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V. MARINCA

Polytechnic University of Timişoara
Dept. of Mechanics and Vibration, Timişoara, Romania
e-mail: vmarinca@mec.utt.ro

The purpose of this paper is to apply a version of homotopy technique to non-
linear problems. The modified version of homotopy perturbation method is applied
to derive highly accurate analytical expressions for periodic solutions or for approx-
imate formulas of frequency. In contrast with the traditional perturbation methods,
the proposed method does not require any small parameter in the equation. The
proposed algorithm avoids the complexity provided by other numerical approaches.
The analysis is accompanied by three numerical examples. The results prove that this
method is very effective and simple.
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1. Introduction

There exists a wide body of literature dealing with the problem of ap-
proximate solutions to nonlinear equations with various different methodologies,
called the perturbation methods. But almost all perturbation methods are based
on small parameters so that the approximate solutions can be expanded in series
of small parameters. Its basic idea is to transform, by means of small parameters,
a nonlinear problem of an infinite number of linear subproblems into an infinite
number of simpler ones. The small parameter determines not only the accuracy
of the perturbation approximations but also the validity of the perturbation
method.

There exist some analytical approaches, such as the harmonic balance method
[1], the Krylov–Bogolyubov–Mitropolsky method [2], weighted linearization
method [3], modified Lindstedt–Poincaré method [5], Adomian decomposition
method [6], artificial parameter method [7], homotopy perturbation method
and so on.

In science and engineering, there exist many nonlinear problems, which do
not contain any small parameters, especially those with strong nonlinearity. Thus
it is necessary to develop and improve some nonlinear analytical approximations
even for large parameters.
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In 1992, Liao [12] has proposed a new analytical method called the Homo-
topy Analysis Method, which introduces an embedding parameter to construct a
homotopy and then analyzes it by means of the Taylor formula. Subsequently, by
means of a linear property of homotopy, one can transform a nonlinear problem
into an infinite number of linear subproblems, whether the nonlinear problem
contains small parameters or not. Therefore, unlike the perturbation method, this
method is independent of small parameters and can overcome the restrictions
of the perturbation methods. Liao and Chwang [11] successfully applied the
Homotopy Analysis Method to solve some simple nonlinear problems. Homotopy
is an important part of differential topology so that it has a solid mathematical
base [13]. The homotopy perturbation method provides a universal technique to
introduce a perturbative parameter.

In this paper, we will apply the homotopy technique in a completely different
way as in Refs. [7–12]. Let us further consider the damped, forced oscillation of
a nonconservative nonlinear system governed by the equation

(1.1) ü(t) + ω2
0u(t) = F (Ωt, u, u̇, ...,

(i)
u)

where u(t) is a dimensionless variable, u̇(t) =
du

dt
;

(i)
u(t) =

diu(t)
dti

, i = 1, 2..., F

is a nonlinear function, with the period T in the first variable, ω0 and Ω are
constants.

Our purpose in this paper is to present the modified homotopy perturbation
method for solving nonlinear problems, some ideas and improvements which
point towards new and interesting applications of this method. We apply the
modified homotopy perturbation method to three examples with large and small
parameters. The periodic solutions obtained by this method are valid not only
for small parameters, but also for very large parameters. This method sometimes
leads to the results according to the standard Lindstedt–Poincaré method or the
harmonic balance method.

2. Basic ideas of the modified homotopy perturbation method

We construct a one-parameter family of equations

(2.1)
∂2U(t; p)

∂t2
+ Λ(p)U(t; p) = pF

(
Ωt, U(t; p),

∂U(t; p)
∂t

, .,
∂iU(t; p)

∂ti

)
,

t ∈ [0,∞), p ∈ [0, 1], i = 1, 2...

where p is considered as an expanding parameter and U(t; p) is an analytical
function of both t and p.
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At p = 0, we have obviously U(t; 0) = u0(t) and u0(t) is an initial approxima-
tion of Eq. (1.1) which not necessarily satisfies the boundary conditions. At p = 1,
Eq. (2.1) is exactly the same as Eq. (1.1), respectively, so that U(t; 1) = u(t) and
u(t) is exactly the solution that we want to know. As the expanding parameter
p varies from zero to one, U(t; p) varies continuously from u0(t) to u(t) and Λ(p)
varies from Λ(0) = ω2 to Λ(1) = ω2

0, where ω is the angular frequency of the
system (1.1). This kind of continuous variations is called deformation in topol-
ogy [10, 11]. The continuous deformations of U(t; p) and Λ(p) are completely
governed by Eq. (2.1).

