) = S · n(x),∀x ∈ ∂Vk

σk(x) ∈ ϕk(x) if x ∈ ωk; σk(x) ∈ G if x ∈ V ′
k = Vk\ωk

}
;

KV (G, ρ) =
{
S ∈ R

9
s/∀D ∈ R

9
s :

(2.8) S · D ≤ max (ΠG(D), min(Hρ(d1, ...,dm), (d1, ...,dm) ∈ Uρ(D)))
}

Hρ(d1, ...,dm) =
m∑

k=1

wk(〈Πϕk
(x)(dk(x))〉ωk

(1 − ρ) + 〈ΠG(dk(x))〉V ′
k
.ρ)

Uρ(D)=
{

(d1, ..,d,..,dm)/∀k ∈ m̂ : dk, defined on Vk, derived from vk;

(2.9) vk = (x)D � x, ∀x ∈ ∂Vk;

m∑

k=1

wk〈dk(x)〉ωk
= D

}
.

The family of stress fields (σk)k∈m̂ associated with S ∈ KR (G, ρ) enables an
R-consistent stress field σ to be constructed for any E ∈ ˙(G, ρ), σ balancing S.
The sample E in fact admits a disintegration into elements of B(G, ρ) on which
we set down: σ = σk (k ∈ m̂) and into complementary elements on which we
set down σ = S. It follows that ∀E ∈ ˙(G, ρ) KR (E) ⊃ KR (G, ρ).

We proceed in the same way to describe UE(D) (∀E ∈ ˙(G, ρ), ∀D ∈ R
9
s)

by means of the family of velocity fields (vk)k∈m̂ (cf. (2.9)). It follows that
∀E ∈ ˙(G, ρ) KV (E) ⊂ KV (G, ρ).

The sets of R-consistent and V -consistent loads can then be bounded for any
sample of a given equivalence class by those of the corresponding base:

∀E ∈ ˙(G, ρ) KR(G, ρ) ⊂ KR(E) ⊂ KV (E) ⊂ KV (G, ρ).

2.4. Problems posed by a self-consistent definition of Gh

It is sought to define the effective yield strength domain Gh of the hetero-
geneous material Mha as being the solution of the system of self-consistency
equations:

∃ ρ ∈ [0, 1] /KR(G, ρ) = KV (G, ρ) = G,(2.10)

⇒ ∃ ρ ∈ [0, 1] /∀E ∈ ( ˙G, ρ) KR (E) = KV (E) = G.(2.11)
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This definition is intuitively satisfactory for it means that the homogeneous
matrix of any sample E is not affected by the presence of any inclusions, for
any REUSS type or VOIGT type condition, in compliance with the consistency
conditions. In other words, the material M(Gh) is a comparison material whose
yield strength capacities are in agreement with those of the inclusions represent-
ing the material Mha. It could be envisaged to define Gh as the solution of one
or the other of the equations of the system (2.10), but with a mechanical mean-
ing which would be weakened. However, each of these equations admits at least
one solution for each value of ρ. And ρ cannot be fixed arbitrarily. It is in this
respect that conjunction of the two equations appears opportune or even neces-
sary. Unfortunately. the existence of solutions for ρ < 1 cannot in fact be proved,
except for particular cases (Turgeman and Guessab [19]), (it can be shown
that ∀G ∈ Ĉ such that KR(G, ρ) = G and ∀G′ ∈ Ĉ such that KV (G′, ρ) = G′

we have G′ ⊃ G, which is not a good omen for the existence of a solution in any
case at all). And for ρ = 1, this system does not admit a single solution (indeed,
KV (G, 1) = G = KR(G, 1),∀G ⊂ Gg

V ).
To make the concept of comparison material operational in the context of

yield strength design, we propose considering approximate equalities in (2.10).

