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A suspension of non-Brownian particles in a constant, external force field is
studied. Statistical description of the system, based on reduced distribution functions
is found. A hierarchy of equations for the correlation functions, analogous to the
BBGKY hierarchy known from the kinetic theory of gases, is derived and thoroughly
analysed. As an example, the problem of deriving the two-particle correlation function
for a sedimenting system is considered.

1. Introduction

Suspensions of non-Brownian particles, although seemingly simple systems,
are surprisingly difficult to treat theoretically ([1–3]). Vivid research has been
going on in the field for a few decades. Despite efforts, many puzzles still re-
main unsolved. The main problem which we address is the question of finding
a statistical description of a suspension of particles.

Particles suspended in a viscous fluid interact in an indirect manner. The
movement of a particle creates a fluid velocity field slowly decaying with distance.
This field induces motion of other particles giving rise to nonlinear, so-called hy-
drodynamic interactions. Although these can, in the time-scales adopted, be
treated as effectively instantaneous, even in the low-concentration limit the hy-
drodynamic interaction usually cannot be limited solely to two-particle encoun-
ters. It is important to keep in mind that two isolated particles sedimenting in
an infinite, quiescent fluid do not change their relative position. If the dynamics
is limited only to two-particle interactions, the equation for the pair distribution
function vanishes. The initial particle distribution does not change with time. It
is therefore essential to consider the many-body character of the hydrodynamic
interactions in order to find the steady-state micro-structure of a monodisperse,
non-Brownian suspension.

In this paper we summarise the derivation of a statistical description of a non-
Brownian suspension. The methods used originate in the kinetic theory of gases.
A hierarchy of equations governing the time evolution of the correlation and
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reduced distribution functions is found and analysed. Further, as an example,
we show how this sequence of equations can be used to find the pair distribution
function and the sedimentation coefficient for a low-concentration monodisperse
suspension in steady state.

2. Statistical description of a system with hydrodynamic interactions

2.1. Liouville equation

The system under consideration is a suspension of N spheres of equal radii a
immersed in an incompressible fluid of shear viscosity η. In the regime studied,
the particle Reynolds number is assumed to be small enough to treat inertial
effects as virtually absent and therefore negligible. Likewise, the Peclet number
defined as the ratio U0a/D (U0 – Stokes settling velocity, D – diffusion constant)
describing the relative influence of hydrodynamic effects and Brownian motion,
is presumed to be large. On these assumptions and with the time scales imposed,
the fluid motion is governed by the stationary Stokes equation:

(2.1) η∇2v(r) −∇p(r) = 0, ∇ · v(r) = 0.

Stick boundary conditions on the particles are adopted.
The linearity of the Stokes equation induces a linear relation between the

velocities of the suspended particles and the forces acting on them. This relation
establishes the equations of motion of the particles:

(2.2)
dRi

dt
= Ui =

N∑

j=1

{
µij(X)Fj(X)

}
.

µ is the translational part of the mobility matrix. This is a hydrodynamic matrix
function of the configuration X = (R1, . . . ,RN ) of all the particles, describing
the indirect, fluid mediated interactions between particles. We will assume the
forces acting on the particles to originate in an external field.

Let ρ(X; t) be the probability distribution function for the discussed system.
It describes the probability of finding at time t the system in the state X. Due
to (2.2) the probability conservation equation follows:

(2.3)
∂ρ(X; t)

∂t
+
∑

i,j

∇i · {µij(X)Fjρ(X; t)} = 0.

This is the Liouville equation for the discussed system.
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2.2. Hydrodynamic interactions

In order to analyse the Liouville Equation (2.3), first a formula for the mobil-
ity matrix has to be generated. This matrix function quantifies the hydrodynamic
interactions in the regime of Stokes dynamics. It describes the relation between
the forces acting on the particles and their velocities and is defined by

(2.4) U = µFF ,

where FF = (F1, . . . ,FN ) are the forces acting on the particles. Similarly,
U = (U1, . . . ,UN ) are the translational velocities. The matrix µ is a square
3N × 3N Cartesian tensor describing the translational components of the inter-
actions. We assume here that there is no torque exerted on the particles and that
the rotational degrees of freedom are therefore irrelevant. To find the mobility
matrix µ, the Stokes equations (2.1) have to be solved

To solve the Stokes equations, given the stick boundary conditions on the
particles’ surfaces, a density fi(r) of induced forces is introduced for each particle
[4]. Inserting these into the equations, the rigid-body motion of the particles may
be interpreted as a fictitious fluid flow which obeys the Stokes equations now
valid in the entire space. Then the solution of the hydrodynamic equations can
be written in terms of a Green function G(r, r′)

(2.5) v(r) =

∫
G(r, r′)f(r′)dr.

