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Flow of a micropolar fluid on a continuous moving surface
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The present paper deals with the analysis of steady boundary layer flow and heat
transfer of a micropolar fluid on an isothermal continuously moving plane surface. It is
assumed that the microinertia density is variable and not constant, as in many other
published papers. Also, the viscous dissipation effect is taken into account. The basic
partial differential equations are reduced to a system of nonlinear ordinary differential
equations, which is solved numerically using the Keller-box method. Numerical results
are obtained for the skin friction coefficient, local Nusselt number, as well as velocity,
temperature and microrotation profiles. Results are shown in graphical form and the
numerical values for the skin friction coefficient and local Nusselt number are given
in the form of tables. The effects of material parameter K, Prandtl number Pr and
Eckert number Ec on the flow and heat transfer characteristics are discussed.

Notations

A dimensionless constant of integration,
cp specific heat at constant pressure,
Cf skin friction coefficient,
f dimensionless stream function,
g dimensionless microinertia,
h dimensionless angular velocity,
j microinertia density,
k thermal conductivity,
K material parameter,
n constant,
N angular velocity or component of the microrotation vector normal

to the x− y plane,
Nux local Nusselt number,

Pr Prandtl number,
qw heat transfer from the plate,

Rew local Reynolds number,
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T fluid temperature,
Tw plate temperature,
T∞ ambient temperature,
u, v velocity components along the x and y directions, respectively,
Uw plate velocity,
x, y Cartesian coordinates along the surface and normal to it, respectively.

Greek Letters
α thermal diffusivity,
β thermal expansion coefficient,
γ spin gradient viscosity,
κ vortex viscosity,
η pseudo-similarity variable,
θ dimensionless temperature,
ν kinematic viscosity,
µ dynamic viscosity,
ρ fluid density,
τw skin friction,
ψ stream function.

Subscripts
w conditions at the wall,
∞ ambient conditions.

Subscripts
′ differentiation with respect to η.

1. Introduction

The production of sheeting material, which includes both metal and poly-
mer sheets, arises in a number of industrial manufacturing processes. The fluid
dynamics due to a continuous moving solid surface is important in many ex-
trusion processes, such as the aerodynamic extrusion of plastic sheets, cooling
of a metallic plate in a cooling bath, the boundary layer along material han-
dling conveyers, boundary layer along a liquid film in condensation processes,
etc. Boundary layer flow and heat transfer over a fixed or moving flat plate in
a viscous and incompressible fluid is well known. In view of these applications,
Sakiadis [1] initiated the theoretical study of boundary layer on a continuous
semi-infinite surface moving steadily through an otherwise quiescent fluid en-
vironment. An experimental and theoretical treatment was made for the flow
past a continuous flat surface by Tsou et al. [2] who determined the heat trans-
fer rates for certain values of the Prandtl number. Much theoretical work has
been done on this problem since the pioneering papers by Sakiadis [1] and
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Tsou et al. [2], and extensive references can be found in the papers by Mag-

yari and Keller [3, 4], Liao and Pop [5], and Nazar et al. [6].
All the above investigations were restricted to Newtonian fluids. Due to the

increasing importance in the processing industries (and elsewhere) of materi-
als whose flow behavior in shear cannot be characterized by Newtonian rela-
tionships, a new stage in the evolution of fluid dynamics theory is in progress
(see Hassanien et al. [7]). Hoyt and Fabula [8], and Vogel and Patter-

son [9] conducted experiments with fluids containing small amounts of polymeric
additives. These experiments indicated that fluids with additives display a re-
duction in skin friction near the surface of a rigid body. The Newtonian fluid
mechanics cannot explain this phenomenon. Its extensions to non-Newtonian flu-
ids are important for the thermal design of industrial equipments dealing with
molten plastics, polymeric liquids, foodstuffs or slurries (see Char and Chang

[10]). Hence, considerable efforts have been directed toward this coupled, non-
linear boundary layer problem. The theory of micropolar fluids proposed by
Eringen [11, 12] is capable of explaining the behavior of exotic lubricants,
polymeric fluids, liquid crystals, animal bloods, colloidal and suspension solu-
tions, etc., for which the classical Navier–Stokes theory is inadequate. A local
microrotation vector together with the velocity vector describe the flow motion of
such fluids. A comprehensive review of the subject and applications of micro-
polar fluid mechanics was given by Ariman et al. [13], Łukaszewicz [14] and
Eringen [15].