3. Characterization of the effective yield strength domain Gh

3.1. Distance, equality and inclusion to within ε in Ĉ

A reference yield strength domain I ∈ Ĉ is chosen, with a support function
ΠI . The domain I can for example be that of the matrix in the case where Mha

is a composite matrix-inclusions material. It can also be taken equal to Gg
R or

to Gg
V . Ĉ is assigned a distance ∆ associated to I:

∀(G1, G2) ∈ Ĉ × Ĉ : ∆(G1, G2) = max(|t(D)| /ΠI(D),D ∈ R
9
s)

where:
t(D) = ΠG1

(D) − ΠG2
(D)

with the convention:

t(D)/ΠI(D) = t(D) � +∞ if t(D) 6= 0 and ΠI(D) = 0,

t(D)/ΠI(D) = 0 if t(D) = 0 and ΠI(D) = 0.

The equality relation to within ε(=ε) and inclusion relation to within ε(⊂ε) are
defined in Ĉ for ε ∈ R

+:

∀(G1, G2) ∈ Ĉ × Ĉ : G1 =ε G2 ⇔ ∆(G1, G2) ≤ ε

G1 ⊂ε G2 ⇔ ∀D ∈ R
9
s : ΠG1

(D) ≤ ΠG2
(D) + εΠI(D).
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They have the following properties (Gi ∈ Ĉ, i = 1, 2, 3):

G1 =ε G1; G1 =ε G2 ⇒ G2 =ε G1;

G1 =ε G2 and G2 =ε G3 ⇒ G1 =2ε G3;

G1 =ε G2 ⇒ G1 =ε′ G2, ∀ε′ ≥ ε

G1 ⊂ε G1; G1 ⊂ε G2 and G2 ⊂ε G1 ⇔ G1 =ε G2;

G1 ⊂ε G2 and G2 ⊂ε G3 ⇒ G1 ⊂2ε G3;

G1 ⊂ε G2 ⇒ G1 ⊂ε′ G2, ∀ε′ ≥ ε

We denote:
• G1 +G2 the convex of Ĉ whose support function is the sum of those of G1

and G2

• µ � G(µ ∈ R
+) the convex of Ĉ whose support function is the product of

that of G(∈ Ĉ) by µ.
It follows that:

G1 ⊂ε G2 ⇔ G1 ⊂ G2 + ε.I

3.2. ε-self-consistent equations

The Eqs. (2.10) are replaced by the following ε-self-consistent equations for
ρ ∈ [0, 1[ and ε ≥ 0:

KR (G, ρ) =ε G, G ∈ Ĉ (⇔ KR (G, ρ) ⊃ε G, G ∈ Ĉ)(3.1)

KV (G, ρ) =ε(1−ρ) G, G ∈ Ĉ ( ⇔ KV (G, ρ) ⊂ε(1−ρ) G, G ∈ Ĉ)(3.2)

The set of solutions of (3.1) contained in Gg
V is denoted RES(ρ, ε) and the

set of solutions of (3.2) containing Gg
R is denoted VES(ρ, ε). It will be shown

(cf. propositions 1 and 2) that these sets are non-void.
Let VRES (ρ, ε) = RES(ρ, ε)∩ VES (ρ, ε). We than have, for any G belonging

to VRES (ρ, ε):

(3.3) ∀E ∈ (G, ρ) KR(E) =ε G; KV (E) =ε G.

Mechanical interpretation of the solutions of the ε-self-consistent equations re-
sults from (3.3) and is analogous to that performed in the case where ε = 0.

The difference between the approximate equalities used (3.1) and (3.2) finds
its justification in a property established further on (cf. (3.4)). This property
shows that if an equality to within ε had been considered in (3.2), this equation
would be all the easier to satisfy the more ρ tends to 1. The quality of repre-
sentation of the heterogeneous material attributed to the comparison material
M(G), for the VOIGT type loading process would therefore not be intrinsic.
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3.3. ε-self-consistent characterization of Gh

The diameter Φ (ρ, ε)(∈ R
+) of VRES(ρ, ε) is defined as follows:

