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Using the concept of a spring-layer (imperfect) interface, we develop the series
methods to determine the corresponding interface functions which ensure the (stress)
neutrality of an elastic inhomogeneity. We assume that the inhomogeneity occupies
a simply-connected domain with a regular boundary and that the inhomogeneity-
matrix system is subjected to linear plane deformations. Of particular interest is the
fact that the prescribed stress field inside the matrix is assumed to be non-uniform.

1. Introduction

In [1], Mansfield showed that the local stress concentration caused by the
introduction of a hole into an elastic sheet could be eliminated entirely by rein-
forcing the hole with a particular stiffener or liner. Mansfield called these holes
“neutral holes”. The analogous problem of a ‘neutral elastic inhomogeneity’ in
which the introduction of the inhomogeneity into an elastic body (of a different
material), does not disturb the original stress field in the uncut body, was first
studied by Ru [2]. Ru proved that neutral elastic inhomogeneities cannot ex-
ist under the assumption of a conventional perfectly bonded material interface.
Moreover, Ru showed that by using an established spring-layer model of an im-
perfect interface (see, for example, [3] and the extensive bibliography therein),
it was possible to control the corresponding interface functions (describing the
material properties of the interface layer) in such a way as to achieve the de-
sired stress neutrality for inhomogeneities of various shapes. The authors also
acknowledge the important contributions made by many researchers to the area
of neutrality and imperfectly bonded inclusions (see, for example, [4–7]).
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The neutral inhomogeneities considered in [2], however, assume the existence
of a uniform stress field in the surrounding matrix. Of a more practical interest
is the case when the prescribed stress field in the matrix is nonuniform. This
case has been considered for anti-plane shear deformations in two recent papers
by Van Vliet et al. [8] and Schiavone [9]. The corresponding problem of plane
deformations, however, has received very little attention in the literature, despite
its importance to the design of composite materials and structures. This can be
attributed to the relatively complicated nature of the equations describing the
corresponding boundary value problems. Recently, however, Vasudevan and
Schiavone [10] have used complex variable techniques to determine the corre-
sponding interface functions for certain specialized (nonuniform) stress fields in
the matrix under the assumption of linear plane deformations.

In this paper, we continue the work started in [10] and develop the methods
based on complex series representations to extend the results in [10] to more
general states of nonuniform stresses in the matrix. After some brief formalities
concerning the formulation of the basic problem of a neutral inhomogeneity
in plane elasticity, we develop (in Sec. 4) a general formalism for identifying
neutral inhomogeneities of arbitrary (smooth, simply-connected) shapes. We use
this formalism in Sec. 5 to construct neutral circular inhomogeneities for various
non-uniform stress fields in the matrix and to discuss various results concerning
nonexistence. In Sec. 6 we discuss the case of the neutral elliptic inhomogeneity
and show that for general (polynomial) stress fields in the matrix, there are, in
fact, no non-trivial solutions describing neutral elliptic inhomogeneities in the
case of plane deformations. The generality of our conclusions is discussed in
Sec. 7 where we show that our method does in fact produce the most general
solutions with the desired physical constraints on the interface parameters. We
end our paper with some concluding remarks presented in Sec. 8.

2. Formulation

We begin with a homogeneous and isotropic linearly elastic body, finite or
infinite in extent, simply- or multiply-connected, subjected to a given state of
stress under a prescribed loading system. We assume that the same elastic body
is then cut into a number of simply-connected sub-domains. Each sub-domain
is now filled with a different linearly homogeneous and isotropic elastic mate-
rial and subsequently referred to as an inhomogeneity. Here we are concerned
with the design of the material interface between any single inhomogeneity and
the elastic body such that the corresponding inhomogeneity is ‘neutral’, what
means that, it does not disturb the original prescribed stress field in the uncut
elastic body.
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Throughout this paper, we denote by (x, y) a generic point in R
2 (referred

to a Cartesian coordinate system), by z = x+ iy = reiθ the complex coordinate,
and by D2 and D1 – the domains occupied by any single elastic inhomogeneity
and the surrounding matrix, respectively. The interface between D2 and D1 is
denoted by Γ . Finally, the subscripts 1 and 2 refer to the domains D1 and D2,
respectively.

For plane deformations, it is well known that the components σxx, σxy, and
σyy of stress and ux and uy of displacement can be represented in terms of two
analytic functions φ(z) and ψ(z) as follows [11]:

(2.1) 2µ(ux + iuy) =
[

κφ(z) − zφ′(z) − ψ(z)
]

,

(2.2)
σxx + σyy = 2

[

φ′(z) + φ′(z)
]

,

σxx − iσxy = φ′(z) + φ′(z) −
[

zφ′′(z) + ψ′(z)
]

.

