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In earlier works it has been shown that linearization of thermodynamical
models of poroelastic materials yields a contribution to stresses in the form β∆n,
∆n := n−nE , where n is the current porosity, nE denotes its value in the thermody-
namical equilibrium and β is a material parameter. It has been also claimed on the
basis of rough estimates that this parameter gives only negligible contributions to
the properties of acoustic waves. The purpose of this work is twofold. We investigate
the influence of β on the propagation of acoustic waves in more details. We use the
full linear model of saturated poroelastic materials in which an additional coupling to
porosity changes appears. This results from the presence of a term with the porosity
gradient in the momentum sources. Such a model becomes identical with Biot’s model
without any added mass contribution in the limit if infinite relaxation time of poros-
ity τ → ∞ and for the parameters β = 0, and N = 0, where the latter is describing
the above mentioned influence of porosity gradient on the momentum sources. The
analysis of influence of the parameter N , i.e. the influence of the porosity gradient on
properties of acoustic waves, is the second purpose of this work. We also indicate a
correction of the permeability contribution to the momentum source. The permeabil-
ity coefficient π is assumed in Biot’s model to be dependent on the frequency. This is
inconsistent with other temporal contributions to field equations. In order to obtain
such a dependence in the Fourier space, one has to assume a viscous effect to enter
the momentum source and we do so in the general equations. However, we do not use
this general relation in the analysis of monochromatic waves.

1. Introduction

In numerous previous papers (e.g. [9, 10, 13]), it has been shown that the
thermodynamical construction of nonlinear models of poroelastic materials yields
a dependence of partial Cauchy stresses on the deviation of porosity from its
value in the thermodynamical equilibrium. This is connected with the fact that
such nonlinear models contain the porosity as an independent field described by
its own balance equation.
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It has been argued (e.g. [10]) that the linearization of such models yields
the contribution to stresses in the form β∆n, ∆n := n − nE , where n is the
current porosity, nE denotes its value in the thermodynamical equilibrium and
β is a material parameter. It has been claimed on a basis of rough estimates that
this parameter gives only negligible contributions to the properties of acoustic
waves1).

The purpose of this work is twofold. We investigate the influence of β on
the propagation of acoustic waves in more details. However, we use the full
linear model of saturated poroelastic materials in which an additional coupling
to porosity changes appears. This results from the presence of a term with the
porosity gradient in the momentum sources. As it has been shown in the work
[14], such a contribution follows from the thermodynamical construction of a
nonlinear model which reduces to Biot’s model when linearized. This happens
for the limit of infinite relaxation time of porosity τ → ∞ and for the parameters
β = 0, and N = 0, where the latter is describing the above mentioned influence
of the porosity gradient on momentum sources. The analysis of influence of the
parameter N , i.e. the influence of the porosity gradient on the properties of
acoustic waves is the second purpose of this work.

There is an additional difference of the linear models analyzed in this work
and that constructed by M. A. Biot. It is a term with relative accelerations which
is included in the momentum balance equations of Biot’s model and neglected in
the model investigated in this work. The reason is that we consider contributions
of relative accelerations to be not essential for the wave analysis. A justification
of this statement can be found in the recent paper [16].

We also indicate a correction of the permeability contribution to the mo-
mentum source. The permeability coefficient π is assumed in Biot’s model to be
dependent on the frequency. As indicated in the work [17], this is inconsistent
with other temporal contributions to field equations. In order to obtain such a
dependence in the Fourier space, one has to assume a viscous effect to enter the
momentum source and we do so in the general equations. However, we do not use
this general relation in the analysis of monochromatic waves. It is known that
the above mentioned frequency dependence is not essential in the low frequency
range, i.e. in applications of the analysis to soil mechanics. It has an influence in
the high frequency range and it may be interpreted as an intervention of tortu-
osity. This influence, as indicated in [2], is quantitative but not qualitative and
it seems to be not related to an influence of coupling through nonequilibrium
contributions.