Φ(ρ, ε) = max
(
∆(G1, G2), ∀Gi ∈ VRES (ρ, ε), i = 1, 2

)
if VRES (ρ, ε) 6= ∅

= +∞ if VRES (ρ, ε) = ∅

The mechanical meaning of the elements of VRES(ρ, ε) leads to looking for Gh

in one of these sets. But in which one?
A pair (ρ, ε) such that Φ(ρ, ε) is large but finite is not discriminant in the

following sense: very different elements G of VRES(ρ, ε) exist that present the
same sensitivity to inclusions. If Φ(ρ, ε) = ∞, the pair (ρ, ε) is not discriminant
in Ĉ either, as then no convex G is distinguished. The yield strength domain
Gh therefore must be located in the sets VRES(ρ, ε), the diameter of which is
minimum (equal to Φ∗). Among these sets of diameter Φ∗ (if there are several),
those whose parameters (ρ, ε) are the most suitable, are those for which ε is
minimum (according to (3.3)), and among the latter (if there are several) it will
be established (cf. (3.17)) that ρ can be chosen in any manner. Whence the
ε-self-consistent characterization of Gh:

Gh belongs to the set VRES(ρ∗, ε∗) the diameter Φ∗ of which is minimum,
with:

ε∗ = min(ε/Φ(ρ, ε) = Φ∗)

Note: This characterization of Gh must of course be tested by experimental
validation. In any case, it does not enable a single element of Ĉ to be determined,
but only a probable domain. The relevance of the latter depends on the quality
of representation of the material which is not quantified by Φ∗.

3.4. ε-self-consistent equations study

The object of this study is effective resolution of Gh from its ε-self-consistent
characterization. Firstly the variations of the sets of solutions RES(ρ, ε) and
VES(ρ, ε) are established.

Let there be G ∈ Ĉ, ρ0, ρ1 such that 0 ≤ ρ0 ≤ ρ1 < 1 and ε0, ε1 such that
0 ≤ ε0 ≤ ε1. We have (cf. Appendix 1):

KR(G, ρ0) ⊂ KR(G, ρ1)(3.4)

KV (G, ρ1) ⊂ KV (G, ρ0).
1 − ρ1

1 − ρ0
+ G �

ρ1 − ρ0

1 − ρ0
(3.5)
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RES(ρ0, ε) ⊂ RES(ρ1, ε)(3.6)

VES(ρ0, ε) ⊂ VES(ρ1, ε)(3.7)

RES(ρ, ε0) ⊂ RES(ρ, ε1)(3.8)

VES(ρ, ε0) ⊂ VES(ρ, ε1)(3.9)

Proposition 1. The set RES(ρ, ε) (ε ≥ 0, ρ ∈ [0, 1[) is non-void. It admits
a larger element denoted G+

R(ρ, ε) (called extremal solution of (3.1)) which has
the following properties:

G+
R(ρ1, ε) ⊃ G+

R(ρ0, ε) if 1 > ρ1 ≥ ρ0 ≥ 0(3.10)

G+
R(ρ, ε1) ⊃ G+

R(ρ, ε0) if ε1 ≥ ε0 ≥ 0(3.11)

G+
R(ρ, ε) ⊃ Gg

R(3.12)

P r o o f. Let us assume that RES(ρ, ε) is non-void and that it contains two
elements G1 and G2. It is shown that G = G1∪CG2 is also contained in RES (ρ, ε)
(where ∪C designates the convex shell of the union of two convex sets). For this
purpose we compare KR(G, ρ) with K = KR(G1, ρ) ∪C KR(G2, ρ).

For all S ∈ K, ∃Si ∈ KR(Gi, ρ) (i = 1, 2) and ∃λ ∈ [0, 1] such that S =
λS1 + (1 − λ)S2. For i = 1, 2, Si is balanced by an R-consistent field σi for
B(Gi, ρ). The field σ = λσ1 + (1 − λ)σ2 then balances S and it is R-consistent
for B(G, ρ). Therefore:

K ⊂ KR(G, ρ) (⊂ G)(3.13)

⇒ ∆(G, KR(G, ρ)) ≤ ∆(G, K).(3.14)

We have also:

(3.15) K + ε � I = (KR(G1, ρ) + ε � I) ∪C (KR(G2, ρ) + ε � I) ⊃ G1 ∪C G2

Therefore:
∆( ˙G, K) ≤ ε (according to, (3.13) and (3.15))

⇒ ∆(G, KR(G, ρ)) ≤ ε (according to (3.14)).

