
Arch. Mech., 59, 2, pp. 173–197, Warszawa 2007

Cauchy problem for quasilinear hyperbolic systems
with coefficients functionally dependent on solutions
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The Cauchy problem for a quasilinear hyperbolic systems with coefficients func-
tionally dependent on the solutions is studied.We assume that the coefficients are
continuous nonlinear operators in the Banach space C1(R) satisfying some additional
assumptions. Under these assumptions we prove the uniqueness and existence of local
in time C1 solutions, provided that the initial data are also of class C1.
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1. Introduction

In this paper we discuss the case of a quasilinear hyperbolic system with
coefficients functionally dependent on the solution

ut + A[u]ux = S[u],(1.1)

u(0, x) = u0(x), x ∈ R.(1.2)

The problem studied in this paper comes from modeling plasma in the sta-
tionary plasma thruster [6]. In this type of thrusters plasma moves across a
radial magnetic field in a cylindrically symmetric channel. The magnetic field
is strong enough to magnetize the electrons but not the ions (me/mi ≈ 10−5).
Thus the ions are moving practically along the axis of the device in agreement
with the electric field, whereas the electrons in average have azimuthal as well
as slow axial motion. The majority of electrons are thus stuck orbiting in the re-
gion of high radial magnetic field near the thruster exit plane, while the ions are
accelerated and produce the thrust. In addition, the electrons ionize the neutral
atoms which are injected through the anode.
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One of the easiest ways of modeling the plasma is to treat it as a three-
component fluid consisting of neutral atoms with density Na and velocity Va,
electrons with density ne, axial velocity Ve and azimuthal velocity Vθ and ions
with density ni and velocity Vi.

The ion component could be treated as a cold fluid with zero temperature,
while electrons are relatively hot. Hence apart from the continuity and momen-
tum equations the energy equation that defines the temperature of electrons,
is also needed. The set of these three equations describing the motion of these
three fluids must be supplemented by the Poisson equation for the electric field.
It appears that this system is difficult to solve numerically because of various
physical and numerical instabilities and the existence of different time scales.
However several essential approximations are possible. First of all we can make
the assumption of quasineutrality saying that the density of electrons is equal
to density of ions, ne = ni. This assumption is often used in the description
of plasma and it is well justified in our case. In this approximation the Pois-
son equation is redundant and must be dropped out. Then taking into account
that in the case of xenon the electron mass me is much less than the ion mass
me ≈ 10−5mi, we can neglect the time and space derivatives in the electron
momentum equations to obtain the Ohm’s law type of equation, expressing the
electric field through the other variables [1]:

e

mi
E = −νVe − k

nmi

∂(Ten)
∂x

,

where ν – effective collision frequency, Te – temperature of electrons, n – ion
density (we assume that ion density and electron density are equal), k – the
Boltzmann constant.

Using the expression for the total current density I = n(Vi − Ve) we have

(1.3)
e

mi
E = ν

(
I

n
− Vi

)
− k

nmi

∂(Ten)
∂x

.

After these simplifications one obtains the following system of four equations:
• neutral continuity equation

(1.4)
∂Na

∂t
+ Va

∂Na

∂x
= −βNan,

• ion continuity and axial momentum equations

∂n

∂t
+

∂(Vin)
∂x

= βNan,(1.5)

∂Vi

∂t
+ Vi

∂Vi

∂x
+

k

nmi

∂(Ten)
∂x

= ν

(
I

n
− Vi

)
− βNa(Vi − Va),(1.6)
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• temperature equation for Te

(1.7)
1√
Te

(
∂T

3/2
e

∂t
+

∂(T 3/2
e Ve)
∂x

)
= Q(Te, n, Vi, x).

Here β is the ionization coefficient, Q – the source term in the energy equation
containing gains (Joule heating) and losses due to collisions with walls and
atoms.

The boundary condition for the electric field
∫ L
0 Edx = U0, saying that the

applied voltage is equal to U0, allows to obtain (from “Ohm’s law”) the total
current, which depends on time but not on x

(1.8) I(t) =




L∫

0

ν

n
dx



−1 

mi

e
U0 +

L∫

0

[
νVi +

k

nmi

∂(Ten)
∂x

]
dx


 .

System (1.4)–(1.8) is hyperbolic. The right-hand side of this system depends
functionally on the solution, because I in Eq. (1.6) is expressed by (1.8).

Near the anode the electron velocity Va is rather large. This introduces a
small time scale that is inconvenient for numerical computation. In such a case
it is reasonable to neglect the time derivative in Eq. (1.7).

When we omit the time derivative in the equation for temperature, then tem-
perature is expressed functionally by n, Na and Vi. Finally we have a hyperbolic
system consisting of three equations (for n, Vi, Na), whose coefficients depend
functionally on the solution.

After such a reduction our system can serve as an example which character-
izes the situation often encountered in computational physics. Suppose that we
have the following hyperbolic system of n + 1 equations:

(1.9)
ut + A(t, x, u, v)ux = b(t, x, u, v),
vt + f(t, x, u, v)vx = g(t, x, u, v).

The characteristic velocities in this system are defined by the eigenvalues of
the matrix of this system. So the characteristic times are proportional to the
inverse of these eigenvalues. Therefore if for example |f | is much larger than
the absolute value of remaining eigenvalues (i.e. the eigenvalues of A), then for
numerical computations it is reasonable to neglect the time derivative in the last
equation. In this way we come to a system with functional dependence not only
on the right-hand side but also on the characteristics.

In the following we will be concerned with the existence and uniqueness the-
orem of a local in time solution of the initial problem for quasilinear hyperbolic
system (1.1) with two independent variables (t, x) and coefficients functionally
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dependent on the solution. We show also that the solution depends continuously
(in C1 topology) on the initial data. In [5] the existence of Lipschitz continuous
solutions is proved, but the continuous dependence on the initial data is shown
in the supremum norm, not in the Lipschitz norm.

The proof of existence is based on the method of successive approximations
and basically follows the reasoning used in [4]. Hence we need the results for the
linear systems. In the linear case

ut + A(t, x)ux = b(t, x) + B(t, x)u,(1.10)

u(0, x) = u0(x), x ∈ R,(1.11)

due to the definition of hyperbolicity, the n × n matrix A has real eigenvalues
and n independent eigenvectors at each (t, x). Thus A can be represented as

A = L−1DL,

where L is a nonsingular n × n matrix. The rows L1, . . . , Ln are left eigen-
vectors of A, whereas the columns of L−1 are the right eigenvectors of A.
D = diag[ξ1, . . . , ξn] and functions ξi, i = 1, . . . , n, are eigenvalues of A cor-
responding to eigenvectors Li. We do not assume here and in the following that
ξi are different. B(t, x) is n× n matrix and b(t, x), u(t, x) are column vectors.