Here κ = 3 − 4ν for plane strain and κ = (2 − ν)/(1 + ν) for plane stress,
ν is Poisson’s ratio, and µ is the shear modulus. Consequently, the boundary
tractions and displacements in normal and tangential components are given by

2µ(un + iut) = e−iN(z)
[

κφ(z) − zφ′(z) − ψ(z)
]

,(2.3)

σnn − iσnt = φ′(z) + φ′(z) − e2iN(z)
[

zφ′′(z) + ψ′(z)
]

,(2.4)

where eiN(z) denotes (in complex form) the outward unit normal to Γ .
Across the interface Γ , the inhomogeneity is assumed to be bonded to the cut

elastic body by the imperfect interface described in [2]. This means that across Γ ,
the tractions are continuous and jumps in displacement are proportional to their
respective traction components in terms of the normal and tangential interface
parameters m(z) and n(z). Thus

[[σnn − iσnt]] = 0,(2.5)

σnn = m(z)[[un]], σnt = n(z)[[ut]],(2.6)

where [[∗]] = (∗)1 − (∗)2 denotes the jump across Γ . Traction-free interface
conditions are given by m(z) = n(z) = 0, and a perfectly bonded interface cor-
responds to the case m(z) = n(z) → ∞. As shown in [2], for a single interfacial
layer, m(z)/n(z) is usually a material constant which is required to be greater
than unity. In addition, the interface parameters m(z) and n(z) are also required
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to be nonnegative. Thus, to be physically realistic, we require the following nec-
essary conditions on the interface parameters m and n:

(2.7) m ≥ 0 , n ≥ 0 , m ≥ n .

For general, possibly non-uniform, stress fields characterized by the functions
φ(z) and ψ(z), the interfacial conditions (2.6) give

φ2(z) = φ1(z) + iA0z , ψ2(z) = ψ1(z) +B0 ,

where A0 ∈ R, and B0 ∈ C. The interfacial condition (2.5) now takes the form

(2.8) φ′1(z) + φ′1(z) − e2iN(z)
[

zφ′′(z) + ψ′(z)
]

=
m(z) + n(z)

4

[

eiN(z)

µ1

(

κ1φ1 − zφ′1 − ψ1

)

−
eiN(z)

µ2

(

κ2φ1 − iκ1A0z − zφ′1 − iA0z − ψ1 −B0

)

]

+
m(z) − n(z)

4

[

e−iN(z)

µ1

(

κ1φ1 − zφ′1 − ψ1

)

−
e−iN(z)

µ2

(

κ2(φ1 + iA0z) − z(φ′1 − iA0) − ψ1 −B0

)

]

.

This is the governing equation for interface design corresponding to a neutral
elastic inhomogeneity in plane deformations, when a possibly non-uniform stress
field is present in the matrix. The constants A0 and B0 should be chosen so
as to eliminate any rigid body displacement between the elastic body and the
inhomogeneity. In particular, if the inhomogeneity has two mutually orthogonal
axes of symmetry and these are chosen as the coordinate axes, then A0 = B0 = 0.
In the case of perfect bonding, that is, with m and n both infinite, (2.8)
reduces to

(2.9)
1

µ1

(

κ1φ1 − zφ′1 − ψ1

)

=
1

µ2

(

κ2φ1 − iκ1A0z − zφ′1 − iA0z − ψ1 −B0

)

.

It is clear that (2.9) cannot be satisfied for any Γ unless the inhomogeneity and
the elastic body are made of identical materials. Hence, there is no neutral elas-
tic inhomogeneity in plane deformations when a conventional perfectly bonded
interface is assumed and a non-uniform stress field is present in the matrix.
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3. Interface parameters of a neutral inhomogeneity of given shape

We confine our attention to inhomogeneities with two mutually orthogonal
axes of symmetry. As mentioned earlier, by choosing the coordinate system so
that the coordinate axes coincide with these two axes of symmetry, we can set
A0 = B0 = 0.