Consequently G ∈ RES (ρ, ε), which shows that RES (ρ, ε) admits a larger
element noted G+

R(ρ, ε).
We have: ∀G ∈ Ĉ : KR(G, ρ) ⊂ Gg

V (according to the consistency assumption
(2.3)). Therefore if G satisfies (3.1) with ε = 0, we necessarily have G ⊂ Gg

V .
The series of convex sets (Gi) (i ∈ IN) is considered with: G0 = Gg

V ; Gi+1 =
KR(Gi, ρ).
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This is a decreasing series of nested convex sets. It admits a bound G∗ =
KR(G∗, ρ) which satisfies (3.1) with ε = 0 and which is in Gg

V . Therefore
RES (ρ, 0) is non-void, and consequently RES (ρ, ε) is non-void.

Let i0 be the smallest integer such that ∆(Gi0+1, Gi0) ≤ ε. The convex Gi0

is the largest element of RES (ρ, ε) arising from the series (Gi)(i ∈ IN). It is
included in G+

R(ρ, ε) but we cannot assert that it is equal to G+
R(ρ, ε) except

in the case ε = 0. This is the best approximation of G+
R(ρ, ε) which can be

highlighted using this iterative process. Another possibility consists in solving
(3.1) by fixing the form of its solutions, which is not in general obvious.

The property (3.10) results from (3.6) and the property (3.11) from (3.8);
the property (3.12) is obtained by proving that Gg

R ∈ RES (ρ, 0), therefore to
RES (ρ, ε)(∀ε ≥ 0).

Proposition 2. The set VES (ρ, ε) (ε ≥ 0, ρ ∈ [0, 1[) is non-void. It admits
a smaller element denoted G−

V (ρ, ε) (called extremal solution of (3.2)) which has
the following properties:

(3.16)

G−
V (ρ0, ε) ⊃ G−

V (ρ1, ε) if 1 > ρ1 ≥ ρ0 ≥ 0

G−
V (ρ, ε0) ⊃ G−

V (ρ, ε1) if ε1 ≥ ε0 ≥ 0

G−
V (ρ, ε) ⊂ Gg

V

P r o o f. The proof is analogous to that of Proposition 1:
VES (ρ, ε) being assumed to be non-void, if it contains G1 and G2, then it

contains G1 ∩ G2 and consequently admits a smaller element.
∀G ∈ Ĉ, KV (G, ρ) ⊃ G ∪C ((1 − ρ)Gg

R + ρG) due to the consistency as-
sumption (2.6). It follows that any solution of (3.2) with ε = 0 contains Gg

R.

This enables the series (G̃i)(i ∈ IN) to be considered with: G̃0 = Gg
R; (̃Gi0+1 =

KV (G̃i, ρ), which is an increasing series of nested convex sets in Ĉ. It admits
a bound G̃∗ ∈ VES (ρ, 0), and therefore to VES (ρ, ε) which is consequently
non-void. Let i0 be the smallest integer such that ∆((̃Gi0+1, G̃i0) ≤ ε(1 − ρ).
The convex G̃i0 is the smallest element of VES (ρ, ε) arising from the series
(G̃i)(i ∈ IN). It contains G−

V (ρ, ε), but we cannot assert that it is equal to it,
except in the case ε = 0.

Proposition 3. The set VRES (ρ, ε) has the following properties:

VRES (ρ1, ε) ⊃ VRES (ρ0, ε) if 1 > ρ1 ≥ ρ0 ≥ 0 and ε ≥ 0(3.17)

VRES (ρ, ε1) ⊃ V RES (ρ, ε0) if ε1 ≥ ε0 ≥ 0 and ρ ∈ [0, 1[(3.18)

∀ρ ∈ [0, 1[ ,∃ερ ≥ 0 such that ∀ε ≥ ερVRES(ρ, ε) 6= ∅(3.19)

P r o o f. We assume VRES (ρ0, ε) 6= ∅. Then the variations of RES (ρ, ε)
and VES (ρ, ε) relatively to ρ and to ε imply (3.17) and (3.18).
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We have:

Gg
R ∈ RES (0, 0)

KV

(
Gg

R, ρ
)
⊂ Gg

R ∪C
(
Gg

V (1 − ρ) + ρGg
R

)
(cf. (2.8) with

vk(x) = D � x on Vk\ωk,∀k ∈ m̂)

whence:
(
KV (Gg

R, 0) ⊂ Gg
V ⊂ε0

Gg
R for ε0 = ∆(Gg

R, Gg
V )
)
⇒ Gg

R ∈ VES (0, ε0)

Therefore VRES (0, ε0) is non-void, whence (3.19).