For problem (1.10)–(1.11) we recall the following theorem [4]:
Theorem 1. Assume that D(t, x), L(t, x), b(t, x), B(t, x) are bounded ma-

trix functions of class Ck([0,∞)× R) with bounded derivatives up to order k
on [0,∞) × R. If the initial condition u0(x) is of class Ck(R) with bounded
derivatives up to order k on R, then there exists a unique global solution u ∈
Ck([0,∞)×R). The solution depends continuously on the initial condition (1.2)
in the Ck topology on every finite strip [0, T ]× R.

Let

X0 =
{

u ∈ C(R); ‖u‖0 := sup
x∈R

√√√√
n∑

i=1

u2
i < ∞

}
.

Similarly
X1 = {u ∈ C1(R); ‖u‖1 := ‖u‖0 + ‖ux‖0 < ∞}.

In contrast to the results shown in [3, 5], we confine ourself to the functional
dependence with respect to the variable x only. Thus in A[u], S[u], etc., u is
treated as a function of x, parametrically dependent on t. Similarly we admit
that the operators A, S, etc., are parametrically depending on t. To simplify the
notation, dependence on t will not be marked explicitly. In this way the linear
case (1.10) is a special case of (1.1). We assume also that for a given u from
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a ball B1
r (u0) with radius r, centered at u0 and open in X1, the matrix A[u]

(t ∈ [0, T ]) has real eigenvalues ξ1[u], . . . , ξn[u] and can be diagonalized

A[u] = L−1[u]D[u]L[u],

D[u] = diag[ξ1[u], . . . , ξn[u]], L[u] =




L1[u]
...

Ln[u]


 .

The rows of the nonsingular matrix L[u] are the left eigenvectors of A[u].
Multiplying (1.1) on the left by L[u], we obtain the characteristic form of

equations

(1.12) L[u]ut + D[u]L[u] ux = Z[u],

where Z[u] = L[u]S[u].
Let u0(x) be an initial condition (1.2) for the system (1.1). We will assume

that there exists a ball B1
r (u0) in X1 such that for all t ∈ [0, T ], the following

conditions hold:
(A1) K : B1

r (u0) → X1 and for some constant C < ∞: ‖K[v]‖1 ≤ C for all
v ∈ B1

r (u0), where K denotes L, L−1, D, Z.
(A2) L is a continuous nonlinear operator, L : B1

r (u0) → X1. In addition, we
assume that L is Fréchet differentiable as an operator acting from X0 to
X0, i.e. L : B0

r (u0) → X0, where B0
r (u0) is the closure of B1

r (u0) in the
metric of the space X0 and

∃C>0∀v∈B0
r (u0)⊂X0

∀h∈X0‖L′(v)h‖0 ≤ C‖h‖0.

(A3) L[v] is of C1 class with respect to the parameter t and there is a constant

C such that
∥∥∥∥

∂

∂t
L[v]

∥∥∥∥
0

≤ C, v ∈ B0
r (u0).

(A4) For |x − x̄| ≤ δ and all v ∈ B1
r (u0), there is a constant C and a function

N(δ), N(δ) → 0 as δ → 0 such that

∣∣∣∣
∂

∂x
K[v](t, x)− ∂

∂x
K[v](t, x̄)

∣∣∣∣ ≤ C|vx(x)− vx(x̄)|

+ C|v(x)− v(x̄)|+ N(δ),

where K stands for L,D, Z. | · | denotes the Euclidean metric.
(A5) There exists a constant C that ‖K[v]−K[v̄]‖0 ≤ C‖v− v̄‖0 for v ∈ B1

r (u0),
where K stands for L, L−1, D, Z.
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Although the constants appearing in all these assumptions can be different, we
can take C as the greatest one.

As an example of the operator which satisfies assumptions (A1)–(A5) can
serve the operator

(1.13) K[v](t, x) = k


t, x, v,

∫

R

g1(x, y)v(y)dy,

x∫

0

g2(x, y)v(y)dy


 ,

where v ∈ X1, k is a continuously differentiable function with respect to all
variables. Moreover we assume, that the integrals

∫
R g1(x, y)v(t, y)dy,

∫ x
0 g2(x, y)

v(y)dy exist and are continuously differentiable with respect to x and derivatives
are uniformly bounded as a function of x.

The particular case of system of partial differential-functional equations (1.1)
with operators of the type (1.13) is a quasilinear hyperbolic system.

Let us now formulate the theorem which is our main result.
Theorem 2. Under the conditions (A1)–(A5), there exists a local in time

unique solution of class C1 of the problem (1.1)–(1.2).

2. Prolonged system

Let us define the prolongation of system (1.1) which will help us to estimate
the growth of solution of system (1.12) as well as its derivatives.
We introduce the new unknown vector function p by

(2.1) p(t, x) = L[u(t, ·)] ux,

and useful denotation for function v ∈ X1 independent of t

(2.2) Lt[v] =
∂

∂t
L[v].

Thus if u = u(t, x) then

(2.3) Lt[u] =
∂

∂t
L[v]

∣∣∣∣
v=u

.

The Frechét derivative of L[u] acting on ω will be denoted by

(2.4) L′[u]ω := L′(u;ω), u ∈ X1, ω ∈ X0.

Now we formally differentiate all equations of (1.12) with respect to x and
we obtain

(2.5)
(

∂

∂x
L[u]

)
ut + L[u]utx +

(
∂

∂x
D[u]

)
L[u]ux

+ D[u]
∂

∂x
(L[u]ux) =

∂

∂x
Z[u].
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For the derivative utx we have

L[u]utx =
∂

∂t
(L[u]ux)−

(
∂

∂t
L[u]

)
ux,

where by assumption (A2) and by (2.3) we can develop
∂

∂t
L[u] as follows:

(2.6)
∂

∂t
L[u] = L′(u; ut) + Lt[u].

Finally, expressing ut and ux from (1.12) and (2.1) in terms of p we obtain the
prolonged system:

ut = L−1[u]Z[u]− L−1[u]D[u]p,(2.7)

(2.8)
∂p

∂t
+ D[u]

∂p

∂x
=

∂

∂x
Z[u]−

(
∂

∂x
L[u]

)
L−1[u]Z[u]

+
((

∂

∂x
L[u]

)
L−1[u]D[u] + L′

(
u; L−1[u]Z[u]− L−1[u]D[u]p

)
L−1[u]

+ Lt[u]L−1[u]− ∂

∂x
D[u]

)
p,

u(0, x) = u0(x),(2.9)

p(0, x) = p0(x) = L[u0] u0
x.(2.10)

Definition 1. We define a linear mapping

P : (C([0, T ]× R))n 7−→ ((C([0, T ]× [0, T ]× R))n,

acting on vector functions f(t, x) = [f1(t, x), . . . , fn(t, x)]T by

(2.11) (Pf)k(t, t̄, x̄) = fk(t, xk(t; t̄, x̄)), k = 1, . . . , n.