In the case of an infinite fluid, the Green operator is the Oseen tensor [7].
Restricting the expression to the surface of a given particle, solution (2.5)

can be written in terms of two distinct parts

(2.6) v(r) = ui(r) =

∫
G(r, r′)fi(r

′)dr′ +
∑

j 6=i

∫
G(r, r′)fj(r

′)dr′,

r ∈ Si, i = 1, . . . , N.

The first part accounts for the contribution to the surface velocity ui from the
force density fi(r) concentrated on the surface of the i-th particle, whereas the
second term describes the influence of force densities present on particles with in-
dexes other that i. These two distinct elements can be written using respectively
one-particle and two-particle integral operators defined as [5]

(2.7)

[
Z−1

0 (i)fi
]
(r) ≡

∫
G(r, r′)fi(r

′)dr′, r ∈ Si,

[G(ij)fj ] (r) ≡
∫

G(r, r′)fj(r
′)dr′, r ∈ Si, i 6= j.
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The equation (2.6) can be rewritten in the form

ui =
∑

j

(ZZ−1
0 + GG)ijfj ,(2.8)

where

(2.9) ZZ0ij = Z0(i)δij , GGij = G(ij)(1 − δij).

The solution to the many-body mobility problem may be formulated in terms of
a scattering sequence. The force densities, determined by fluid flow around each
particle, are treated as a source of subsequent fluid velocity fields. These fields are
propagated through the system and reflect off other particles, thereby causing
interaction. An analysis of the above equations leads to an explicit expression
for the mobility matrix formulated in terms of one and two-body operators [5]:

(2.10) µ = µ0 + µ0ZZ0
1

1 + GGẐZ0

GGZZZ0µ0 = µ0 + µ0ZZZ0

∞∑

k=0

(−ẐZ0GG)kGGZZ0µ0,

where µ0 is the mobility of a single particle and ẐZ0 = ZZZ0 − ZZZ0µ0ZZZ0. The
consecutive elements of the series expansion (2.10) are the terms of a scattering
sequence.

To further analyse the problem, the multipole expansion is introduced [7]. All
the irreducible multipoles are characterised by three numbers l, m and σ. Then
all the operators introduced become infinite matrices and the integral equations
transform to an infinite system of linear algebraic equations for the individual
matrix elements. The multipole expansion further provides an expansion of the
Green operator and, what follows, the two-particle mobility matrix in terms
of the inverse of the inter-particle distance. In general the matrix elements of
the two-particle Green operator 〈lmσ|G(ij)|l′m′σ′〉 (l = 1, 2, . . ., m = −l, . . . , l,
σ = 0, 1, 2) behave as 1/Rl+l′+σ+σ′−1

ij with the scalar inter-particle distance
Rij . Hence the interactions between low multipoles are of infinite range as they
contain terms which decay as 1/Rγ

ij , γ = 1, 2, 3.

2.3. BBGKY hierarchy

Our aim is to find the equations governing the evolution of the reduced
distribution functions defined as [6]

(2.11) n(1, 2, . . . , s; t) =
N !

(N − s)!

∫
dR(s+1) · · · dRNρ(X; t).

To translate from a system description based on the Liouville equation to a de-
scription using the introduced reduced distribution function, a further analysis
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of the mobility matrix is needed. Due to its structure of a scattering series (2.10),
the mobility function may also be formulated in terms of a cluster expansion.
For all the self-interaction terms:

(2.12) µ11(X) = µ
(1)
11 (1) +

N∑

i=2

µ
(2)
11 (1i) +

1

2!

N∑

i,j=2
i6=j

µ
(3)
11 (1ij) + . . . .