1)See: [12, 13], where the values β = 0.313 and 0.72 GPa are chosen, respectively. These are
small in comparison with values of compressibility coefficients (∼ 50 GPa) with which they
enter additively the propagation conditions for acoustic waves.
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2. Governing equations

In the case of isothermal processes, the most general linear model of poroelas-
tic materials with the balance equation of porosity is based on the following
balance equations:

• partial balance equations of momentum

(2.1) ρS
0

∂vS

∂t
= div TS + p̂, ρF

0

∂vF

∂t
= −grad pF − p̂,

• balance equation of porosity

(2.2)
∂∆n

∂t
+ Φ0 div

(
vF − vS

)
= n̂,

• conservation of mass of the fluid component and the integrability condition
for the deformation of the skeleton

(2.3)
∂ε

∂t
= div vF ,

∂eS

∂t
= sym grad vS ,

where vS ,vF denote the velocity fields of the skeleton and of the fluid,
respectively, ρS

0 , ρ
F
0 are their constant initial mass densities, TS is the par-

tial Cauchy stress tensor in the skeleton, pF is the partial pressure in the
fluid, p̂ is the momentum source, n denotes the current porosity and nE

its equilibrium value, Φ0 is a material parameter, n̂ denotes the source of
porosity. ε denotes volume changes of the fluid and in the linear model
it is related to changes of the partial mass density of the fluid ρF by the
following relation:

(2.4) ε =
ρF

0 − ρF

ρF
0

.

The symmetric tensor eS is the so-called Almansi–Hamel deformation ten-
sor of the skeleton. Its trace describes changes of the partial mass density
of the skeleton ρS

(2.5) e =
ρS
0 − ρS

ρS
0

, e := tr eS .

The above equations become field equations for the following governing fields
of the isotropic model

(2.6)
{
vS ,vF , ε, eS , n

}
,

if we add the following constitutive relations:

(2.7)
TS = TS

0 + λSe1 + 2µSeS +Qε1 + β∆n1,

pF = pF
0 − ρF

0 κε−Qe+ β∆n,
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(2.8) p̂ =

t∫

−∞

π (t− s) ·
(
vF − vS

)
ds−N grad (n− n0) ,

(2.9) nE = n0 (1 + δe) , n̂ = −∆n

τ
,

where

(2.10)
{
λS , µS , κ,Q, β,N,Φ0, τ, δ

}
,

are material constants and π is the time-dependent bulk permeability of the
porous body. The classical Darcy law contains a material parameter called the
hydraulic conductivity. This parameter, κ, is related to the constant bulk per-
meability, π, by the following relation: κ = π/(n0ρ

FR
0 gearth). For instance, for

π = 107 kg/m3 s is the hydraulic conductivity κ = 0.1 darcy. The first three con-
stants are classical elasticity coefficients of the skeleton and of the fluid, Q is the
coupling constant introduced by M. A. Biot and β,N are coupling parameters
which we investigate in this paper. The transport coefficient of porosity Φ0 and
the parameter δ of equilibrium changes of porosity were introduced, for instance,
in the work [15] and one can find in this work their estimates for granular mate-
rials. τ is the relaxation time of porosity. As it is clear from (2.9) for undeformed
states, e = 0, the porosity is equal to its initial value n0.

Field equations in the explicit form are as follows:

∂ε

∂t
= div vF ,

∂eS

∂t
= sym grad vS ,

ρS
0

∂vS

∂t
= grad

{(
λS − βn0δ

)
e+Qε+ β (n− n0)

}
+ div

{
2µSeS

}

+

t∫

−∞

π (t− s) ·
(
vF − vS

)
ds−Ngrad (n− n0) ,

(2.11)

ρF
0

∂vF

∂t
= grad

{
ρF
0 κε+ (Q+ βn0δ) e− β (n− n0)

}

−
t∫

−∞

π (t− s) ·
(
vF − vS

)
ds+N grad (n− n0) ,

∂ (n− n0)

∂t
− n0δ

∂e

∂t
+ Φ0 div

(
vF − vS

)
= −n− n0

τ
+
n0δ

τ
e.

Further in this paper we investigate this system under the assumption of
a plane wave solution.
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3. General propagation condition of monochromatic waves

We assume that the fields of the model satisfy the following relations:

(3.1)
ε = EFE , eS = ESE , vF = VFE , vS = VSE , n− n0 = DE ,

E := exp i (k · x − ωt) ,

where EF ,ES ,VF ,VS , D are constant amplitudes, ω is a given frequency, k is
the, possibly complex, wave vector. This means that k = kn, where k is the
complex wave number and n is a unit vector in the direction of propagation.
Such a solution describes the propagation of plane monochromatic waves in an
infinite medium whose fronts are perpendicular to n.

Substitution of the above relations in field Eqs. (2.11)1,2 yields the following
compatibility relations:

(3.2)
EF = − 1

ω
kn · VF , ES = − 1

2ω
k
(
n ⊗ VS + VS ⊗ n

)
,

i.e. e = − 1

ω
kn · VSE ,

and the porosity balance Eq. (2.11)5 implies

(3.3) D = − iΦ0

−iω + 1/τ
kn·

(
VF − VS

)
− n0δ

ω
kn · VS .

