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Biological function of a peptide or properties of a polymer material depend on
chemical composition of a macromolecule and on its geometry. A mechanistic model is
considered to investigate the factors changing a geometrically ordered macromolecule
into a geometrically chaotic one, assuming no chemical change. 2D and 3D examples
show how a small change in interaction between parts of a macromolecule can trans-
form an ordered geometry of the (bio) polymer into a chaotic one. It is mathematically
interesting that the systems obey the difference equations, which in the continuum
limit lead to differential equations with well-behaving (non-chaotic) solutions, while
in certain cases behavior of the difference equations seems to be chaotic.

1. Introduction

Biological function of a peptide depends not only on its chemical composition
but also on the geometrical order of the macromolecule. The equilibrium state of
peptides’ and polymers’ macromolecules may be either ordered or chaotic. Dur-
ing the last few years there has been a growing interest in mechanical models of
biological macromolecules. The models investigate changes of the shapes mole-
cules and the influence of the shape on the biological properties of the molecules
[1–6]. Prof. Henryk Zorski was interested in this type of models and played an
active role in developing some of them [7, 8].

Similar to the biological function of a peptide, properties of polymer mate-
rials can change drastically with geometry of the macromolecule. For example,
a foil obtained from a polymer in such way that all the macromolecules are or-
dered, may have different mechanical and/or optical properties than a material
obtained from the same polymer, but with random geometry of the macromole-
cules. Conductivity of conducting polymers may drastically change or even be
lost if their macromolecules are not properly ordered.
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In this paper a simple model of a macromolecule is investigated [5, 8]. The
macromolecule is assumed to consist of a large number of identical rigid rods rep-
resenting the monomers, with elastic joints between them. The set of difference
equations, which describe the configuration of the system, is relatively simple
thanks to the simplicity of the model; in 2D it formally resembles the stan-
dard system known from the chaos theory. Natural variables for the difference
equations are angles, under which rods are connected in the coordinate space and
differences of the consecutive angles. Apparently this model already has sufficient
complexity to recreate transition from an ordered to a chaotic structure. Discrete
nature is crucial for the systems behavior: a continuum limit of the difference
equations leads to differential equations with well-behaving (non-chaotic) solu-
tions. The difference equations contain a parameter reflecting strength of the
interaction between monomers. This parameter is a scalar in 2D and a two-
component vector in 3D. The strength of interaction can sometimes be changed
without change in chemical structure of the macromolecules by a solvent. Equi-
librium state of a macromolecule changes from an ordered geometry, observed
for small values of the parameter, to a chaotic geometry for the values that are
sufficiently large. It means that for very small values of the parameter there
are no initial conditions for which system would be chaotic. When the value is
growing, there appear small areas of initial conditions in the phase space of the
system for which the solutions are chaotic. These areas grow with growing value
of the parameter; for sufficiently large value of the parameter all of the solutions
are chaotic. Results of several numerical simulations of 2D and 3D systems are
presented, showing how a small change in interaction between parts of a molecule
and/or in initial conditions of the system, can transform a geometrically ordered
peptide or polymer into a chaotic one. In some cases, a system is ordered if it
is considered on the 2D plane, but if it is considered in a 3D space, it shows
chaotic behavior on the other plane.

The solutions discussed in this work are cases of static chaos; the parameter
in all the simulations is a varying length of a peptide or polymer chain rather
than time. Computer simulations were performed to investigate behavior of the
macromolecule. Interaction between monomers is described by the parameter K
in the 2D case, and by a pair of parameters

(1.1) K = {K1,K2}

in the 3D case. The interaction depends on the monomers’ characteristics, but
it is modified by the presence of external potentials such as interaction with
solvent molecules, electromagnetic field, etc. Generally, equilibrium state of the
macromolecule changes from ordered geometry for small values of K to a chaotic
geometry for K sufficiently large. The equilibrium problem is described in terms
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of angle(s) between the consecutive rods. In the case of a molecule in the plane
(2D) there is one angle for each pair of rods. In case of a molecule in 3D space
there are two angles for each pair of rods. The natural variables for the differ-
ence equations describing the equilibrium positions of the molecule are the angles
themselves and the differences of consecutive angles. This choice of variables im-
poses obvious periodicity conditions. The variables give parameterization of the
space, which can be named a phase space of the system when a continuous time
is the independent variable. The equations written in terms of these variables
resemble or, in some special cases, are the same as the standard system. The
standard system is known for its chaotic behavior when the values of the pa-
rameter Kare above a certain threshold value. There is an important physical
difference between the standard system and its counterparts for the problem of
equilibrium configuration. Namely, the discrete independent variable n in case
of the standard system is discrete time, while in case of the molecule equilibrium
it is the number of the consecutive rod.