Here µ
(1)
11 (1) is the single particle mobility matrix given by the Stokes formula,

µ
(2)
11 (1i) is the sum of all terms of the scattering expansion (2.10) which include

particles 1 and i, etc. The interaction of different particles is described by

(2.13) µ12(X) = µ
(2)
12 (12) +

N∑

i=3

µ
(3)
12 (12i) + . . . ,

where now µ
(2)
12 (12) stands for the sum of all terms of the scattering sequence

(2.10) of µ12(X) which contain only particles 1 and 2, µ
(3)
12 (12i) includes all terms

which contain three particles 1, 2 and i, etc.
We also introduce the extended cluster expansion according to the formula

(s > 1):

µ11(1 . . . s|s+ 1 . . . s+ l) = µ
(l+1)
11 (1s+ 1 . . . s+ l)

+
s∑

i=2

µ
(l+2)
11 (1is+ 1 . . . s+ l) + . . . ,

(2.14) µ12(1 . . . s|s+ 1 . . . s+ l) = µ
(l+2)
12 (12s+ 1 . . . s+ l)

+
s∑

i=3

µ
(l+3)
12 (12is+ 1 . . . s+ l) + . . . ,

µ1s+1(1 . . . s|s+ 1 . . . s+ l) = µ
(l+1)
1s+1 (1s+ 1 . . . s+ l)

+
s∑

i=2

µ
(l+2)
1s+1 (1is+ 1 . . . s+ l) + . . . .

For the case of s = 2, l = 1:

µ11(12|3) = µ
(2)
11 (13) + µ

(3)
11 (123),(2.15)

µ12(12|3) = µ
(3)
12 (123),(2.16)

µ13(12|3) = µ
(2)
13 (13) + µ

(3)
13 (123).(2.17)
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The following notation will be used to simplify the derived equations:
• s denotes the set of particles {1, . . . , s},
• s+ l denotes the l-particle set {s+ 1, . . . , s+ l}.

The integration with respect to the particle indexes is to be understood as

(2.18)
∫
d(s+ l) ≡ 1

l!

∫
d(s+ 1) · · · d(s+ l).

Consider the integration of the Liouville equation with respect to all but
the first s particles. The boundary terms emerging due to integration of the
divergence operator vanish. The remaining expressions may be simplified upon
introducing the cluster expansion of the mobility matrix. The result is a sequence
of multiple cluster integrals containing the reduced distribution function of order
s and higher, and the hydrodynamic functions. The system of equations obtained
by taking different values of s = 1, 2, . . . forms a hierarchy:

(2.19)

(
∂

∂t
+ L(s)

)
n(s; t) = −

N−s∑

l=1

∫
d(s+ l)L(s|s+ l)n(s + l; t),

where

(2.20) L(s)n(s; t) =
s∑

i=1

∇i ·





s∑

j=1

µij(s)Fj n(s; t)





is the s-particle Liouville operator and µ(s) is the full s-particle mobility oper-
ator. Whereas

(2.21) L(s|s+ l)n(s + l; t) =
s∑

i=1

∇i ·





s+l∑

j=1

µij(s|s+ l)Fj n(s + l; t)





is the (s+l)-particle, extended Liouville operator for the evolution of a s-particle
reduced distribution function. It is defined with the help of extended hydrody-
namic functions (2.14) introduced above.

The system of equations (2.19) is the analogue of the BBGKY (Bogolubov–
Born–Green–Kirkwood-Yvon) hierarchy [6] introduced in the kinetic theory of
gases. In the case of a system of infinitely many particles this set is infinite, and
the equations contain an infinite number of terms, contrary to what is usually
the case when considering two-body potential interactions.

The reduced distribution functions (2.11) are usually assumed to have the
following property. Whenever particles may be grouped inside two (or more)
spheres C1, C2 . . . such that the radii of these are much smaller than the distance
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between them, then the partial distribution function describing the particle den-
sities factorizes. This leads to a cluster expansion in terms of the correlation
functions

(2.22)

n(1) = h(1),

n(12) = h(1)h(2) + h(12),

n(123) = h(1)h(2)h(3) + h(12)h(3) + h(13)h(2) + h(23)h(1) + h(123),

...
...

n(s) =
∑F
i mi=s

∏

i

h(mi),

where h(1 . . . s) is a s-particle correlation function, which vanishes whenever any
particle is pulled away from the rest.