Thus P acts in this way that in the k-th component fk of vector f it substi-
tutes for x the expression of the k-th family of characteristics xk(t; t̄, x̄).

Since

sup
(t,t̄,x̄)∈[0,T ]×[0,T ]×R

|fk(t, xk(t; t̄, x̄))| = sup
(t,x)∈[0,T ]×R

|fk(t, x)| ,

then P is bounded and hence continuous. For convenience we will use the fol-
lowing denotation:

Ptf = (Pf)(t, ·, ·).



180 M. Zdanowicz, Z. Peradzyński

Let us notice that the left-hand side of (2.7) is the directional derivative
along the characteristic curves:

(2.12)
d

d t
(Ptp) = Ptf,

where

f =
∂

∂x
Z[u]−

(
∂

∂x
L[u]

)
L−1[u]Z[u] +

((
∂

∂x
L[u]

)
L−1[u]D[u]

+ L′
(
u; L−1[u]Z[u]− L−1[u]D[u]p

)
L−1[u] + Lt[u]L−1[u]− ∂

∂x
D[u]

)
p.

Integrating (2.12) along characteristics with respect to t from 0 to t̄ we obtain

(2.13) p(t̄, x̄) = P0p +

t̄∫

0

(Ptf) dt.

To derive Eqs. (2.7)–(2.8) we need, in principle, to assume that u(t, x) ∈ C2.
However, the integral form (2.13) permits us to look for weaker solutions which
are only continuous, although pk is differentiable along the k-th characteristics
(k = 1, . . . , n).

It is worth pointing out that system (2.7)–(2.8) is expressed in Riemann
invariants, i.e. it has a diagonal form, whereas (1.1), in general, is not.

Let (u, p) belong to the space X0 ×X0 with norm

‖(u, p)‖∗ := (C3 + 1)‖u‖0 + C‖p‖0.

If (u, p) is in a ball B∗
r (u0, p0) centered at (u0, p0) and open in X0 × X0, then

the function u stays in the ball B1
r (u0). From assumptions (A2) and (A5) we get

‖ux − u0
x‖0 = ‖L−1[u] p− L−1[u0] p0‖0 ≤ C‖p− p0‖0 + C‖u− u0‖‖p0‖0.

Since
‖p0‖0 = ‖L[u0]u0

x‖0 ≤ C2,

we have

‖ux − u0
x‖0 + ‖u− u0‖0 ≤ (C3 + 1)‖u− u0‖0 + C‖p− p0‖0 < r.

Now we will show that if there exists a solution (u(t, x), p(t, x)) of
Eqs. (2.7)–(2.8) (p in the sense of Eq. (2.13)) then it must stay in B∗

r (u0, p0) for
some finite time t ∈ [0, t∗), where t∗ is defined by (2.18).
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The following estimations hold in the ball B∗
r (u0, p0):

|ut(t, x)| ≤ ‖L−1[u]‖0 ‖Z[u]‖0 + ‖L−1[u]‖0 ‖D[u]‖0 ‖p‖0(2.14)
≤ C2(1 + ‖p‖0).

Since
‖p‖0 ≤ ‖p− p0‖0 + ‖p0‖0 ≤ r

C
+ C2,

we have

(2.15) |ut(t, x)| ≤ Cu,

where Cu = C2 + C4 + Cr.
Since pk is differentiable along the k-th family of characteristics, then by

(2.8) we can write:

(2.16)
∣∣∣∣
d

dt
(Ptp)

∣∣∣∣ ≤
∥∥∥∥

∂

∂x
Z[u]

∥∥∥∥
0

+
∥∥∥∥

∂

∂x
L[u]

∥∥∥∥
0

∥∥L−1[u]
∥∥

0
‖Z[u]‖0

+
(∥∥∥∥

∂

∂x
L[u]

∥∥∥∥
0

‖L−1[u]‖0‖D[u]‖0

+ C
∥∥L−1[u]Z[u]− L−1[u]D[u]p

∥∥
0
‖L−1[u]‖0

+ ‖Lt[u]‖0‖L−1[u]‖0 +
∥∥∥∥

∂

∂x
D[u]

∥∥∥∥
0

)
‖p‖0

≤ C + C3 + ‖p‖0(C + C2 + C3 + C4) + C4(‖p‖0)2.

Hence

(2.17)
∣∣∣∣
d

dt
(Ptp)

∣∣∣∣ ≤ Cp,

where Cp = C + 2C3 + C4 + C5 + C6 + C8 + r(1 + C + C2 + C3 + 2C5) + C2r2.
As for any function ϕ(t) ∈ C1:

d

dt
|ϕ(t)| ≤

∣∣∣∣
d

dt
ϕ(t)

∣∣∣∣ ,

then we obtain from (2.15), (2.17) the conditions:

∂

∂t
|u(t, x)− u0(x)| ≤ Cp,

∂

∂t
|Ptp− P0p| ≤ Cu,
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which imply

|u(t, x)− u0(x)| ≤ t̄ Cp,

|Ptp− P0p| ≤ t̄ Cu.

Because Cu, Cp are constants independent of x therefore we have

‖(u, p)− (u0, p0)‖∗ = (C3 + 1)‖u− u0‖0 + C‖p− p0‖0

≤ t̄
(
Cu(C3 + 1) + Cp C

)
=: t̄ C∗.

If

(2.18) t∗ = min
{

r

C∗
, T

}
,

then we see that the solution must indeed stay in B∗
r (u0, p0) (hence it is bounded)

for t ∈ [0, t∗).

3. Characteristics

The characteristic curve x = xk(t; t̄, x̄) of the k-th family passing through
the point (t̄, x̄) is the solution of the equation

(3.1)
dx

dt
= ξk[u](t, x), t ∈ [0, t̄ ],

with the following initial condition:

(3.2) xk(t; t̄, x̄)|t=t̄ = x̄.

For u ∈ B1
r (u0) the function ξk[u](t, x) is bounded and has a bounded derivative

with respect to x. Hence it satisfies the Lipschitz condition with respect to x
and therefore initial problem (3.1)–(3.2) has a unique solution. Through each
point (t̄, x̄) ∈ [0, t∗)×R there passes one and only one characteristic of the k-th
family, which is defined for t ∈ [0, t∗).

4. Uniqueness

We shall show the following
Lemma 1. If there exists a solution of the Cauchy problem (1.1)–(1.2), then

it is unique.
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P r o o f. Assume that u(t, x) and ū(t, x) are two different solutions of prob-
lem (1.1)–(1.2) and moreover

u(0, x) = ū(0, x) = u0(x).

For abbreviation we will write

L̄ = L[ū], D̄ = D[ū], Z̄ = Z[ū].