3.5. Prediction of bounds of Gh

For any (ρ, ε) ∈ [0, 1[ × R
+, it results from Propositions 1 and 2 that:

(3.20) G ∈ VRES (ρ, ε) ⇒ G−
V (ρ, ε) ⊂ G ⊂ G+

R(ρ, ε)

Consequently, if VRES (ρ, ε) is non-void:

Φ(ρ, ε) ≤ ∆(G+
R(ρ, ε),G−

V (ρ, ε))

We then set down:

Φ̃(ρ, ε) = ∆
(
G+

R(ρ, ε), GV − (ρ, ε)
)

if G+
R(ρ, ε) ⊃ G−

V (ρ, ε)

= +∞ if not

On account of the properties (3.10) and (3.16), if the function Φ̃(ρ, ε) is finite in
(ρ0, ε) (ρ0 ∈ [0, 1[) then it is finite for any (ρ, ε) with ρ ∈ [ρ0, 1[.

The function Φ̃(ρ, ε) constitutes an approximation of Φ(ρ, ε). We cannot as-
sert that it is equal to it as the reciprocal of (3.20) is not established. We can
show that this reciprocal is true if G−

V (ρ, ε) and G+
R(ρ, ε) are connected by a

homothetic transformation of centre O and if ε is not too large (ε � I ⊂ Gg
R).

This condition is sufficient but not necessary as proved by the case dealt with in
application (cf. Sec. 4).

However the function Φ̃ is obtained by solving the two equations of the ε-
self-consistency system (3.1), (3.2) separately. This feature makes it much more
accessible than the function Φ and incites the following heuristic property to be
considered: Φ̃ and Φ are minimal at the same point (ρ∗, ε∗). It follows that:

(3.21) G−
V (ρ∗, ε∗) ⊂ Gh ⊂ G+

R(ρ∗, ε∗)

with:
Φ̃∗ = min (Φ̃(ρ, ε), ρ ∈ [0, 1[, ε ≥ 0)

(3.22) ε∗ = min (ε/Φ̃(ρ, ε) = Φ̃∗)

If the problem (3.22) admits several solutions (ε∗,ρ ∈ ρ̂∗) with ρ̂∗ a sub-set of
[0,1[, the convex sets G−

V (ρ, ε∗) and G+
R(ρ, ε∗) are necessarily constant on ρ̂∗.

This justifies being able to choose ρ in any manner in ρ̂∗.



ε-self-consistent method. 221

4. Application: effective yield strength domain of a defect material

A medium provided with a privileged frame Oxy (of length unit u) is con-
sidered. This medium is composed of a heterogeneous material Mha of a yield
strength domain G0, except on segments (called defect segments), located ran-
domly, of identical length equal to 4u and parallel to Oy. The number of defect
segments per area unit in the plane Oxy is 1/36. On these defect segments the
yield strength domain is Gdef . In the privileged frame Oxy, the expressions of
the domains G0 and Gdef are as follows:

G0 = g(σ0, σ0, σ0)

Gdef = g(0, 0, 0)

with g(σ, σ′, σ′′) =
{
σ ∈ R

4
S/|σx| ≤ σ; |σxy| ≤ σ′; |σy| ≤ σ′′

}

For the yield strength domain g, the dissipated power rate in a strain D of
components dx, dxy, dy is equal to:

Πg(D) = σ|dx| + 2σ′|dxy| + σ′′|dy|

In a discontinuity of velocity [v] = v1 −v2 (of components [vn], [vt] in the frame
Mnt) Fig. 6, the dissipated power rate is equal to:

Πg([v]) = σ
∣∣[vn] cos2 α − 0.5[vt] sin 2α

∣∣

+ σ′
∣∣[vn] sin 2α + [vt] cos 2α

∣∣+ σ′′
∣∣[vn] sin2 α + 0.5[vt] sin 2α

∣∣

Fig. 6. Discontinuity of displacement velocity [v].
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Fig. 7. Microstructure µs characterizing the defect material.