By separating the real and imaginary parts of (2.8), we obtain expressions
for m and n as follows:

(3.1)
2

m(z)

[

2φ′1 + 2φ′1 − e2iN(z)
(

zφ′′1 + ψ′
1

)

− e−2iN(z)
(

zφ′′1 + ψ′
1

)]

= e−iN(z)
[

(η + λ)φ1 − λ
(

zφ′1 + ψ1

)]

+ eiN(z)
[

(η + λ)φ1 − λ
(

zφ′1 + ψ1

)]

,

(3.2)
2

n(z)

[

e2iN(z)
(

zφ′′1 + ψ′
1

)

− e−2iN(z)
(

zφ′′1 + ψ′
1

)]

= e−iN(z)
[

(η + λ)φ1 − λ
(

zφ′1 + ψ1

)]

− eiN(z)
[

(η + λ)φ1 − λ
(

zφ′1 + ψ1

)]

,

where

(3.3) λ =
1

µ1
−

1

µ2
, η =

κ1 − 1

µ1
−
κ2 − 1

µ2
.

Note that for typical materials, both λ and η have the same sign [2]. Of course,
the conditions (2.7) must also be satisfied for any suitable pair (m,n) satisfying
(3.1) and (3.2).

4. General formalism for arbitrary simply-connected

neutral inhomogeneities

In this section we present a method for constructing a neutral (simply-
connected) inhomogeneity with a smooth non-self-intersecting oriented bound-
ary. Suppose that the boundary Γ of the inhomogeneity in the z-plane is mapped
conformally onto the unit circle S1 in the ξ-plane by the mapping function
z = w(ξ).

Next, on S1 [12]

eiN(w(ξ)) = ξ
w′(ξ)

|w′(ξ)|
.
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Also, since for ξ ∈ S1, |ξ| = 1, ξ = ξ−1 and we have

e−iN(w(ξ)) =
1

ξ

w′(ξ)

|w′(ξ)|
.

Expressing (3.1) and (3.2) in the ξ-plane we can write expressions for the
interface parameters m and n as

(4.1) m(w(ξ))

=
4|w′|2[φ′1 + φ′1] − 2(w′)2[zφ

′′

1 + ψ′
1] − 2(w′)2[zφ

′′

1 + ψ′
1]

|w′|{w′[(η + λ)φ1 − λ(zφ′1 + ψ′
1)] + w′[(η + λ)φ1 − λ(zφ′1 + ψ1)]}

,

and

(4.2) n(w(ξ))

=
2(w′)2[zφ

′′

1 + ψ′
1] − 2(w′)2[zφ

′′

1 − ψ′
1]

|w′|{w′[(η + λ)φ1 − λ(zφ′1 + ψ′
1)] − w′[(η + λ)φ1 − λ(zφ′1 + ψ1)]}

,

where primes on φ and ψ denote derivatives with respect to z, followed by sub-
stituting z = w(ξ), and primes on w denote derivatives with respect to ξ.

We can expand the numerators and denominators in each of these expressions
separately into Laurent series in ξ as follows:

(4.3) m(w(ξ)) =

∑∞
n=−∞En

|w′|
∑∞

m=−∞ Fm
, n(w(ξ)) =

∑∞
n=−∞Gn

|w′|
∑∞

m=−∞Hm
,

where the Laurent coefficients can be evaluated using the method of residues by
contour integration on S1 in the ξ plane. For example,

Fn =

∫

S1

dξ

ξn+1

{

w′[(η + λ)φ1 − λ(zφ′1 + ψ′
1)] + w′[(η + λ)φ1 − λ(zφ′1 + ψ1)]

}

.

Now, introducing the consistency conditions (2.7) to the expressions (4.3) for
the interface parameters, we obtain relations between the physical properties of
the material and the inhomogeneity, as well as descriptions of the stress fields
that allow for the existence of a neutral inhomogeneity with the prescribed shape
(assuming that such a solution exists). One possible solution (we will discuss later
why this is much more general than it appears) is the following. Let m0 and n0

be two real numbers (constants) such that

m0 > 0, n0 > 0, m0 ≥ n0 .
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Now, the conditions (2.7) are satisfied if the following ansatz is adopted

(4.4) En = m0 Fn , Gn = n0Hn , ∀ n ∈ Z .

If this system of equations can be solved consistently to yield constraints describ-
ing possible physical values of the physical parameters, then a neutral elastic
inhomogeneity is possible with interface parameters given by

(4.5) m(w(ξ)) =
m0

|w′(ξ)|
, n(w(ξ)) =

n0

|w′(ξ)|
.