Here, we emphasize that neither small nor large parameters are necessary
in constructing the zeroth-order deformation Eq. (2.1). In fact, whether or not
Eq. (1.1) contains small or large parameters, it is not important at all for the
validity of the modified homotopy method, because the only assumptions made
in Eq. (1.1) are that F should be analytical and with the period T in the first
variable.

Suppose that U(t; p) and Λ(p) have derivatives with respect to the expanding
variable p evaluated at p = 0:

(2.2)
∂jU(t; p)

∂pj

∣∣∣∣
p=0

= u
[j]
0 (t),

∂jΛ(p)
∂pj

∣∣∣∣
p=0

= Λ
[j]
0 , j ≥ 1

which are called the j th-order deformation derivatives. By Taylor’s formula, we
have:

(2.3) U(t; p) = u0(t) +
∑

j≥1

u
[j]
0 (t)
j!

pj

and

(2.4) Λ(p) = Λ(0) +
∑

j≥1

Λ
[j]
0

j!
pj .

Setting p = 1, we obtain

(2.5) u(t) = u0(t) +
∑

j≥1

u
[j]
0 (t)
j!

and

(2.6) ω2
0 = ω2 +

∑

j≥1

Λ
[j]
0

j!
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provided that the radii of convergence of series (2.3) and (2.4) are not less than 1.
Note that (2.5) gives a relation between the initial approximation u0(t) and
solution u(t); meanwhile, (2.6) provides a link between the initial approximation
Λ(0) = ω2 and the square of the frequency ω0. Now, the key to the problem
becomes: how to solve these j th-order deformation derivatives u

[j]
0 (t) and Λ

[j]
0 ,

(j ≥ 1). For this purpose, we must first of all give equations governing u0(t),
u

[j]
0 (t) and Λ

[j]
0 , (j ≥ 1).

Setting p = 0 we obtain the equation:

(2.7) ü0(t) + ω2u0(t) = 0.

Differentiating Eq. (2.1) with respect to p and setting p = 0, we have:

(2.8) ü
[1]
0 (t) + ω2u

[1]
0 (t) = F (Ωt, u0(t), u̇0(t), ...,

(i)
u0(t))− Λ

[1]
0 u0(t)

where u0(t) is given by Eq. (2.7). Avoiding the secular term, we obtain Λ
[1]
0 and

the relationship between the constants of integration from Eq. (2.7). We call Eq.
(2.8) the first-order deformation equation. In the same way, we can obtain all of
the j th-order deformation equations governing u

[j]
0 (t) (j ≥ 2), which are similar

in form to Eq. (2.8) except for the inhomogeneous terms. For example, for j = 2,
we obtain the second-order deformation equation:

(2.9) ü
[2]
0 (t) + Λ(0)u[2]

0 (t)

= 2F [1]
(
Ωt, u0(t), u̇0(t), ...,

(i)
u0(t)

)
− 2Λ

[1]
0 u

[1]
0 (t)− Λ

[2]
0 u0(t)

where

(2.10) F [1]
(
Ωt, u0, ..., u

(i)

0

)
=

dF

(
Ωt, u, u̇, ...,

(i)
u

)

dp

∣∣∣∣∣∣∣∣
p=0

=
∂F

∂u

∣∣∣∣
p=0

u
[1]
0 (t) +

i∑

k=1

∂F

∂
(k)
u

∣∣∣∣∣
p=0

(k)[1]
u0 (t)

with u
[1]
0 (t) given by Eq. (2.8), and Λ

[2]
0 can be determined as above.