Soundalgekar and Takhar [16] solved the problem of steady boundary
layer flow and heat transfer of a micropolar fluid due to a continuously moving
surface by considering that the microinertia density is constant. Thus, the or-
dinary differential equations are locally non-similar because the parameter G in
their paper is not a constant but a function of the coordinate x. Therefore, we
will reconsider this problem here by assuming that the microinertia density is
variable so that the basic partial differential equations can be reduced to ordi-
nary differential equations (similarity equations). In this respect, we shall follow
Hossain and Chowdhury [17], Kim [18], and Kim and Kim [19] by assuming
that close to the surface, the effect of microstructure can be neglected since the
suspended particles cannot get closer to the boundary than their radius (see
Ahmadi [20]). The only rotation is due to fluid shear and therefore we shall
assume that the gyration vector may be equal to angular velocity, which is rep-
resentative of weak concentrations (n = 1/2) (see Guram and Smith [21]).
It is worth mentioning that some aspects of the problem of fluid flow and
heat transfer characteristics of a micropolar fluid flowing over a plane mov-
ing surface has also been considered by Hassanien et al. [7], and Desseaux

and Bellalij [22].
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2. Problem formulation and basic equations

Let us consider the flow situation in Fig. 1, where a flat plate emerges from
the slot of an extrusion die at a constant velocity Uw and continuously moves in
an incompressible micropolar fluid medium at rest. We assume that the constant
temperature of the plate is Tw and that of the ambient fluid is T∞, where we as-
sume that Tw > T∞ (the plate is heated). The origin of the Cartesian coordinate
system is placed at the location where the plate is drawn into the fluid medium,
with the x-axis measured along the plate in the right direction and the y-axis is
measured normal to the plate. Neglecting external body forces and considering
the viscous dissipation effect, the field equations of a steady, two-dimensional,
laminar, incompressible micropolar fluid can be expressed within the bound-
ary layer approximations as follows (see Soundalgekar and Takhar [16] or
Hossain and Chowdhury [17]):
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Fig. 1. Physical model and coordinate system.
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subject to the boundary conditions

(2.6)
v = j = 0, u = Uw, T = Tw, N = −n∂u

∂y
at y = 0,

u→ 0, N → 0, T → T∞ as y → ∞.

Here u and v are the velocity components along the x- and y-axes, respec-
tively, N is the angular velocity or microrotation whose direction of rotation is
in the x−y plane, T , Tw, T∞, ρ, µ, κ, γ, ν, j, α and cp are the fluid temperature,
plate temperature, ambient fluid temperature, fluid density, dynamic viscosity,
vortex viscosity, spin-gradient viscosity, kinematic viscosity, microinertia density,
thermal diffusivity and specific heat at constant pressure, respectively, and n is
a constant such that 0 ≤ n ≤ 1. The last term in Eq. (2.5) represents the viscous
dissipative heat, which must be taken into account when the Prandtl number of
the fluid is large or (Tw − T∞) is small. It should be mentioned that the case
n = 0 is called strong concentration by Guram and Smith [21], indicates that
N = 0 near the wall and represents concentrated particle flows in which the mi-
croelements close to the wall surface are unable to translate or rotate (Jena and
Mathur [23]). The case n = 1/2 indicates vanishing of anti-symmetrical part
of the stress tensor and denotes weak concentration (Ahmadi [20]). The case
n = 1, as suggested by Peddieson [24], is used for modelling of the turbulent
boundary layer flows. The condition n 6= 0 means that in the neighborhood of
a rigid boundary, the effect of microstructure is negligible since the suspended
particles cannot get closer to the boundary than their radius. Hence, in the neigh-
borhood of the boundary, the only rotation is due to fluid shear and therefore,
the gyration vector must be equal to fluid vorticity (see Bhargava et al. [25]).
However, we shall consider here only the case of weak concentration of particles
at the plate (n = 1/2).