We form the difference

(4.1) v(t, x) = u(t, x)− ū(t, x), v(0, x) = [0, . . . , 0]T ,

for which it holds

(4.2) L̄vt + D̄L̄vx = Z − Z̄ − (L− L̄)ut − (DL− D̄L̄)ux.

The form (4.2) of the system suggests introducing a new unknown function

v̄ = L̄ v.

By observing that

∂v̄

∂t
=

(
∂

∂t
L̄

)
v + L̄

∂v

∂t
=

(
Lt[ū] + L′(ū; ūt)

)
v + L̄

∂v

∂t

=

(
Lt[ū] + L′(ū; L̄−1 Z̄ − L̄−1 D̄ p̄)

)
v + L̄

∂v

∂t
,

∂v̄

∂x
=

(
∂

∂x
L̄

)
v + L̄

∂v

∂x
,

we may write the system (4.2) in the Riemann invariants

(4.3)
∂v̄

∂t
+ D̄

∂v̄

∂x
= Z − Z̄ − (L− L̄) ut − (D L− D̄ L̄) ux

+
(

Lt[ū] + L′(ū; L̄−1 Z̄ − L̄−1 D̄ p̄) + D̄
∂

∂x
L̄

)
L̄−1 v̄.

Hence we have

(4.4)
d

d t
(Ptv̄) = PtZ − PtZ̄ − Pt

((
L− L̄

)
ut

)
−Pt

((
DL− D̄L̄

)
ux

)

+ Pt

((
Lt[ū] + L′(ū; L̄−1 Z̄ − L̄−1 D̄ p̄) + D̄

∂

∂x
L̄

)
L̄−1v̄

)
.
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After integrating from 0 to t̄ we obtain

|v̄(t̄, x̄)| ≤
t̄∫

0

‖Z[u]− Z[ū]‖0 dt +

t̄∫

0

‖L[u]− L[ū]‖0 ‖ut‖0 dt

+

t̄∫

0

‖D[u] L[u]−D[ū] L[ū]‖0 ‖ux‖0 dt

+

t̄∫

0

‖Lt[ū]‖0

∥∥L−1[ū]
∥∥

0
‖v̄‖0 dt

+

t̄∫

0

∥∥L′
(
ū; L̄−1 Z̄ − L̄−1 D̄ p̄

)∥∥
0

∥∥L−1[ū]
∥∥

0
‖v̄‖0 dt

+

t̄∫

0

‖D[ū]‖0

∥∥∥∥
∂

∂x
L[ū]

∥∥∥∥
0

∥∥L−1[ū]
∥∥

0
‖v̄‖0 dt.

Now we easily arrive at the following estimations:

• ‖ut(t, x)‖0 ≤ ‖L−1[u]‖0‖Z[u]‖0 + ‖L−1[u]‖0‖D[u]‖0 ≤ 2C2,

• ‖D[u] L[u]−D[ū]L[ū]‖0 ≤ C‖L[u]−L[ū]‖0+C‖D[u]−D[ū]‖0 ≤ 2C2‖u−ū‖0,

• ‖ux(t, x)‖0 =
∥∥L−1[u] p

∥∥
0
≤ C ‖p‖0 ≤ r + C3,

• ‖Lt[u]‖0 ≤ C,

• ‖L′(ū; ūt)‖0 =
∥∥L′

(
ū; L−1[u] Z[u]− L−1[u] D[u] p

)∥∥
0

≤ C
∥∥L−1[u] Z[u]− L−1[u] D[u] p

∥∥
0
≤ C3 + C5 + C2r,

• ‖D[ū]‖0

∥∥∥∥
∂

∂x
L[ū]

∥∥∥∥
0

≤ C2,

• ‖L−1[u]‖0 ≤ C.

As a consequence of these inequalities we can write
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|v̄k(t̄, x̄)| ≤ C1

t̄∫

0

‖u(t, x)−ū(t, x)‖0 dt+C2

t̄∫

0

‖v̄(t, x)‖0 dt(4.5)

≤ C1

t̄∫

0

‖L−1[u](t, x)‖0 ‖v̄(t, x)‖0 dt

+C2

t̄∫

0

‖v̄(t, x)‖0 dt

≤ C3

t̄∫

0

‖v̄(t, x)‖0 dt,

where C1 = C+2C3+2C5+2C2r, C2 = C2+C3+C4+C6+C3r, C3 = C1C+C2.

Finally we obtain

(4.6) ‖v̄(t̄, x)‖0 ≤
√

n C3

t̄∫

0

‖v̄(t, x)‖0dt.

Applying the Gronwall’s lemma we conclude that ‖v̄(t, x)‖0 ≡ 0, i.e. ū(t, x) ≡
u(t, x), which completes the proof.

5. Existence

Lemma 2. There exists a solution of (1.1)–(1.2) and it is of class C1([0, t∗)
× R).

To prove the existence of the solution of (1.1)–(1.2) we use the method of
successive approximations.

We start with an arbitrary admissible initial function
(0)
u (t, x), e.g.

(5.1)
(0)
u (t, x) = u0(x).

To shorten the notation we will write
(s)

L instead of L[
(s)
u ] and the same for

the other operators.

Assume that the approximation
(s)
u (t, x) ∈ C1 has been constructed. The

next approximation
(s+1)

u (t, x) we define as the solution of the linear Cauchy
problem

(s)

L
(s+1)
ut +

(s)

D
(s)

L
(s+1)
ux =

(s)

Z ,(5.2)
(s+1)

u (0, x) = u0(x).(5.3)
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The existence theorem for linear systems asserts the existence of a solution of
class C1 if the coefficients and the initial condition are of class C1. Therefore
for t ∈ [0, t∗) there exists a solution

(s+1)
u (t, x) ∈ B1

r (u0).

5.1. Successive approximations for prolonged system

Denoting

(5.4)
(0)
p = L[u0]

du0(x)
dx

,
(s+1)

p =
(s)

L
(s+1)
ux ,

we consider the linear system

(s+1)
ut =

(s)

L−1
(s)

Z −
(s)

L−1
(s)

D
(s)
p ,(5.5)

(5.6)
(s+1)
pt +

(s)

D
(s+1)
px =

∂

∂x

(s)

Z −
(

∂

∂x

(s)

L

) (s)

L−1
(s)

Z +
(

∂

∂x

(s)

L

) (s)

L−1
(s)

D
(s)
p

+ L′(
(s)
u ;

(s)

L−1
(s)

Z −
(s)

L−1
(s)

D
(s)
p )

(s)

L−1
(s+1)

p

+

(
Lt[

(s)
u ]

(s)

L−1 − ∂

∂x

(s)

D

)
(s+1)

p ,

(s+1)
u (0, x) =

(0)
u ,(5.7)

(s+1)
p (0, x) =

(0)
p .(5.8)

Using induction we will demonstrate that for any s = 0, 1, . . . the solution

of (5.5)–(5.8) exists and it is defined for each t ∈ [0, t∗) and moreover, (
(s)
u ,

(s)
p )

stays in B∗
r (u0, p0).