The heterogeneous material is characterized by a single microstructure µs
occupying a volume ω, the plot of which in Oxy is a square with sides equal to
6u (see Fig. 7).

We obtain: Gg
R = σ0 � g

(
1

3
,
1

3
, 1

)
and Gg

V = σ0 � g

(
29

36
,
29

36
, 1

)
.

The reference yield strength domain I is chosen equal to G0.
The homogenization method is applied analytically by making the following

simplifications: the comparison materials considered have yield strength domains
of fixed form (that of g), as well as the convex sets KR(G, ρ) and KV (G, ρ). The
convex sets G+

R(ρ, ε) and G−
V (ρ, ε) can then be obtained directly without using

the iterative procedure (cf. Propositions 1 and 2).
The convex KR(G, ρ) is determined using the dual form of (2.7):

KR(g, ρ) =
{
S ∈ R

4
s/S � D ≤ min(ΠG(D), ΠG

g
V
(D), 〈Πx(d)〉V , 〈d〉V = D),

∀D ∈ D}

where:
• D is the set constituted by the effective strain rates Di (i = 1, 2, 3) neces-
sary and sufficient to determine KR(G, ρ) (the non-zero components are dxx for
D1; dxy for D2; dyy for D3);
• Πx is the dissipated power rate at the point x ∈ V.
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When strain rate fields d are derived from discontinuous velocity fields v or
when the microstructures include some voids, the average strain rate is written:

〈d〉V =
1

2V

∫

∂V

(vi � nj + vj � ni)

Thus the convex sets G+
R(ρ, ε) and G−

V (ρ, ε) are obtained by applying the
kinematic yield design method. We obtain:

G+
R(ρ, ε) = σ0g(f1(ρ, ε),f1(ρ, ε), 1)

G−
V (ρ, ε) = σ0g

(
max

(
f2(ρ, ε);

1

3

)
, max

(
29

36
− ε;

1

3

)
, 1

)

with

f1 (ρ, ε) = min

(
1

3
+

ε√
1 − ρ

,
29

36

)

f2(ρ, ε) = min

(
0.73012 − 1.42122 ε,

1

3
(
1 −√

1 − ρ
) − ε

)

The velocity fields used are described in Appendix 2.
It is interesting to underline the fact that in this application the reciprocal

of (3.20) is exact, under the assumptions concerning the form of the convex sets
KR(G, ρ) and KV (G, ρ).

The function Φ̃(ρ, ε) reaches its minimum at a single point (ρ∗, ε∗) = (0.735,
0.161), which leads to:

(4.1) σ0g(0.502, 0.645, 1) ⊂ Gh ⊂ σ0g(0.645, 0.645, 1)

The sufficiently simple context of this application enables an approximation of
the effective yield strength domain Gh to be determined by performing a struc-
ture calculation on a representative volume Ω of the heterogeneous material
(see Fig. 8). This calculation also uses the kinematic yield design method. It
is performed on 500 square samples comprising 25.600 defect segments distrib-
uted with the help of a digit programme that sets at random the coordinates of
the medium point. The boundary conditions correspond to the load processes of
VOIGT type (BC1) and REUSS type (BC2):

For the conditions BC1, Ω is cut into strips with widths of 6u parallel to
Oy. In each of them, a discontinuity line is sought for dividing the strip into two
rigid blocks and that is the least dissipative possible.
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Fig. 8. A square sample composed of the defect material (comprising 1600 segments).