The system of equations (4.4) may or may not be consistent, and even if
it is consistent, it may not correspond to physically meaningful situations. The
coefficients En, Fn, Gn, and Hn, are clearly expressed in terms of the parameters
η and λ, as well as in terms of the coefficients of the Laurent expansions for the
stress fields φ1 and ψ1. Thus, (4.4) is a system of recursion relations between
these Laurent coefficients of the stress fields. The great simplification that has
already been achieved, that is unlike the general highly nonlinear system of
equations (3.1) and (3.2) describing the interface parameters, we have reduced
the problem to solving a system of linear equations in Laurent coefficients. Not
only these are in ideal form for numerical analysis, some fairly general situations
are even analytically tractable in this formalism (unlike in [10], where the full
nonlinear equations were studied, thereby resulting in solutions in very specific
cases only).

We will now show how this method works in detail for circular and elliptic
inhomogeneities, though the method is far more general since all we require is
that the domain should have a smooth simple orientable boundary. Our solutions
for the circle will include the solutions obtained in [10] as special cases, and we
will also generalize the discussion initiated in [10] for the ellipse.

5. Neutral circular inhomogeneities

We consider a circle of radius R centered at the origin. In this case the
conformal mapping w to the ξ-plane is trivially given by

z = w(ξ) = Rξ .

As a simple case, to recapture the solutions in [10], we assume that the stress
fields take the form characterized by the functions

φ1(z) = Apz
p , ψ1(z) = Bqz

q ,

where p and q are non-negative integers (though the case of negative integers can
be treated, as well as non-integral real numbers, though we have to carefully pick
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the correct branch of the Riemann surface describing our multi-valued solutions).
In this case

(5.1)

Ep−1 = 2p(3 − p)ApR
p−1 ,

Eq+1 = −2qBqR
q−1 ,

Fp−1 = (η + λ)ApR
p − λpApR

p ,

Fq+1 = −λBqR
q−1 ,

and their complex conjugates, since E−n = En, and similarly for the Fn’s. All
the other En’s and Fn’s vanish. Similarly,

(5.2)

Gp−1 = 2p(p− 1)ApR
p−1 ,

Gq+1 = −2qBqR
q−1 ,

Hp−1 = (η + λ)ApR
p + λpApR

p ,

Hq+1 = −λBqR
q−1 ,

and their complex conjugates again, with other coefficients vanishing.
Using our ansatz, the solutions are

m(w(ξ)) =
m0

R
, n(w(ξ)) =

n0

R
,(5.3)

with

m0 =
2p(3 − p)

R[η + (1 − p)λ]
, n0 =

2p(p− 1)

R[η + (1 + p)λ]
,(5.4)

if p 6= 0, or if p = 0 and q 6= 0 then

m0 =
2q

λ
, n0 =

2q

λ
,(5.5)

with a constraint that the two expressions must equal each other if both p and
q are non-zero.

This solution is subject to the constraints on the parameters from the system
of equations (4.4) given by

(5.6)

λ > 0 ,

η + λ(1 − p) > 0 ,

η =
λ

qR

[

p(3 − p) −R(1 − p)q
]

.
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This solution and set of constraints agree with the special solutions obtained
in [10] for the case of either Ap = 0 or Bq = 0, and a more detailed description
of specific scenarios can be found there.

For the case when both Ap and Bq are non-zero and both p and q are positive
integers, this describes a special solution not known earlier. This solution is
unique in that it describes interface parameters which are constant up to a
conformal factor (of course, for the circle the conformal factor is just the radius,
which results in the parameters themselves being constant). Solutions of this
type are very easy to generate (assuming they exist and are consistent and
meaningful) using this method for arbitrary shapes, as seen from (4.5).

We will illustrate a few more situations, one where a conformally constant
new solution does exist, and another where there are inconsistencies and thus
no such new solutions exist.

Now consider the case when

(5.7) φ1(z) =

p
∑

n=1

Anz
n , ψ1 = 0 ,

where as before we note that A0 can be freely set to zero by a proper choice
of coordinates. As before, by going to the ξ-plane using the conformal mapping
R = w(ξ) = Rξ and using Laurent series expansions, we have

(5.8)

En = 2(n+ 1)An+1R
n(2 − n) , n = 0, ..., p− 1 ,

Fn = [(η + λ) − (n+ 1)λ]An+1R
n+1 , n = 0, ..., p− 1 ,

Gn = 2n(n+ 1)An+1R
n , n = 0, ..., p− 1 ,

Hn = [(η + λ) + (n+ 1)λ]An+1R
n+1 , n = 0, ..., p− 1 ,

and their complex conjugates since, as before E−n = En, and similarly for the
Fn’s, Gn’s, and Hn’s. All other coefficients vanish.