It is expected that in 2D as well as in the 3D case, there are significant
areas of chaotic behavior in the system. The 2D case was treated earlier [5, 8]
and really chaotic behaviors were found in numerical simulations, resembling the
known results for a standard model. The 3D case leads to a system of equations,
a part of which can be represented in the way equivalent to the 2D case. These
equations can be solved independently of the remaining ones, and show the
chaotic behaviors just the same as in a 2D case. The remaining variables satisfy
a system of equations, which, in addition to looking similar to the 2D case,
has a factor that couples it to the above system of equations. As a result, the
behavior of the former system influences the behavior of the second one. When
first system is in its regular, non-chaotic behavior, the second one may be either
regular or chaotic, depending on the value of its coupling parameter K2. On the
other hand, chaotic behavior of the first system forces the second one, by the
coupling, to be always chaotic too. One can expect that regular (non-chaotic)
behavior of the former system will not enforce chaos on the latter system, but it
can show such a chaotic behavior by itself. However, if the former system shows
a chaotic behavior, this always pumps chaos into the latter system as well. These
heuristic considerations were supported by results of simulations shown below in
a series of examples of possible equilibrium configurations in the two projection
planes of the phase space.

2. Methodology

When a set of discrete equations describing a particular physical system
is developed, it is then investigated numerically. Variables in these equations
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are all angles or derivatives of angles – this is why dynamical planes that are
investigated are compactified. These variables change cyclically from (−π) to
(−π). The same analytical characteristics of the system are of course present
when dynamical plane is investigated without compactification, so it is a matter
of choice of the graphical representation, which type of dynamical plane, compact
or not, the system of equations is numerically investigated on.

The independent, discrete parameter in the systems is the segment number.
The parameter is running along the macromolecule. The macromolecule is much
longer than an individual unit; this is why it is assumed to be infinite, just to
simplify the consideration. Numerical simulations cannot, from their very na-
ture, be run to infinity. The simulations presented here were always performed
sufficiently long to make sure that there were no changes in the visual repre-
sentation of the results even if the simulation was performed for one order of
magnitude or two orders of magnitude longer (except of course for the mislead-
ing impression that the area becomes completely covered if individual points or
lines are represented graphically in large size).

The geometrical configuration of the macromolecule in equilibrium is investi-
gated. The problem is static. Nevertheless, the equations have formal similarity
to dynamical equations. The only difference is in what is an independent, running
parameter. The parameter is running along the length of the molecule instead
along the time of evolution in a typical dynamical system. This difference is
important in physical interpretation only. No matter what is the physical inter-
pretation of the running parameter and the dependent variables, and no matter
what symbols are assigned to these variables, the mathematical nature of the
equations and their solutions do not change. This is why the systems of equations
considered in this paper are investigated in the same mathematical/numerical
way as the dynamical systems of equations, with which they are formally identi-
cal. The same criteria of numerical investigations of the solution are taken into
account in numerical distinguishing between the ordered and chaotic solution, as
it would be in consideration of a mathematically identical system of dynamical
equations.

3. 2D problem: rigid rods with elastic joints

Consideration starts from the simplest possible model. The model consists of
an infinite chain of identical rigid rods of length l connected by identical joints.
Movement in each joint is parameterized by two angles, θ and φ. In this section
it is assumed that joints have freedom of movement in θ only, this is why the
obtained model is 2D. It will be generalized into 3D in the next section. It leads
to an assumption for the interaction moments at the n-th joint
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The state-of-equilibrium conditions are derived from the 2D problem as fol-
lows. The assumption for the interaction moments at the joints is:

M (n) = −∂/∂θ(n)

(
1

2
Φo

(
θ(n)−θ(n−1)

)2
)

= −Φo

(
θ(n)−θ(n−1)

)
.

The moment equation at equilibrium has the form:

(3.1) M (n+1) −M (n) + F (o)l sin θ(n) = 0

i.e.

(3.2) ∆2θ(n)−K sin θ(n) = 0,

K = F (o)l/Φo,

where ∆2 is the second difference. It is a discrete operator, analogous to the
second derivative in the differential calculus.

Denoting θ(n) = xn, θ(n+1) −θ(n) = yn, xn ∈ [0, 2π), yn ∈ [−π, π), we have

xn+1 = xn + yn,

yn+1 = yn +K sinxn+1,

i.e. the standard system. Hence, for sufficiently large K the system of rods ex-
hibits the deterministic chaos. It is interesting to observe that the continuum
limit of (3.2) as l → 0 is the pendulum equation

θ′′ −K/l2sin θ = 0

known also as the sine-Gordon equation, which is well known and does not
exhibit any chaos.

Fig. 1. Scheme of a part of chain in the 2D case.
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Fig. 2. Numerical solutions of the 2D case with parameter k in the consecutive images equal
to 0.1, 0.3, 0.4, 0.5, 0.9, 1.3, 2.0, 4.0, 10.0. With growth of the parameter value, the solution
changes from deterministic to chaotic, with well visible islands, to a solution plane completely

and randomly covered.

4. 3D problem; rigid rods with elastic joints

The condition of the equilibrium for the moments gives:

M (n+1) −M (n) + F (o) × l(n) = 0.