Making use of these relations in the remaining field equations leads to the fol-
lowing set:

(3.4) ω2VS =
λS − n0βδ

ρS
0

k2
(
VS · n

)
n+

µS

ρS
0

k2
((

VS · n
)
n + VS

)

+
Q

ρS
0

k2
(
VF· n

)
n +

N − β

ρS
0

{
ω2Φ0

ω2 + 1/τ2
k2
(
VF· n − VS· n

)
− n0δk

2VS· n
}

n

+ i

{
π∗ (ω)ω

ρS
0

(
VF − VS

)
− N − β

ρS
0

Φ0ω

τ (ω2 + 1/τ2)
k2
(
VF · n − VS · n

)
n

}
= 0,

(3.5) ω2VF = κk2
(
VF · n

)
n +

Q+ n0βδ

ρF
0

k2
(
VS · n

)
n

− N − β

ρF
0

k2

{
ω2Φ0

ω2 + 1/τ2

(
VF · n − VS · n

)
− n0δV

S · n
}

n

− i

{
π∗ (ω)ω

ρS
0

(
VF− VS

)
− N − β

ρF
0

Φ0ω

τ (ω2 + 1/τ2)
k2
(
VF · n − VS · n

)
n

}
= 0
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where

(3.6) π∗ (ω) :=

∞∫

0

π (η) eiωηdη.

The complex permeability coefficient π∗ (ω) has an extensive literature within the
Biot model but it is of no particular interest for our present study. We limit our
attention to a particular case in which π∗ (ω) is a real constant. This corresponds
to the case when the convolution integral in the relation (2.8) reduces to the
product π

(
vF − vS

)
. In this case, we must replace π∗ (ω) by π in the above

relations.
It is convenient to separate contributions of the normal and transversal com-

ponents of the wave vector kn. Let us begin with the transversal component. We
take the scalar product of the above equations with an arbitrary unit vector n⊥

perpendicular to n, i.e. n · n⊥ = 0. We obtain

(3.7)

ω2V S
⊥ =

µS

ρS
0

k2V S
⊥ + i

πω

ρS
0

(
V F
⊥ − V S

⊥

)
,

V S
⊥ : = VS · n⊥, V F

⊥ := VF · n⊥,

ω2V F
⊥ = −iπω

ρF
0

(
V F
⊥ − V S

⊥

)
.

The dispersion relation follows in the form

(3.8) ω

(
1 − µS

ρS
0

(
k

ω

)2
)

+ iπ
ρF
0 + ρS

0

ρF
0 ρ

S
0

(
1 − µS

ρF
0 + ρS

0

(
k

ω

)2
)

= 0.

Obviously, this result for shear (transversal) waves is independent of all the
interesting parameters: Q,N and β, as could be expected from the structure
of constitutive relations in which they contribute only through volume changes
of components. For the phase speeds in two limits of frequencies we obtain the
well-known results (e.g. [6, 11])

(3.9)

ω → ∞ =⇒ cph =

√
µS

ρS
0

,

ω → 0 =⇒ cph =

√
µS

ρF
0 + ρS

0

.

Further we limit our attention only to the contribution of the normal com-
ponent.
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4. Longitudinal waves

Let us take the scalar product of Eqs. (3.4) with the vector n. We obtain

{
ω2 − λS + 2µS − n0βδ

ρS
0

k2 +
N − β

ρS
0

(
ω2Φ0

ω2 + 1/τ2
+ n0δ

)
k2

+ i

(
πω

ρS
0

− N − β

ρS
0

ωΦ0

τ (ω2 + 1/τ2)
k2

)}
V S
‖

+

{
− Q

ρS
0

k2− N − β

ρS
0

ω2Φ0

ω2 + 1/τ2
k2− i

(
πω

ρS
0

− N − β

ρS
0

ωΦ0

τ (ω2 + 1/τ2)
k2

)}
V F
‖ = 0,

(4.1)
{
−Q+ n0βδ

ρF
0

k2 − N − β

ρF
0

(
ω2Φ0

ω2 + 1/τ2
+ n0δ

)
k2

−i
(
πω

ρF
0

− N − β

ρF
0

ωΦ0

τ (ω2 + 1/τ2)
k2

)}
V S
‖

+

{
ω2− κk2+

N − β

ρF
0

ω2Φ0

ω2 + 1/τ2
k2+ i

(
πω

ρF
0

− N − β

ρF
0

ωΦ0

τ (ω2 + 1/τ2)
k2

)}
V F
‖ = 0,

where

(4.2) V S
‖ = VS · n, V F

‖ = VF · n.