Assume that for t ∈ [0, t∗)

(
(s)
u ,

(s)
p ) ∈ B∗

r (u0, p0).

If so, then the same estimates as those in Sec. 2 are true for (
(s+1)

u ,
(s+1)

p ). There-

fore (
(s+1)

u ,
(s+1)

p ) is defined for t ∈ [0, t∗) and stays in B∗
r (u0, p0).

Since (
(0)
u ,

(0)
p ) ∈ B∗

r (u0, p0) for any time, then (
(s)
u ,

(s)
p )s=0,1,... ∈ B∗

r (u0, p0) for
t ∈ [0, t∗).
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5.2. Uniform convergence of {(s)u }

We shall show the following:

Lemma 3. The sequence {(s)
u } is convergent in a Banach space C([0, t∗)×R).

P r o o f. We define the new unknown vector function

(s+1)
r (t, x) =

(s)

L

(
(s+1)

u − (s)
u

)
, s = 0, 1, . . .

with the initial condition
(s+1)

r (0, x) = [0, . . . , 0]T .

It is easy to verify that derivatives of
(s+1)

r are given by

∂

∂t

(s+1)
r =

(
Lt[

(s)
u ] + L′(

(s)
u ;

(s)
u t)

)(
(s+1)

u − (s)
u

)
+

(s)

L

(
(s+1)
ut − (s)

ut

)

=

(
Lt[

(s)
u ] + L′

( (s)
u ;

(s)

L−1
(s)

Z −
(s)

L−1
(s)

D
(s)
p

))(
(s+1)

u − (s)
u

)

+
(s)

L

(
(s+1)
ut − (s)

ut

)
,

∂

∂x

(s+1)
r =

(
∂

∂x

(s)

L

)(
(s+1)

u − (s)
u

)
+

(s)

L

(
(s+1)
ux − (s)

ux

)
.

From (5.2) we obtain the system involving
(s+1)

r

∂

∂t

(s+1)
r +

(s)

D
∂

∂x

(s+1)
r =

(s)

Z −
(s−1)

Z

+Lt[
(s)
u ]

(s)

L−1 (s+1)
r

+L′
( (s)

u ;
(s)

L−1
(s)

Z −
(s)

L−1
(s)

D
(s)
p

) (s)

L−1 (s+1)
r(5.9)

+
(s)

D

(
∂

∂x

(s)

L

) (s)

L−1(s+1)
r

−
(

(s)

L −
(s−1)

L

)
(s)
ut

−
(

(s)

D
(s)

L −
(s−1)

D
(s−1)

L

)
(s)
ux .
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We now proceed to reduce the problem of solving the last system with the initial

conditions
(s+1)

r (0, x) = [0, . . . , 0]T to that of solving an integral system. Along
the characteristic curves we have

d

d t

(
Pt

(s+1)
r

)
= Pt

(s)

Z −Pt

(s−1)

Z

+Pt

(
Lt[

(s)
u ]

(s)

L−1(s+1)
r

)

+Pt

(
L′

( (s)
u ;

(s)

L−1
(s)

Z −
(s)

L−1
(s)

D
(s)
p

) (s)

L−1(s+1)
r

)

+Pt

(
(s)

D

(
∂

∂x

(s)

L

) (s)

L−1(s+1)
r

)

−Pt

((
(s)

L −
(s−1)

L

)
(s)
ut

)

−Pt

((
(s)

D
(s)

L −
(s−1)

D
(s−1)

L

)
(s)
ux

)
.

Integrating each of these equations along the corresponding characteristics with
respect to t from 0 to t̄, we obtain

(s+1)
r (t̄, x̄) =

t̄∫

0

(
Pt

(s)

Z −Pt

(s−1)

Z

)
dt

+

t̄∫

0

Pt

(
Lt[

(s)
u ]

(s)

L−1 (s+1)
r

)
dt

+

t̄∫

0

Pt

(
L′

( (s)
u ;

(s)

L−1
(s)

Z −
(s)

L−1
(s)

D
(s)
p

) (s)

L−1 (s+1)
r

)
dt

+

t̄∫

0

Pt

(
(s)

D

(
∂

∂x

(s)

L

) (s)

L−1 (s+1)
r

)
dt

−
t̄∫

0

Pt

((
(s)

L −
(s−1)

L

)
(s)
ut

)
dt

−
t̄∫

0

Pt

((
(s)

D
(s)

L −
(s−1)

D
(s−1)

L

)
(s)
ux

)
dt.
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We are able to estimate
(s+1)

r following similarly to (4.6):

(5.10)
(s+1)

r ≤ Cr

t̄∫

0

‖ (s)
r ‖0dt + Cr

t̄∫

0

‖ (s+1)
r ‖0dt,

for positive constants Cr.
We define the next quantity

(i)

Q (t̄) = max
t∈[0,t̄]

‖ (i)
r (t, x)t‖0.

Using it, we rewrite (5.10) in the form

(5.11)
(s+1)

Q (t̄) ≤ Cr

t̄∫

0

(s)

Q (t)dt + Cr

t̄∫

0

(s+1)

Q (t)dt.

For every t1 ≥ t̄ it is easily seen that

(s+1)

Q (t̄) ≤ Cr

t1∫

0

(s)

Q (t)dt + Cr

t̄∫

0

(s+1)

Q (t)dt.

After applying the Gronwall’s inequality we get

(s+1)

Q (t̄) ≤ Cr eCr t̄

t1∫

0

(s)

Q (t)dt ≤ Cr eCr t1

t1∫

0

(s)

Q (t) dt = C4

t1∫

0

(s)

Q (t)dt,

where C4 = Cr eCr t∗ .

This result holds for every t1 ≥ t̄, hence in particular for t1 = t̄:

(5.12)
(s+1)

Q (t̄) ≤ C4

t̄∫

0

(s)

Q (t)dt.

Applying s times the formula (5.12)

(s+1)

Q (t̄) ≤ Cs
4

t̄∫

0

dt

t∫

0

dτ1 . . .

τs−1∫

0

(1)

Q (τs)dτs−1,
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and observing the fact that

(5.13)
(1)

Q (t̄) = max
t∈[0,t̄]

∥∥∥∥
(0)
r (t, x)

∥∥∥∥
0

≤ max
t∈[0,t∗)

∥∥∥∥L[
(0)
u ] (

(1)
u − (0)

u )
∥∥∥∥

0

=: CQ,

we conclude that

(5.14)
(s+1)

Q (t̄) ≤ (C4 t̄)s

s!
CQ, s = 0, 1, . . . .