For the conditions BC2, the whole volume Ω is scanned to determine a single
discontinuity line separating Ω into two rigid blocks. The mean results obtained
on the 500 samples (with a maximum standard deviation of 0.0079) show that:

Gh ⊂ σ0g(0.751, 0.751, 1) for the conditions BC1(4.2)

Gh ⊂ σ0g(0.673, 0.673, 1) for the conditions BC2(4.3)

The so obtained upper bounds of Gh (cf. (4.2) and (4.3)) depend on the choice
of the boundary conditions BC1 and BC2. This dependence doesn’t mean that
the Ω volume is not representative. More probably it results from the quality of
the velocity fields involved in the structure calculation. If we agree with the fact
that Ω volume is representative for the heterogeneous material, it is consistent
to get the smaller of the two upper bounds as the best approach of Gh. Then we
note a good agreement between the theoretical estimation (4.1) and the approach
value of Gh (4.3).

5. Conclusion

Using a comparison material to determine the effective yield strength do-
main of a random material, gives rise to numerous problems when its behaviour
is directly nonlinear. The first difficulty involves the adequate distance to be im-
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posed between the inclusions representative of the heterogeneous material that
are placed into the homogeneous comparison medium. This distance must en-
able the drastic REUSS or VOIGT conditions to be pertinently attenuated at
the border of the inclusions which are, apart from the periodicity assumption,
the only ones whose mechanical meaning can be established, provided that Ωha

admits a breakdown into elements of volume ω. Combined use of the two types
of boundary conditions referred to (REUSS and VOIGT), useful for mechan-
ical interpretation of the comparison material (cf. (2.11) and (3.3)), appeared
moreover to be able to fix this distance non-arbitrarily. However, except for par-
ticular cases, the self-consistency equations associated with each of these types
of boundary conditions do not admit a common solution for a finite distance and
admit an infinity of solutions for infinity.

Different methods, based on a disturbance of the equations, have been en-
visaged to overcome this difficulty. But the parameters that define these distur-
bances do not have any obvious physical sense and are consequently delicate to
fix. Recourse to the notion of approximate equality proved from this point of
view to be easier to master. It requires a characterization of the effective yield
strength domain which fixes the value of the two parameters ρ and ε appearing
in the self-consistency system. The one that is proposed in this work is based
on the idea that the pair (ρ, ε) must be the one that is the most discriminant.
However, this characterization would be complex to implement, and even out of
reach, if it could not be reduced to separate resolution of the self-consistency
equations. This simplification, necessary from a practical point of view, is not
established in a general manner. It gives the developed method a heuristic na-
ture, which can be cleared in certain cases. Another possibility of fixing the pair
(ρ, ε) would be to use the property of the effective yield strength domain shown
in Turgeman and Guessab [19] for ε = 0 and which can be generalized for
ε > 0. But this property, which can be interpreted as being dual from (3.21), is
only valid if ρ is smaller than a value, a function of ε, only an upper bound of
which can be determined.

Another problem concerns the consistency conditions to be imposed on the
stress and strain rate fields. We made the choice of minimum conditions bas-
ing ourselves on the requirements of mathematical developments. This choice
presents the advantage of generality. Moreover, it enables a velocity formulation
to be used for determining the set of R-consistent loads, which greatly facilitates
analytical calculation.

The problem of validation of the proposed method is still outstanding. It was
approached by dealing with the example of a defect material, studied directly on
finite volumes which are representative on account of the large number of defect
segments considered.
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Appendix A.

Proofs of properties (3.4) to (3.9):
To simplify the notations, we place ourselves in the case where the material

Mha is represented by a single microstructure (m = 1). In this case the base
B(G, ρ) comprises a single element: this is the mechanical system B, of volume
Vi when ρ = ρi (i ∈{0,1}), in which the microstructure representative of Mhaof
volume ω is centred. The complementary volume V ′

i = Vi\ω is constituted by
the homogeneous material M(G).

(3.4): let there be S ∈ KR(G, ρ0). S is balanced by a field σ0, defined on V0

and R-consistent. We consider in V1 the field σ1 such that: σ1(x) = σ0(x),∀x ∈
V0; σ1(x) = S, ∀x ∈ V1\V0. The field σ1 is R-consistent for B ∈ B(G, ρ1) and it
balances S. Consequently S ∈ KR(G, ρ1).

(3.5): the support function of KV (G, ρi) (i ∈{0,1}) is, for D ∈ R
9
s :

ΠKV (G,ρi)
(D) = max

(
ΠG(D), min(Hρi

(D), d ∈ Uρ(d))
)
.