This structure of the reduced distribution functions allows a further study
of the hierarchy equations. These may be analysed qualitatively by noting
two important properties. First, if a given term of the cluster expansion of
L(s|s+ l)n(s + l; t) (s = 1, . . . and l = 0, . . .) may be factorised into two distinct
functions depending on excluding particle subsets, then this term is said to be
non-connected. Contrary, if such a factorisation is impossible, the expression is
called connected. Notice that the hydrodynamic structure of a given expression
is by definition connected. The factorisation may then be a consequence only
of the correlation bonds introduced on the particles. Therefore if a term is non-
connected, it contains a disjoint part existing solely as a correlation function
block. For example,

(2.23) µ(1)Z0(1)G(14)Z0(4)µ0(4)F4 h(14)h(23)

is non-connected, as particles 2 and 3, although linked by a correlation bond,
are not linked to any of the other particles. In contrast, the structure

(2.24) µ(1)Z0(1)G(14)Z0(4)µ0(4)F4 h(12)h(34)

where only the correlation structure has been changed, is connected. Both ex-
pressions are parts of µ14(123|4)F4 n(1234). The connected part of an expression
will be denoted by adding a superscript c.

This property of the hierarchy equation may be used to formulate the equa-
tions governing the evolution of the correlation function. Indeed, instead of con-
sidering the set of reduced distribution functions, it is often more desired to
consider the equivalent set of correlation functions. Since these are linked to
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the reduced distribution functions by the cluster expansion of the latter (2.22),
a relevant hierarchy of equations governing the time evolution of the correlation
functions may be derived. The right-hand side of these contain only connected
terms. In other words, an equation governing the time evolution of an s-particle
correlation function may be deduced from the analogous equation for the reduced
distribution function by neglecting all non-connected terms.

(2.25)
∂h(s; t)

∂t
= −{L(s)n(s; t)}c −

∞∑

l=1

∫
d(s+ l){L(s|s+ l)n(s + l; t)}c.

For example, for the two-particle correlation function, the first terms of the
equation have the following structure:

(2.26)
∂h(12; t)

∂t
= −

∑

i=1,2

∇i · {µ(1)
ii (i)Fih(12; t)}

−
∑

i,j=1,2

∇i · {µ(2)
ij (12)Fj(h(12; t) + h(1; t)h(2; t))} + . . . .

Notice that both in the equation for the reduced distribution and correla-
tion functions, there exist terms L(s|s + l)n(s + l; t) (s = 1, . . . and l = 0, . . .)
which factorise into two distinct expressions upon removing a single Green op-
erator G. Such terms are called reducible [5]. This concept takes on importance
upon invoking the dependence of the Green operator on the inter-particle dis-
tance. Remember that these operators contain parts which decay very slowly
with distance. Reducible terms therefore introduce long-range expressions into
the hierarchy, and further could cause problems in the limit of an infinite sys-
tem leading to non-existence of certain integrals. In particular, the appearance of
such terms in the equations leads to the conclusion that the correlation functions
must also decay slowly with inter-particle distance, leading to non-integrability
of these function.

The hierarchy Equations (2.19) and (2.25) are not immediately useful, be-
cause they express one unknown correlation or reduced distribution function by
all the higher-order function. At some stage, an approximation based on a phys-
ical analysis must be made that closes the hierarchy. One of the methods is an
expansion of the correlation functions in terms of density. As indicated, even in
the low-concentration limit, the reducibility of some terms of the r.h.s. of the
hierarchy equations poses a problem. We will show in the next section that us-
ing a mechanism of hydrodynamic screening, a solution for the pair distribution
function might nevertheless be obtained.
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3. Stationary state pair distribution function

for a sedimenting suspension

Consider the stationary sedimentation of a suspension of identical particles.
The long range of the correlation functions, being a consequence of the structure
of the hierarchy, contradicts the usual behaviour of these functions. We there-
fore explore the possibility to reconcile the existence of the long-range terms in
the hierarchy equations with the finite range of the correlations. It is tempting
here to invoke the concept of hydrodynamic screening. Consider such a particle
distribution, that all long-range contributions are cut off and the correlations
stay integrable. It can be shown that indeed such a particle configuration can
be constructed [8]. This can be accomplished in stationary state by assuming
the dilute limit when the reduced distribution function can in leading order
be approximated by the dominating part which, for an s-particle function, is
proportional to ns. The hierarchy equations can then be truncated on a given
order of density and in particular provide closed equations for the reduced dis-
tribution function or the correlation functions. As it has been already pointed
out in the introduction, the two-particle equation cannot yield a condition for
the two-particle correlation function due to the symmetry of the two-body hy-
drodynamic interactions. It is necessary to consider three-particle interaction to
achieve non-trivial results in a monodisperse suspension.