We are now in a position to show that {(s)
u } is a Cauchy sequence in the

Banach space C([0, t∗)× R) with the supremum norm ||| · |||0 = max
t∈[0,t∗)

‖ · ‖0.

Let k > m. Using (5.14) we obtain an upper bound for the difference between
any two approximations of u:

∥∥∥∥
(k)
u − (m)

u

∥∥∥∥
0

≤
∥∥∥∥

(k)
u − (k−1)

u

∥∥∥∥
0

+ · · ·+
∥∥∥∥

(m+1)
u − (m)

u

∥∥∥∥
0

=

∥∥∥∥∥
(k−1)

L−1 (k)
r

∥∥∥∥∥
0

+ · · ·+
∥∥∥∥∥

(m)

L−1 (m+1)
r

∥∥∥∥∥
0

≤ CCQ

(
(C4 t)k−1

(k − 1)!
+ · · ·+ (C4 t)m

m!

)

≤ CCQ
(C4 t)m

m!

(
1 +

C4 t

m + 1
+

(C4 t)2

(m + 1)(m + 2)
+ . . .

+
(C4 t)k−1−m

(m + 1) . . . (k − 1)

)

≤ CCQ
(C4 t)m

m!

(
1 +

C4 t

1!
+

(C4 t)2

2!
+ · · ·+ (C4 t)k−1−m

(k − 1−m)!

)

≤ CCQ
(C4 t)m

m!
eC4 t.

Hence we deduce that the sequence {(s)
u } satisfies the Cauchy criterion in a

Banach space C([0, t∗)× R):

(5.15) max
t∈[0,t∗)

∥∥∥∥
(k)
u − (m)

u

∥∥∥∥
0

≤ C CQ
(C4 t∗)m

m!
eC4 t∗ −→ 0, as m → +∞.

5.3. Uniform convergence of {(s)p } on compact subsets of R

Lemma 4. The sequence of functions {
(s)
p } is uniformly convergent on com-

pact subsets of R for fixed t ∈ [0, t∗).
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We begin by proving equi-continuity (with respect to x) of functions of the

sequence {
(s)
p } for t ∈ [0, t∗). We will show that there exists a function M̃(δ),

M̃(δ) → 0 as δ → 0 such that it obeys the formula written below for t ∈ [0, t∗)
and for all s:

(5.16)
∣∣∣∣
(s+1)

p (t, x)−
(s+1)

p (t, x̄)
∣∣∣∣ ≤ M̃(δ), if |x− x̄| ≤ δ.

Considering (5.6) along the characteristic curves, we obtain

d

d t

(
Pt

(s+1)
p

)
= Pt

(
∂

∂x

(s)

Z −
(

∂

∂x

(s)

L

) (s)

L−1
(s)

Z

)
(5.17)

+Pt

((
∂

∂x

(s)

L

) (s)

L−1
(s)

D
(s)
p

)

+Pt

(
Lt[

(s)
u ]

(s)

L−1
(s+1)

p

)

+Pt

(
+L′

( (s)
u ;

(s)

L−1
(s)

Z −
(s)

L−1
(s)

D
(s)
p

) (s)

L−1
(s+1)

p

)

−Pt

((
∂

∂x

(s)

D

)
(s+1)

p

)
.

Integrating from 0 to t̄, we get:

(s+1)
p (t̄, x̄) = P0

(s+1)
p(5.18)

+

t̄∫

0

Pt

(
∂

∂x

(s)

Z −
(

∂

∂x

(s)

L

) (s)

L−1
(s)

Z

)
dt

+

t̄∫

0

Pt

((
∂

∂x

(s)

L

) (s)

L−1
(s)

D
(s)
p

)
dt

+

t̄∫

0

Pt

(
Lt[

(s)
u ]

(s)

L−1
(s+1)

p

)
dt

+

t̄∫

0

Pt

(
L′

( (s)
u ;

(s)

L−1
(s)

Z −
(s)

L−1
(s)

D
(s)
p

) (s)

L−1
(s+1)

p

)
dt

−
t̄∫

0

Pt

((
∂

∂x

(s)

D

)
(s+1)

p

)
dt.
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Now we shall estimate the expressions under the integral signs in (5.19)
evaluated at the points (t̄, x̄), (t̄, ¯̄x). To shorten the notation, we denote ¯̄Ptf for
any function f along the characteristic curves crossing the point (t̄, ¯̄x).

Since P0

(s+1)
p is a continuous vector function of x̄, then it is uniformly

continuous on any compact set. Therefore for |x̄− ¯̄x| ≤ δ there exists a function
N0(δ) → 0 as δ → 0, such that:

(5.19)
∣∣∣∣P0

(s+1)
p − ¯̄P0

(s+1)
p

∣∣∣∣ ≤ N0(δ).

From condition (A4), for |x̄− ¯̄x| ≤ δ we see that
∣∣∣∣

∂

∂x

(s)

Z k (t, xk(t; t̄, x̄))− ∂

∂x

(s)

Z k (t, xk(t; t̄, ¯̄x))
∣∣∣∣ ≤

C

(∣∣∣ (s)
u x (t, xk(t; t̄, x̄))− (s)

u x (t, xk(t; t̄, ¯̄x))
∣∣∣

+
∣∣∣ (s)

u (t, xk(t; t̄, x̄))− (s)
u (t, xk(t; t̄, ¯̄x))

∣∣∣
)

+ N(δ),

where N(δ) → 0 as δ → 0.
Hence

(5.20)
∣∣∣∣Pt

(
∂

∂x

(s)

Z

)
− ¯̄Pt

(
∂

∂x

(s)

Z

)∣∣∣∣ ≤ nN(δ)

+ nC max
k=1,...,n

(∣∣∣ (s)
u x (t, xk(t; t̄, x̄))− (s)

u x (t, xk(t; t̄, ¯̄x))
∣∣∣

+
∣∣∣ (s) u(t, xk(t; t̄, x̄))− (s)

u (t, xk(t; t̄, ¯̄x))
∣∣∣
)

.