Let U ′
ρ1

(D) =
{
d(x),x ∈ V1 such that on V0 : d(x) ∈ Uρ0

(D) and on V1\V0 :
d(x) = D

}

We have Uρ1
(D) ⊃ U ′

ρ1
(D) and subsequently:

min(Hρ1
(d),d ∈ Uρ1

(D)) ≤ min(Hρ1
(d),d ∈ U ′

ρ1
(D))

= (Hρ0
(d̂) � V0 + ΠG(D) � (V1\V0)) /V0))V1 V1

with

(d̂ ∈ Uρ0
(D) such that Hρ0

(d̂) = min(Hρ0
(d),d ∈ Uρ0

(D).

Then:

ΠKV (G,ρ1)(D) ≤ max

(
ΠG(D), Hρ0

(d̂) �

V0

V1
+ ΠG(D) �

(
1 − V0

V1

))

Whence (3.5), noting that ω = (1 − ρ1)V 1 = (1 − ρ0)V 0.

(3.6) : G ∈ RES(ρ0, ε) ⇒ KR(G, ρ0) + ε � I ⊃ G

⇒ KR(G, ρ1) + ε � I ⊃ G (according to (3.4))

⇒ G ∈ RES(ρ1, ε)

(3.7) : G ∈ VES(ρ0, ε) ⇒ KV (G, ρ0) ⊂ G + ε(1 − ρ0) � I

⇒ KV (G, ρ1) ⊂ G + ε(1 − ρ1) � I (according to (3.5))

⇒ G ∈ VES(ρ1, ε)

The properties (3.8) and (3.9) are obvious.
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Appendix B.

Determination of KR(g, ρ) is based on the velocity field Fig. 9, consisting of
two rigid regions, separated by a velocity discontinuity line AD. For the effective
strain D1 we have: v0 = (1, 0); for D2 we have: v0 = (0, 1). In the direction D3,
the velocity field v(x, y) = (0, y) in V is used.

Fig. 9. Velocity field to determine KR(g, ρ).

We deduce therefrom:

KR(g, ρ) =
{
S ∈ R

4
s/|Sx| ≤ min(σ, aσ0 + bσ, cσ0);

|Sxy| ≤ min(σ′, aσ0 + bσ′, cσ0);

|Sy| ≤ min(σ′′, (1 − ρ)σ0 + ρσ′′, σ0)
}

with a =
√

1 − ρ
/
3; b = 1−√

1 − ρ; c = 29/36

Determination of KV (g, ρ) uses:
in the direction D1:

• the velocity field Fig. 6 with v0 = (2.741379, 0); v(x, y) = (x, 0) in V ′.
• the velocity field Fig. 7 within the regions Zi (i = 1, 2):

vx(x, y) = x(|y| − 3)/e + 3(−1)i(e − |y| + 3)/e;

vy(x, y) = (−x2/2e + 3(−1)ix/e − 9/2e) � |y|/y;

v0 = (3, 0); v(x, y) = (x, 0) in V ′.
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in the direction D2:
• the velocity field Fig. 10 with v0 = (0, 2.5); v(x, y) = (0, x) in V ′.

in the direction D3:v (x, y) = (0, y) in V.

Fig. 10. Velocity field to determine KV (g, ρ) in the directions D1 and D2.

Fig. 11. Velocity field to determine KV (g, ρ) in the direction D1.
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We deduce therefrom:

Kv(g, ρ) =
{
S ∈ R

4
s/|Sx| ≤ max(σ, min(h1(ρ), h2(ρ)));

|Sxy| ≤ max(σ′, h3(ρ));

|Sy| ≤ max(σ′′, (1 − ρ)σ0 + ρσ′′)
}

with:

h1(ρ) = 0.390804(1 − ρ)σ0 + ρσ + 0.421222(1 − ρ)σ′;

h2(ρ) =
1

3
(1 − ρ)σ0 +

(√
1 − ρ/3(1 −

√
1 − ρ)

)
(1 − ρ)σ′′;

h3(ρ) =
16

36
(1 − ρ)σ0 + σ′ρ +

13

36
(1 − ρ)σ′′
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