As earlier, we use the ansatz (4.4) with non-negative constants m0 and n0

such that m0 ≥ n0 to generate a solution of the form

m(w(ξ)) =
m0

R
, n(w(ξ)) =

n0

R
.(5.9)

However, for the general stress fields (5.7), the system of equations (4.4) with
the Laurent coefficients (5.8) is inconsistent, except for the special case when all
the stress coefficients An vanish except for A1 and Ap. That is, a solution can
be found only in the case

φ1(z) = A1z +Apz
p , ψ1 = 0 .
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In this case we can write the solution explicitly:

E0 = 4A1, F0 = ηA1R ,

Ep−1 = 2pApR
p−1(3 − p) , Fp−1 = (η + (1 − p)λ)ApR

p ,

and applying our ansatz (4.4) we obtain the solution (4.5) with

m0 =
4

ηR
, n0 =

2p(p− 1)

R(η + (p+ 1)λ)
.

Now requiring (2.7) to be true imposes the following conditions on the phys-
ical parameters in order for the solution to exist:

η > 0 , λ =
η[p(3 − p) − 2]

2(1 − p)
,

which can correspond to physically meaningful values of the parameters, and
thus a neutral circular inhomogeneity is possible in this case.

Now consider the case where the stress fields are given by

φ1(z) = 0 , ψ1(z) =
M
∑

n=1

Bnz
n ,(5.10)

where, as before, we use the fact that B0 can be set to zero by the proper choice
of axes. We will work first with the situation for the interface parameter m(z).
In this case, following the usual procedure

(5.11)
En = −2(n− 1)Bn−1R

n−2, n = 2, ...,M + 1,

Fn = −λBn−1R
n−1, n = 2, ...,M + 1,

and their complex conjugates and all other coefficients vanishing. Now applying
(4.4) gives

m0 =
2(n− 1)

λR
,(5.12)

where this equation holds for all n with Bn−1 6= 0. This is obviously an in-
consistent system of equations if there are any two Bn that are non-zero. Thus
a consistent solution for the interface problem in this case cannot be found, un-
less there is only one non-zero Bn, i.e. for a pure power law. We have already
treated this case and found the consistent solutions.
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6. Neutral elliptic inhomogeneities

Consider an elliptic inhomogeneity, centered at the origin, with axes of lengths
a and b, with a 6= b, coincident with the x- and y-axes, respectively. The boundary
of the ellipse can be conformally mapped onto the unit circle in the ξ plane using
the conformal mapping [11]:

z = w(ξ) = R

[

ξ +
k2

ξ

]

, k ∈ (0, 1) , R > 0 .

Then
w′(ξ) = R(1 − k2ξ−2) , w′(ξ) = R(1 − k2ξ2) .

Thus with our procedure, if any solutions can be found, they take the form

m(w(ξ)) =
m0

|1 − k2ξ2|
, n(w(ξ)) =

n0

|1 − k2ξ2|
.

Before discussing the general case, we present an example that illustrates
the main features. Consider the situation with

φ1(z) = A2z
2 , ψ1(z) = 0 .

Again, we consider the interface parameter m(z) first. Expanding in Laurent
series, as before, we obtain

(6.1)

E5 = −4A2R
3k4 ,

E3 = −4A2R
3(−2k2 + 2k4 + k6) − 8R3A2k

2 ,

E1 = −4R3A2(1 − 2k4 + 2k6) − 4R3A2(−2 + k2) ,

and their complex conjugates with E−n = En, and all other En’s vanishing. Also,

(6.2)

F4 = R3A2k
4[η + 3λ] ,

F3 = −2R3A2λk
2 ,

F2 = R3A2(η + λ)[1 − k2 − 2k4] +R3A2k
6[λ− η] ,

F0 = −2R3A2λ(1 + k4) − 2R3A2λ(1 + k4) ,

and again, their complex conjugates with F−n = Fn, and all other Fn’s vanishing.
We immediately see a problem with imposing our solution method here,

specifically with imposing (4.4) consistently. For instance, there are no ξ±5 terms
in the denominator. Consequently, the only consistent way to impose E5 = m0F5
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is to take E5 = 0. But this implies A2 = 0, which is the trivial solution. A similar
analysis can be repeated for a field of the form φ1(z) = Apz

p for arbitrary p, and
also stress fields of the general form

φ1(z) =

p
∑

n=1

Anz
n , ψ1(z) =

q
∑

n=1

Bnz
n

It follows that, in each of these cases, no conformally constant solutions
exist for the elliptic inhomogeneity in plane elasticity. Results like this were also
observed earlier in [10].