It is known (see Gorla [26]) that N is the total spin of microstructure and
fluid media in the flow field. In some cases, the microstructure effects become
negligible and the flow behaves like an ordinary (Newtonian) viscous flow. There-
fore, if we state that N= angular velocity is a valid solution, then this is possible
only if

(2.7) γ = (µ+ κ/2)j = µ (1 +K/2) j,

where K = κ /µ is the material parameter. The above equation gives a rela-
tionship between the coefficients of viscosity and microinertia. The derivation
of Eq. (2.7) for micropolar fluids has been established by Ahmadi [20] and it
has been used by many recent authors (see Rees and Bassom [27] or Rees

and Pop [28]). We notice that for K = 0 (or κ = 0) Eqs. (2.1), (2.2) and (2.5)
are decoupled from Eqs. (2.3) and (2.4). Therefore, the present problem and its
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results reduce to those of the classical Newtonian fluid model. We introduce now
the following variables:

(2.8)

ψ = (2νUwx)
1/2f(η), N = (U3

w/2νx)
1/2h(η),

θ(η) = (T − T∞)/(Tw − T∞), j =
2νx

Uw
g(η),

γ = (µ+ κ/2)
2νx

Uw
g(η), η =

(
Uw

2νx

)1/2

y,

where ψ is the stream function defined in the usual way as u = ∂ ψ/∂ y and
v = −∂ ψ/∂ x.

After some algebra, we obtain the following ordinary differential equations:

(1 +K)f ′′′ + ff ′′ +Kh′ = 0,(2.9)
(

1 +
K

2

)

(gh′)′ −K(2h+ f ′′) = 0,(2.10)

2gf ′ − fg′ = 0,(2.11)

1

Pr
θ′′ + fθ′ + Ec(1 +K)f ′′2 = 0,(2.12)

and the boundary conditions (2.6) become

(2.13)
f(0) = 0, g (0) = 0, f ′(0) = 1, θ(0) = 1, h(0) = −nf ′′(0),

f ′(∞) = 0, θ(∞) = 0, h(∞) = 0,

where Pr is the Prandtl number and Ec is the Eckert number, which is defined
as

(2.14) Ec =
U2

w

cp(Tw − T∞)
.

We notice that since we have assumed Tw > T∞ (heated plate), it results
in Ec > 0. However, for a cooled plate (Tw < T∞), the parameter Ec < 0, but
we will not consider this case here. Further, we assume that gyration is taken
to be equal to the angular velocity at the plate, which is representative of weak
concentration, i.e. n = 1/2. The solution of Eq. (2.11) satisfying the boundary
conditions (2.13) is given by

(2.15) g = Af2,

where A is a dimensionless constant of integration. For convenience, we only
consider the case of A equals to unity throughout this paper, though the form
of the results will apply generally for other A of O (1).
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The physical quantities of interest are the skin friction coefficient and the
local Nusselt number, which are defined as

(2.16) Cf =
τw
ρU2

w

, Nux =
xqw

k(Tw − T∞)
,

where k is the thermal conductivity of the micropolar fluid, and the skin friction
τw and heat transfer from the plate qw are given by

(2.17) τw =

[

(µ+ κ)
∂u

∂y
+ κN

]

y=0

, qw = −k
(
∂T

∂y

)

y=0

.

Using the similarity variables (2.8), we get

(2.18)

CfRe1/2
w =

1√
2
(1 +K/2)f ′′(0),

Nux/Re1/2
w = − 1√

2
θ′(0),

where Rew = Uw x/ν is the local Reynolds number. By using (2.15) for the case
A = 1, Eq. (2.10) becomes

(2.19)

(

1 +
K

2

)
(
f2h′

)′ −K
(
2h+ f ′′

)
= 0.

3. Results and discussion

The nonlinear ordinary differential equations (2.9), (2.12) and (2.19), satis-
fying the boundary conditions (2.13) were solved numerically using the Keller
box-method as described in the book by Cebeci and Bradshaw [29] for several
values of the parameters K, Ec and Pr, while the constant A = 1 and n = 1/2
(weak concentration of fluid particles at the plate).

Figure 2 shows the resulting dimensionless velocity profilesf ′(η) for various
values of the material parameter K. It is observed that the velocity boundary
layer thickness increases with increasing values of K associated with a decrease
in the wall velocity gradient, and hence produces a decrease in the magnitude of
the reduced skin friction f ′′(0), as can be seen from Table 1. The magnitude of ve-
locity profiles f ′(η) is larger for micropolar fluids in comparison with Newtonian
fluids (K = 0). This may be due to the effects of microrotation that increase the
velocity. Further, for a particular value of K, the velocity decreases monotoni-
cally with η and becomes zero at the boundary layer edge. Table 1 shows the
values of the reduced skin friction f ′′ (0) for K = 0 (Newtonian fluid), 0.5, 1, 2
and 4. It is observed that the absolute values of f ′′ (0) decrease as K increases.
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This indicates that micropolar fluids display a drag reduction compared to New-
tonian fluids. It is worth mentioning that Pr and Ec have no influence on the
skin friction as well as velocity and angular velocity. This is because the thermal
field gives no influence on the flow field since Eqs. (2.9)–(2.11) do not contain the
parameters Pr and Ec as well as temperature θ. In other words, Eqs. (2.9)–(2.11)
are not coupled with Eq. (2.12).