Lemma 5. Assume that K stands for the operators L, D and V stands for
L−1Z, L−1D. Then there is a constant C5 > 0 such that for |x̄ − ¯̄x| ≤ δ and
s = 0, 1, 2, . . . there holds

∣∣∣∣Pt

((
∂

∂ x
K[

(s)
u ]

)
V [

(s)
u ]

(s)
p

)
− ¯̄Pt

((
∂

∂ x
K[

(s)
u ]

)
V [

(s)
u ]

(s)
p

)∣∣∣∣

≤ C5

{
δ + N(δ) + max

k=1,...,n

(∣∣∣ (s)
u (t, xk(t; t̄, x̄))− (s)

u (t, xk(t; t̄, ¯̄x))
∣∣∣

+
∣∣∣ (s)

u x (t, xk(t; t̄, x̄))− (s)
u x (t, xk(t; t̄, ¯̄x))

∣∣∣

+
∣∣∣

(s)
p (t, xk(t; t̄, x̄))−

(s)
p (t, xk(t; t̄, ¯̄x))|

)}
.
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P r o o f. As it follows from (A1):
∥∥∥ ∂

∂x
V [

(s)
u ]

∥∥∥
0
≤ C2. Hence we have

|V [
(s)
u ](t, xk(t; t̄, x̄))− V [

(s)
u ](t, xk(t; t̄, ¯̄x))| ≤ C2|xk(t; t̄, x̄)− xk(t; t̄, ¯̄x)|.

Similarly, since
∥∥∥ ∂

∂x
L[u]

∥∥∥
0
≤ C then by the theorem on differentiability of

solutions of ODE with respect to initial data [2]:

|xk(t; t̄, x̄)− xk(t; t̄, ¯̄x)| ≤ C|x̄− ¯̄x|, for any x̄, ¯̄x ∈ R.

By assumptions (A1) and (A4) we have (C6 > 0)

∣∣∣∣
(
Pt

((
∂

∂ x
K[

(s)
u ]

)
V [

(s)
u ]

(s)
p

))

k

−
(

¯̄Pt

((
∂

∂ x
K[

(s)
u ]

)
V [

(s)
u ]

(s)
p

))

k

∣∣∣∣

≤
∣∣∣∣

∂

∂ x
Kk[

(s)
u ](t, xk(t; t̄, x̄))− ∂

∂ x
Kk[

(s)
u ](t, xk(t; t̄, ¯̄x))

∣∣∣∣

×
∣∣∣∣V [

(s)
u ](t, xk(t; t̄, x̄))

∣∣∣∣
∣∣∣∣
(s)
p (t, xk(t; t̄, x̄))

∣∣∣∣

+
∣∣∣∣

∂

∂ x
Kk[

(s)
u ](t, xk(t; t̄, ¯̄x))

∣∣∣∣
∣∣∣∣V [

(s)
u ](t, xk(t; t̄, x̄))

∣∣∣∣
∣∣∣∣
(s)
p (t, xk(t; t̄, x̄))

−
(s)
p (t, xk(t; t̄, ¯̄x))

∣∣∣∣

+
∣∣∣∣

∂

∂ x
K[

(s)
u ](t, xk(t; t̄, ¯̄x))

∣∣∣∣
∣∣∣∣V [

(s)
u ](t, xk(t; t̄, x̄))− V [

(s)
u ](t, xk(t; t̄, ¯̄x))

∣∣∣∣

×
∣∣∣∣
(s)
p (t, xk(t; t̄, ¯̄x))

∣∣∣∣

≤ C6

{
δ + N(δ) +

∣∣∣∣
(s)
u (t, xk(t; t̄, x̄))− (s)

u (t, xk(t; t̄, ¯̄x))
∣∣∣∣

+
∣∣∣∣
(s)
u x (t, xk(t; t̄, x̄))− (s)

u x (t, xk(t; t̄, ¯̄x))
∣∣∣∣

+
∣∣∣∣
(s)
p (t, xk(t; t̄, x̄))−

(s)
p (t, xk(t; t̄, ¯̄x))

∣∣∣∣
}

,

which implies that

∣∣∣∣Pt

((
∂

∂ x
K[

(s)
u ]

)
V [

(s)
u ]

(s)
p

)
− ¯̄Pt

((
∂

∂ x
K[

(s)
u ]

)
V [

(s)
u ]

(s)
p

)∣∣∣∣

≤ nC6

{
δ + N(δ) +

(
max

k=1,...,n

∣∣∣∣
(s)
u (t, xk(t; t̄, x̄))− (s)

u (t, xk(t; t̄, ¯̄x))
∣∣∣∣
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+
∣∣∣∣
(s)
u x (t, xk(t; t̄, x̄))− (s)

u x (t, xk(t; t̄, ¯̄x))
∣∣∣∣+

∣∣∣∣
(s)
p (t, xk(t; t̄, x̄))−

(s)
p (t, xk(t; t̄, ¯̄x))

∣∣∣∣
)}

.

2

By Lemma 5 we have

(5.21)

∣∣∣∣∣Pt

((
∂

∂x

(s)

L

) (s)

L−1
(s)

Z

)
− ¯̄Pt

((
∂

∂x

(s)

L

) (s)

L−1
(s)

Z

)∣∣∣∣∣

+

∣∣∣∣∣Pt

((
∂

∂x

(s)

L

) (s)

L−1
(s)

D
(s)
p

)
− ¯̄Pt

((
∂

∂x

(s)

L

) (s)

L−1
(s)

D
(s)
p

)∣∣∣∣∣

+
∣∣∣∣Pt

((
∂

∂x

(s)

D

)
(s+1)

p

)
− ¯̄Pt

((
∂

∂x

(s)

D

)
(s+1)

p

)∣∣∣∣

≤ C7

{
δ + N(δ) + max

k=1,...,n

(∣∣∣ (s)
u (t, xk(t; t̄, x̄))− (s)

u (t, xk(t; t̄, ¯̄x))
∣∣∣

+
∣∣∣ (s)

u x (t, xk(t; t̄, x̄))− (s)
u x (t, xk(t; t̄, ¯̄x))

∣∣∣

+
∣∣∣

(s)
p (t, xk(t; t̄, x̄))−

(s)
p (t, xk(t; t̄, ¯̄x))

∣∣∣

+
∣∣∣

(s+1)
p (t, xk(t; t̄, x̄))−

(s+1)
p (t, xk(t; t̄, ¯̄x))

∣∣∣
)}

,

where C7 is a positive constant.
For fixed t ∈ [0, t∗) and for x belonging to any compact set, the functions

Lt[
(s)
u ] and L′[

(s)
u ] are uniformly continuous. Hence for all s there exists a function

NL(δ) → 0 as δ → 0, such that there holds (C8 > 0):

(5.22)

∣∣∣∣∣Pt

((
L,t[

(s)
u ] + L′(

(s)
u ;

(s)

L−1
(s)

Z −
(s)

L−1
(s)

D
(s)
p )

) (s)

L−1
(s+1)

p

)

− ¯̄Pt

((
Lt[

(s)
u ] + L′(

(s)
u ;

(s)

L−1
(s)

Z −
(s)

L−1
(s)

D
(s)
p )

) (s)

L−1
(s+1)

p

)∣∣∣∣∣

≤ C8

{
NL(δ) + max

k=1,...,n

(∣∣∣ (s)
u (t, xk(t; t̄, x̄))− (s)

u (t, xk(t; t̄, ¯̄x))
∣∣∣

+
∣∣∣

(s)
p (t, xk(t; t̄, x̄))−

(s)
p (t, xk(t; t̄, ¯̄x))

∣∣∣

+
∣∣∣

(s+1)
p (t, xk(t; t̄, x̄))−

(s+1)
p (t, xk(t; t̄, ¯̄x))|

)}
.