Assuming without any loss of generality

F (o) = F (o)(1, 0, 0)

and setting

l(n) = l
(
cos θ(n) sinφ(n), sin θ(n) sinφ(n), cosφ(n)

)
,

we have
M

(n+1)
1 −M

(n)
1 = 0,

M
(n+1)
2 −M

(n)
2 − F (o)l cosφ(n) = 0,

M
(n+1)
3 −M

(n)
3 + F (o)l sin θ(n) sinφ(n) = 0.
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Constitutive assumptions: the two moments depend on angles assigned to the
appropriate joints:

M
(n)
2 = αΦo(φ

(n) − φ(n−1)),

M
(n)
3 = β Φo(θ

(n) − θ(n−1)).

In a 3D case, K is a pair of parameters, Eq. (1.1), where

K1 = F (o)l/(αΦo) and K2 = F (o)l/(β Φo).

Denoting Ψ (n) = φ(n) + π/2 we obtain:

∆2Ψ (n) −K1 sinΨ (n) = 0,

∆2θ(n) −K2 sin θ(n) cosΨ (n) = 0.

The second pair of equations, i.e. the second plane equations of the 3D system,
is weakly coupled to the first one, which, on the other hand, is completely iden-
tical to the 2D system considered above. Numerical solutions of the 3D system
are presented below. In a case of an ordered solution in the first plane, (which
is always an equivalent to one of the ordered 2D solutions) both ordered and
chaotic solutions are always observed in the second plane. The character of these
solutions depends on the value of the parameter K2. On the other hand, in cases
when the solution on the first plane is chaotic, only chaotic solutions can be
observed on the second plane, independent of the value of the parameter K2.

Fig. 3. 3D – second plane for parameter K1 = 0.1-ordered solution. The second parameter
K2 is equal: 0.001, 0.0099, 0.01, 0.015, 0.02, 4. Solutions for lower value of K2, present a clear

ordered pattern, while for the ones of high value of K2, character of the solutions changes
visibly.
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Fig. 4. 3D- second plane for parameter K1 = 0.3 – ordered solution in the first plane. The
second parameter K2 is equal: 0.0001, 0.015, 0.03, 0.1. Solutions for lower value of K2 present
a clear pattern, while for the ones of high value of K2, the character of the solutions changes

into what looks as chaotic solutions.

Fig. 5. 3D- second plane for parameter K1 = 0.4 – ordered solution in the first plane. The
second parameter K2 is equal: 0.01 and 0.05. Character of the solutions is visibly different.

Fig. 6. 3D solutions for K1 = 1 – chaotic solution on the first plane the images represent,
the second plane for K2 equal respectively 0.0001, 0.1, and 1. None of the solutions is orde-

red, and the second plane for K2 equal 1 is covered randomly, with no visible pattern.
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Fig. 7. 3D solution, both planes for K1 = 10.0 and K2 = 0.0099. For this value of the
parameter K1, no matter how small is the parameter K2, the solution would never be ordered.

5. Conclusions

A mechanical model of peptide/polymer macromolecules was considered,
aimed at investigating which factors can influence the changes in equilibrium
configuration from ordered into chaotic. The reason is that for many macro-
molecules, both types of equilibrium configurations are observed. The model
considered in this paper, an infinite chain of identical rigid rods connected by
identical elastic joints, is the simplest one, which recreates changes between the
ordered and chaotic equilibrium solutions when the value of the parameter de-
scribing interaction between the rods grows. The model was investigated in 2D

as well as in 3D. The solutions for different values of the parameter were inves-
tigated numerically. It is interesting to mention that the 2D set of equations is a
discrete version of the well-known sine-Gordon equation, which does not possess
any chaotic solutions. Chaotic solutions appear only in a discrete system for such
values of the parameter which are sufficiently large. When values of the para-
meters are sufficiently high, the whole plane of the solution is covered randomly
with no structures (islands) observed. It suggests that a discrete structure of a
macromolecule, built of rigid mers connected in elastic way, plays an important
role in this type of transformation of equilibrium, i.e. energetically preferred,
state of a macromolecule. An ordered 2D solution, when analyzed in 3D, has
always both the ordered and chaotic solutions in the second plane, in which a
pair of equations is weakly coupled to the first pair. It depends on the value of
the parameter in the second plane. A chaotic 2D solution would always force a
solution in the second plane, which is weakly coupled to the first plane, to be
chaotic.

The future directions of this research include comparison of these theoretical
models with values of the parameter K for real peptides and polymers, as well
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as reconstruction of shapes of macromolecules, which correspond to the ordered
solutions. There are also some modifications of the equation to be considered,
which are equivalent to some modification/complication of the initial model.
The majority of them also have both the ordered and chaotic solutions in the
discrete/difference version, despite having ordered solutions only in the continu-
ous/differential version of the same equations. It only emphasizes the role of the
discrete approach in searching for the chaotic solution.
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