Table 1. Values of f ′′ (0) for various K.

K f ′′ (0)

0 −0.6276

0.5 −0.5704

1 −0.5217

2 −0.4523

4 −0.3694

Fig. 2. Velocity profiles for various K.

The angular velocity or microrotation profiles h(η) for various values of ma-
terial parameter K are shown in Fig. 3. It is observed that the microrotation
continuously decreases with η and becomes zero far away from the plate. As
expected, the microrotation effects are more dominant near the wall. Also, the
microrotation decreases as K increases in the vicinity of the plate but the reverse
happens as one moves away from it. It is evident from Figs. 2 and 3 that both
the velocity and angular velocity profiles satisfy the boundary conditions (2.13).
Thus, these figures support the validity of the present results.
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Fig. 3. Angular velocity profiles for various K.

Figures 4–6 show the resulting dimensionless temperature profiles θ(η) as a
function of η for various parameters. The temperature decreases monotonically
and tends to zero at the edge of the boundary layer. It is evident from these
figures that the boundary condition θ (∞) = 0 is satisfied. It is observed from
Figs. 4 and 6 that the temperature decreases with an increase in K and Pr
respectively, which results in decreasing manner of the thermal boundary layer

Fig. 4. Temperature profiles for various K with Pr = 1 and Ec = 0.02.
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Fig. 5. Temperature profiles for various Ec with Pr = K = 1.

Fig. 6. Temperature profiles for various Pr with Ec = 0.02 and K = 1.

thickness, associated with an increase in the wall temperature gradient −θ′(0),
and hence produces an increase of the surface heat transfer rate. These val-
ues of −θ′ (0) are shown in Tables 2 and 3 for various K and Pr respectively.
The reverse happens for increasing frictional heating parameter Ec (see Fig. 5,
Table 2 and Table 3).
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Table 2. Values of −θ′ (0) for various K and Ec when Pr = 1.

K\Ec 0.01 0.02 0.03 0.04

0 0.6244 0.6213 0.6181 0.6150

0.5 0.6467 0.6427 0.6387 0.6347

1 0.6608 0.6562 0.6515 0.6468

2 0.6800 0.6742 0.6684 0.6627

4 0.7015 0.6943 0.6871 0.6798

Table 3. Values of −θ′ (0) for various Pr and Ec when K = 1.

Pr \Ec 0.01 0.02 0.03 0.04

0.5 0.4228 0.4202 0.4175 0.4149

1 0.6608 0.6562 0.6515 0.6468

5 1.6474 1.6307 1.6141 1.5974

10 2.3783 2.3505 2.3227 2.2948

100 7.7349 7.5986 7.4624 7.3262

4. Conclusions

In this paper, we have theoretically studied the problem of steady boundary
layer flow and heat transfer of a micropolar fluid on an isothermal continuously
moving plane surface assuming that the microinertia density is variable and not
constant, as considered in the previous papers. Under this approximation, the
reduced boundary layer equations are similar and they were solved numerically
using the Keller-box method. The development of velocity profiles, microrota-
tion profiles and temperature profiles have been illustrated in graphs, while the
values of skin friction coefficient and local Nusselt number are given in tables.
A discussion concerning the effects of the Eckert number Ec, material parameter
K and Prandtl number Pr on the reduced skin friction coefficient, local Nusselt
number, as well as the velocity, angular velocity and temperature profiles for the
case n = 1/2 (weak concentration of fluid particles at the plate), has been done.
From this investigation, it may be concluded that:

• The magnitude of the reduced skin friction decreases but the local heat
transfer rate increases with an increase in the value of material parame-
ter K.

• The velocity increases but the temperature decreases with K.
• Near the wall, angular velocity decreases as K increases but the opposite

trend is observed far away from the wall.



540 A. Ishak et al.

• Pr and Ec have no influence on the skin friction as well as velocity and
angular velocity or microrotation profiles.

• Pr has a similar effect as K on the local Nusselt number and temperature
profiles.
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