Before we proceed to the numerical analysis of the above eigenvalue problem
we demonstrate two special cases.

The simplest case follows for the so-called simple mixture model defined by
the relations

(4.3) β = 0, N = 0, Q = 0, τ → ∞.

Then the set (4.1) reduces to the form

(4.4)

(
ω2 − λS + 2µS

ρS
0

k2 + i
πω

ρS
0

)
V S
‖ − i

πω

ρS
0

V F
‖ = 0,

−iπω
ρF

0

V S
‖ +

(
ω2 − κk2 + i

πω

ρF
0

)
V F
‖ = 0.
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This yields the dispersion relation

(4.5) ω

(
1 − λS + 2µS

ρS
0

(
k

ω

)2
)(

1 − κ

(
k

ω

)2
)

+ iπ
ρF

0 + ρS
0

ρF
0 ρ

S
0

(
1 − λS + 2µS + ρF

0 κ

ρF
0 + ρS

0

(
k

ω

)2
)

= 0.

This relation was extensively discussed in earlier works (for quotations see,
e.g. [6, 11]). It yields the existence of two longitudinal modes of propagation:
P1- and P2-waves. In the frequency limits we obtain easily for the phase veloci-
ties

(4.6)

ω → ∞ =⇒ cph =





√
λS + 2µS

ρS
0

for P1-waves,
√
κ for P2-waves,

ω → 0 =⇒ cph =





√
λS + 2µS + ρF

0 κ

ρF
0 + ρS

0

for P1-waves,

0 for P2-waves.

The second particular case follows under the following assumptions

(4.7) β = 0, N = 0, τ → ∞.

Then we obtain the following dispersion relation describing Biot’s model without
relative accelerations:

(4.8) ω

{(
1 − λS + 2µS

ρS
0

(
k

ω

)2
)(

1 − κ

(
k

ω

)2
)

− Q2

ρF
0 ρ

S
0

(
k

ω

)4
}

+ iπ
ρF
0 + ρS

0

ρF
0 ρ

S
0

(
1 − λS + 2µS + ρF

0 κ+ 2Q

ρF
0 + ρS

0

(
k

ω

)2
)

= 0.

Again there is an extensive literature on this equation. In the limit frequencies
we have

(4.9) ω → ∞ =⇒ cph =





√
2

D+

√
λS + 2µS

ρS
0

κ− Q2

ρS
0 ρ

F
0

for P1-waves,

√
2

D−

√
λS + 2µS

ρS
0

κ− Q2

ρS
0 ρ

F
0

for P2-waves.



Influence of coupling through porosity ... 321

(4.9)
[cont.]

D± : =

√√√√λS + 2µS

ρS
0

+ κ∓
√(

λS + 2µS

ρS
0

− κ

)2

+
4Q2

ρS
0 ρ

F
0

,

ω → 0 =⇒ cph =





√
λS + 2µS + ρF

0 κ+ 2Q

ρF
0 + ρS

0

for P1-waves,

0 for P2-waves.

We shall not discuss these relations in any details and proceed to the nume-
rical analysis of the general relation (4.1).

5. Numerical analysis of the dispersion relation

As already mentioned, the propagation of monochromatic shear waves is
independent of parameters β,Q,N which are of the main interest in this work.
For this reason we concentrate on longitudinal waves.

We investigate the dispersion relation (4.1) for the following numerical data
corresponding approximately to, for instance, either marls or porous and satu-
rated sandstones [4]

ρS
0 = 2500 kg/m3, ρF

0 = 250 kg/m3,

n0 = 0.25, π = 107 kg/m3s, τ = 10−3 s,

λS = 7 · 109 N/m2, µS = 4.3 · 109 N/m2, κ = 2.25 · 106 m2/s2,

δ = 3, Φ = 0.06 · n0 = 0.015.