Let us point out that it will be useful to replace
(s)
ux by

(s)
p on the right-hand

side of (5.20) and (5.21). The operator L−1 is bounded in the ball B1
r (u0) and
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the function
(s−1)

L−1 satisfies the Lipschitz condition with respect to x. For this
reason, for t ∈ [0, t∗) we obtain

∣∣∣ (s)
u x (t, xk(t; t̄, x̄))− (s)

u x (t, xk(t; t̄, ¯̄x))
∣∣∣

=

∣∣∣∣∣∣

(s−1)

L−1
(s)
p

∣∣∣∣∣
(t,xk(t;t̄,x̄))

−
(s−1)

L−1
(s)
p

∣∣∣∣∣
(t,xk(t;t̄,¯̄x))

∣∣∣∣∣∣

≤
∣∣∣

(s−1)

L−1 (t, xk(t; t̄, x̄))
∣∣∣
∣∣∣

(s)
p (t, xk(t; t̄, x̄))−

(s)
p (t, xk(t; t̄, ¯̄x))

∣∣∣

+
∣∣∣

(s)

L−1 (t, xk(t; t̄, x̄))−
(s)

L−1 (t, xk(t; t̄, ¯̄x))
∣∣∣
∣∣∣

(s)
p (t, xk(t; t̄, ¯̄x))

∣∣∣

≤ C

(∣∣∣
(s)
p (t, xk(t; t̄, x̄))−

(s)
p (t, xk(t; t̄, ¯̄x))

∣∣∣ + Big|xk(t; t̄, x̄)− xk(t; t̄, ¯̄x)
∣∣∣
)

≤ C
∣∣∣

(s)
p (t, xk(t; t̄, x̄))−

(s)
p (t, xk(t; t̄, ¯̄x))

∣∣∣ + C2
∣∣∣x̄− ¯̄x

∣∣∣

≤ C9

(∣∣∣
(s)
p (t, xk(t; t̄, x̄))−

(s)
p (t, xk(t; t̄, ¯̄x))

∣∣∣ + δ

)
, k = 1, . . . , n.

where C9 = max {C, C2}.
For fixed t and for x belonging to any compact set, functions

(s)
u , (s =

0, 1, 2, . . . ), are uniformly continuous. Hence, for all s, there exists a function
Nu(δ) → 0 as δ → 0, such that

max
k=1,...,n

∣∣∣∣
(s)
u (t, xk(t; t̄, x̄))− (s)

u (t, xk(t; t̄, ¯̄x))
∣∣∣∣ ≤ Nu(δ) if |x̄− ¯̄x| ≤ δ.

Summarizing, we see that the sequence {
(s)
p } satisfies the condition

(5.23)
∣∣∣∣
(s+1)

p (t̄, x̄)−
(s+1)

p (t̄, ¯̄x)
∣∣∣∣ < N0(δ)

+ C10




t̄∫

0

(Nu(δ) + N(δ) + NL(δ) + δ) dt

+

t̄∫

0

max
k=1,...,n

∣∣∣
(s)
p (t, xk(t; t̄, x̄))−

(s)
p (t, xk(t; t̄, ¯̄x))

∣∣∣dt

+

t̄∫

0

max
k=1,...,n

∣∣∣
(s+1)

p (t, xk(t; t̄, x̄))−
(s+1)

p (t, xk(t; t̄, ¯̄x))
∣∣∣dt


 ,

where C10 = max {C9(nC + C7) + C7 + C8;nC + C7 + C8}.
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Now we define a new function

(5.24) Ms+1(t̄, δ) = max
k=1,...,n

i=0,...,s+1

sup
|x̄−¯̄x|≤δ

t≤t̄

∣∣∣∣
(i)
p (t, xk(t; t̄, x̄))−

(i)
p (t, xk(t; t̄, ¯̄x))

∣∣∣∣ .

From (5.23) we obtain the following formula:

(5.25) Ms+1(t̄, δ) ≤ N0(δ) + t̄ C10

(
Nu(δ) + N(δ) + NL(δ) + δ

)

+ 2C10

t̄∫

0

Ms+1(t, δ)dt.

The next step is to apply the Gronwall’s inequality to the last expression

(5.26) Ms+1(t̄, δ) ≤ N0(δ) e2C10 t̄ +
t̄

2

(
Nu(δ) + N(δ) + NL(δ) + δ

)
(e2C10 t̄ − 1).

Because N0(δ), Nu(δ), N(δ), NL(δ) → 0 as δ → 0, we conclude that, for t̄ ∈
[0, t∗), Ms+1(t̄, δ) → 0 as δ → 0. Consequently we take the definition of the
function M̃(δ) in the form

(5.27) M̃(δ) = N0(δ) e2C10 t∗ +
t∗
2

(
Nu(δ) + N(δ) + NL(δ) + δ

)
(e2C10 t∗ − 1).

By the Arzela–Ascoli theorem, if functions of a sequence are equi-bounded
and equi-continuous, then there exists a uniformly convergent subsequence.

Therefore some subsequence {
(sk)
p } converges uniformly on any compact sub-

set of R to the continuous function p(t, x) for fixed t ∈ [0, t∗). We have proved

that the sequence {(s)
u } converges uniformly to the continuous function u(t, x).

Hence we are able to consider a subsequence {(sk)
u }, which obviously is uniformly

convergent to u(t, x). Under the assumptions for the operator L−1 we have

‖L−1[
(sk)
u ]− L−1[u]‖0 ≤ C ‖ (sk)

u −u‖0.

Consequently, for fixed t ∈ [0, t∗), L−1[
(sk)
u ] converges uniformly to L−1[u] and

L−1[
(sk)
u ]

(sk)
p uniformly converges on any compact subset of R to the continuous

function L−1[u] p. Note that
(sk)
ux = L−1[

(sk)
u ]

(sk)
p . We conclude that the function

u(t, x) is continuously differentiable for t ∈ [0, t∗) and x belonging to any closed
interval in R and ux = L−1[u] p. Therefore any uniformly converging subsequence

of {
(s)
p } must converge to p = L[u]ux on compact subset of R.
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Passing in (5.2) to the limit when s tends to infinity, we see that the function
u(t, x) satisfies (1.12). Continuity of the derivative with respect to t is a conse-
quence of continuity of the right-hand side of the system (1.1) and the derivative
ux. By the uniqueness lemma, the function u(t, x) is a C1([0, t∗) × R) solution
of the Cauchy problem (1.1–1.2).
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