This might appear to be a limitation of the procedure used here. However,
such non-existence results obtained by using these methods are far more general
statements. In fact, we can say that there are no non-trivial solutions describing
neutral elliptic inhomogeneities in the case of plane deformations for stress fields
of the very general form

(6.3) φ1(z) =

p
∑

n=1

Anz
n , ψ1(z) =

q
∑

n=1

Bnz
n .

7. Generality of conformally constant solutions

Consider the general expression for the interface parameters in the ξ-plane

m(w(ξ)) =

∑∞
n=−∞En

|w′|
∑∞

m=−∞ Fm
, n(w(ξ)) =

∑∞
n=−∞Gn

|w′|
∑∞

m=−∞Hm
.

At this stage, this is simply a rewriting of the basic Eq. (2.8) in the ξ-plane with-
out any assumptions, and prior to imposing our ansatz. The Laurent coefficients
are evaluated from the form of the conformal mapping w(ξ), and the Laurent
expansions for the stress fields φ1 and ψ1 by means of the residue theorem.

Since in the ξ-plane the boundary is a unit circle S1, we can write

ξ = eiθ = cos(θ) + i sin(θ) ,

and rewriting in terms of θ, we have

m(θ) =

∑∞
n=1 re(En) cos(nθ)

|w′|
∑∞

n=1 re(Fn) cos(nθ)
, n(θ) =

∑∞
n=1 im(En) sin(nθ)

|w′|
∑∞

n=1 im(Fn) sin(nθ)
.

Note that this form follows explicitly from the structure of (2.8), after some
simple yet tedious manipulations. In general there would be cross-terms of the
form cos(pθ) sin(qθ) in the expansion, but these disappear in the cases of interest
here (essentially since we have the real and imaginary parts of a single equation).
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In situations where the stress fields have a finite power series expansion, such
as (6.3), the Laurent series also terminate and we have the form

m(θ) =

∑M
n=1 re(En) cos(nθ)

|w′|
∑N

n=1 re(Fn) cos(nθ)
, n(θ) =

∑P
n=1 im(En) sin(nθ)

|w′|
∑Q

n=1 im(Fn) sin(nθ)
.

In general, it is very difficult to ensure positivity of such expressions since
they involve trigonometric functions of different periods, and in general will have
domains of θ, where they will be positive or negative. In the very exceptional
case involving at most trigonometric functions of only one period and a constant
term, positivity may be ensured by choosing the constant to be positive and
larger than the coefficient in front of the trigonometric function (if possible).
However, even in this situation positivity cannot be always ensured, since in
choosing the coefficients, we may require values of the material constants which
make no sense physically. For non-uniform stress field prescriptions, such as (6.3)
positivity can only be ensured by choosing the coefficients such that the entire
expression is a positive number (up to the factor of |w′| which is positive anyway,
though not necessarily constant on S1).

Thus, in fact the ansatz adopted in this paper (4.4) produces the most general
solutions with the desired constraints on the interface parameters. Note that
many general non-constant, or even conformal constant, solutions to (2.8) may
exist. It is the positivity constraint that eliminates most of these and leaves the
one picked out by our formalism (assuming that such a solution exists and is
consistent).

8. Conclusions

We consider the problem of a single elastic inhomogeneity embedded within
an infinite elastic matrix subjected to plane deformations. In particular, we ex-
amine the (stress) neutrality of this inhomogeneity when a nonuniform stress
field is prescribed in the surrounding matrix. The inhomogeneity is assumed to
be imperfectly bonded to the matrix through an interphase region modelled by a
spring-layer interface as in [2]. We present a formalism to analyze the design of an
arbitrary simply-connected inhomogeneity with a smooth boundary. We extend
the solutions and discussion of [10] by discussing, in detail, the practicality of de-
signing circular and elliptical inhomogeneities in the case of plane deformations,
for several non-uniform states of stress in the matrix. Our formalism establishes
a general framework for treating arbitrary smooth neutral inhomogeneities in
the context of planar deformations. The results obtained here illustrate the gen-
erality of the method, and also encompass all the previously known solutions
for neutral inhomogeneities with a smooth simple boundary. The impossibility
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of design of a neutral elliptic inhomogeneity in the presence of the general finite
non-uniform stress fields (6.3), is certainly noteworthy.
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