These data lead to the following limit values of the speeds of propagation for
shear waves:

lim
ω→∞

cph = cS =

√
µS

ρS
0

= 1311 m/s,

and for P1- and P2-waves modelled by the simple mixture model (i.e. for
β = 0, N = 0, Q = 0)

lim
ω→∞

cph =




cP1 =

√
λS + 2µS

ρS
0

= 2498 m/s,

cP2 =
√
κ = 1500 m/s,

which are almost identical with the data which we have been used in previous
works on this subject (e.g.: [2, 6, 7]). The values of parameters δ, Φ0 follow from
the estimates made by means of modified Gassmann relations [15].
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In Fig. 1, we present results for the P1-wave and for the P2-wave without any
influence of β (i.e. β = 0). The choice of values for Q,N is again motivated by
results following from the modified Gassmann relation [15]. They are of the same
order of magnitude and, in the example, have been chosen to be either zero or
0.25 GPa. While the choice of the values for Q,N is nearly without the influence
in the case of the P2-wave, as we see in the right panel of Fig. 1, for the P1-wave
their values are of importance. The coupling parameter Q shifts the values of the
speed of propagation to higher values and flattens the curve. This property has
been already indicated in the works [6] and [16]. The curves remain monotonic
with respect to the frequency. This is not the case any more if we choose N
unequal to zero. The speed has in these cases a well pronounced minimum in the
range of medium frequencies of some kilohertz. Such a minimum for surface waves
described by Biot’s model was discovered by Bourbie, Coussy and Zinszner

[4] and it has been confirmed by B. Albers for surface waves described by the
simple mixture model [3]. It was attributed to the coupling between P1- and P2-
waves. It seems that for bulk waves the coupling must be amplified by porosity
changes in order to be visible.

Fig. 1. Speeds of monochromatic P1-waves (left) and P2-waves (right) for various
combinations of values of parameters Q,N and for β = 0.

We proceed to investigate the influence of the parameter β responsible for
nonequilibrium changes of porosity. There exist neither experimental evidence
nor theoretical estimates of its values. As it appears in the model in an additive
combination with the parameter N or, multiplied by n0δ which is of the order of
unity, with parameters Q,λS , µS (compare (4.1)), we expect its values to have at
most the same order of magnitude as these constants. Consequently, we should
concentrate on values of β ≤ 109 Pa. However, in order to show that higher
values yield physically unreasonable results for the wave speeds, we present in
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Fig. 2 also some values of β > 109. This figure shows both the speeds of the
P1-wave and of the P2-wave for nine values of β (β = 0, 105 ≤ β ≤ 1012). The
P1-wave is presented in solid lines, the P2-waves in dashed lines. The frequency
is plotted in a logarithmic scale.

Fig. 2. Speeds of P1-waves (solid) and P2-waves (dashed) for various values of β.
The frequency is plotted in a logarithmic scale.

It is clearly seen that both for the P1- and for the P2-wave this parameter in
the range 0 ≤ β ≤ 109 yields no considerable changes of the speeds, i.e. β has no
qualitative influence on the results and it yields small quantitative changes. This
turns differently for values larger than β = 109. For those values the influence
of the parameter is immense but the speeds of the waves are not physically
reasonable anymore. Their limit values for ω → ∞ become larger than speeds of
longitudinal waves in pure substances: in the solid for P1-waves, and in the fluid
for P2-waves. However, as described above, we had to expect this result because
in these cases β was much larger than comparable parameters in the dispersion
equation.

We do not further deal with such values but show in Fig. 3 in detail the
behavior of the waves for reasonable values of β, i.e. 0 ≤ β ≤ 109. In this figure
we see the speeds of both waves in a normal scale. Especially from the details in
both panels which show the speeds for very large frequencies and a zoom of the
speed axis, it is visible that at least for values β ≤ 108 there exists no influence
of this parameter at all. Also the influence of β = 109 is tiny and it is justified
– not only in order to reduce technical difficulties of numerical calculations – to
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neglect in linear models the influence of the coupling parameter completely and
to use the value β = 0.

Fig. 3. Speeds of P1-waves (left) and P2-waves (right) for physically reasonable values of β.
The frequency is plotted in a normal scale. The details are incorporated to show the small

differences between relatively small values of β.

6. Conclusions

The results presented above support the assumption which we made in earlier
works on the propagation of linear acoustic waves in saturated porous materials,
that the nonequilibrium coupling through porosity changes described by the
parameter β can be neglected. As a preliminary analysis of nonlinear waves
indicates [8], this may not be the case for nonlinear waves where it yields the
existence of solitary waves of porosity.

On the other hand, the influence of the porosity gradient described by the
constant N is nontrivial. In the range of medium frequencies, it creates a mini-
mum in the phase speed of P1-waves. This yields considerable changes in group
speeds which we do not demonstrate in this work. Consequently, one may expect
a creation of the Airy phase (see: [1] for the analysis of this problem in modelling
of single component media). We will return to this problem in the forthcoming
publication.
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