Analysing the stationary equation for the three-particle correlation or re-
duced distribution function truncated to terms proportional to the density cubed

(3.1) L(123)n(123) = 0,

one can extract all long-range contributions. These appear only when the con-
figuration of particles is such, that a single particle (eg. 1) is situated far away
from a group of two close particles (eg. 2 and 3). Then n(123) → n(23)n(1) and
non-integrable terms appear only in the expression

(3.2) ∇∇2 ·
{
[µ21(1·2)+µ21(1·[23])]n(23)

}
+∇∇3 ·

{
[(µ31(1·3)+µ31(1·[23])]n(23)

}
,

where

µ21(1 · 2) = µ0(2)Z0(2)G(21)Z0(1)µ0(1),(3.3)

µ31(1 · 2) = µ0(3)Z0(3)G(31)Z0(1)µ0(1),(3.4)

µ21(1 · [23]) = [C22(23)G(21) + C23(23)G(31)]Z0(1)µ0(1),(3.5)

µ31(1 · [23]) = [C33(23)G(31) + C32(23)G(21)]Z0(1)µ0(1)(3.6)

and

(3.7) Cij =

[
µ0ZZ0

1

1 + GGẐZ0

GGẐZ0

]

ij

(23)
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which stands for all those scatterings in the formula (2.10) which contain only
particles 2 and 3 and begin at particle i = 2, 3, and end respectively at particle
j = 2, 3.

Upon analysing the distance dependence of the multipole elements of the
long-range Green operators G(21) and G(31), all the non-integrable contribu-
tions of (3.2) can be singled out. These originate in the rotational-translational
(rt, l = 1, σ = 1; l′ = 1, σ′ = 0) and dipole-translational (dt, l = 2, σ = 0;
l′ = 1, σ′ = 0) multipoles of G. Now suppose that the two-particle distribution
function n(23) is such that these long-range structures disappear. This assump-
tion leads to two equations for the pair distribution function. One, associated
with the (rt) multipole describes the dependence of the distribution function
upon the direction of the vector R = R3 − R2

(3.8) R ×∇n(R) = 0,

giving the immediate result n(R) = n(R). The second equation, related to the
(dt) multipole yields an equation for the now isotropic function n(R) = n2g(R)

(3.9)

{
(1 −A)

1

g

dg

dR
− 3(A−B)

R
− dA

dR

}
= 0.

A and B are functions of the scalar distance R given by the relations A = 2(αtd
11+

αtd
12)/R and B = 2(βtd

11 + βtd
12)/R, where αtd

ij and βtd
ij are functions appearing in

the explicit form of the generalized two-particle mobility matrix connecting the
translational velocity of the particles to the stresslet [9].

(3.10) Ctd
iα;jµν(23) = µtd

iα;jµν(23) = αtd
ij R̂αR̂µR̂ν + βtd

ij (δαµ − R̂αR̂µ)R̂ν

(µν)
,

where the overline denotes the irreducible part of the tensor.
Since limR→∞ g(R) = 1

(3.11) g(R) =
1

1 −A
exp




∞∫

R

3(B −A)

R(1 −A)
dR


 .

The knowledge of the pair distribution function makes a calculation of the
steady-state sedimentation coefficient possible. Indeed, if

(3.12)
U

U0
= 1 + φλ+ O(φ2),

where φ is the volume fraction, U is the mean sedimentation velocity and U0 is
the Stokes velocity, then the linear coefficient λ may be expressed in terms of
the two-body mobility matrix and the pair distribution function. A numerical
calculation leads to the value λ = −3.87. A fit to the experimental data ([10, 11])
leads to the sedimentation coefficient equal to −3.9, in excellent agreement with
the calculated value [8].
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4. Concluding remarks

A hierarchy of equations for the correlation and reduced distribution func-
tions has been found and its structure analysed. It has been shown that the
derived equations may be used to investigate the phenomenon of sedimenta-
tion at low-concentration, of a non-Brownian suspension. In particular, in spite
of the long range of the hydrodynamic interactions, a short range two-particle
correlation function was derived in a self-consistent manner.
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