Let us emphasize that the first-order deformation Eq. (2.8) is linear with
respect to the first-order deformation derivative u

[1]
0 (t). In fact, every j th-order

deformation equation is linear with respect to the corresponding j th-order de-
formation derivative (j ≥ 1). It means that every term u

[j]
0 (t) (j ≥ 1) in (2.5) is
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governed by a linear equation. Therefore, by (2.5), the original nonlinear problem
governed by Eq. (1.1) can be transformed to an infinite number of linear sub-
problems about the j th-order deformation derivatives u

[j]
0 (t) (j ≥ 1). By means

of the modified homotopy perturbation method, we also accomplish this kind of
transformation but without using the small parameter assumption. Thus, this
method is in principle different from the perturbation method. Details will be
discussed below.

Another case to be analysed is that there is a real parameter ε (small or
large) such as F

(
Ωt, u, u̇, ...,

(i)
u

)
= εf

(
Ωt, u, u̇, ...,

(i)
u

)
. Equation (1.1) becomes:

(2.11) ü(t) + ω2u(t) = εf
(
Ωt, u, u̇, ...,

(i)
u

)
.

With the notations:

(2.12) u
[j]
0 = εju

(j)
0 ; Λ

[j]
0 = εjΛ

(j)
0 ; j ≥ 1

Eqs. (2.5), (2.6), (2.7), (2.8) and (2.9) are respectively

u(t) = u0 +
∑

j≥1

εju
(j)
0 (t)
j !

,(2.13)

ω2
0 = ω2 +

∑

j≥1

εjΛ
(j)
0

j !
,(2.14)

ü0(t) + ω2u0(t) = 0 ,(2.15)

ü
(1)
0 (t) + ω2u

(1)
0 (t) = f

(
Ωt, u0, u̇0, ...,

(i)
u0

)
− Λ

(1)
0 u0(t),(2.16)

(2.17) ü
(2)
0 (t) + ω2u

(2)
0 (t), = 2f (1)

(
Ωt, u0, u̇0, ...,

(i)
u0

)
− 2Λ

(1)
0 (t) − Λ

(2)
0 u0(t),

where

(2.18) f (1)
(
Ωt, u0, u̇0, ...,

(i)
u0

)
=

df(Ωt, u, u̇, ...,
(i)
u)

dp

∣∣∣∣
p=0

=
∂f

∂u

∣∣∣∣
p=0

u
(i)
0 (t) +

i∑

k=1

∂f

∂
(k)
u

∣∣∣∣
p=0

(k)(1)
u0 (t), ... .
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3. Some applications

We illustrate the basic evaluation procedure of the proposed method by fol-
lowing three examples:

3.1. Example 1

We consider the differential equation [10]:

(3.1) ü +
u

1 + εu2
= 0, ε ∈ (0,∞)

with initial conditions:

(3.2) u(0) = A and u̇(0) = 0.

We rewrite Eq. (3.1) in the form

(3.3) ü + u = −εu2ü.

By the formula (2.15), we have

(3.4) u0(t) = A cosωt.

Substituting (3.4) into (2.16), results in:

(3.5) ü
(1)
0 + ω2u

(1)
0 = εω2A3 cos3 ωt− Λ

(1)
0 A cosωt

or

(3.6) ü
(1)
0 + ω2u

(1)
0 = A cosωt

(
3ω2

4
A2 − Λ

(1)
0

)
+

ω2A3

4
cos 3ωt.

Avoiding the presence of a secular term in Eq. (3.6), needs:

(3.7) Λ
(1)
0 =

3ω2

4
A2.

Considering the initial conditions u
(1)
0 = 0 and u̇

(1)
0 (0) = 0, we obtain the solution

of Eq. (3.6), which reads:

(3.8) u
(1)
0 (t) =

A3

32
(cosωt− cos 3ωt) .

Substitution of Eqs. (3.4), (3.7), and (3.8) into Eq. (2.17) yields:

(3.9) ü
(2)
0 + ω2u

(2)
0 = A cosωt

(
3

128
ω2A4 − Λ

(2)
0

)

− 13
128

A4ω2 cos 3ωt− 11
128

A4ω2 cos 5ωt.
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The elimination of secular term requires:

(3.10) Λ
(2)
0 =

3
128

ω2A4.

Solving Eq. (3.9) with the initial conditions u
(2)
0 = 0 and u̇

(2)
0 (0) = 0, we obtain

(3.11) u
(2)
0 (t) =

13A4

1024
(cos 3ωt− cosωt) +

11A4

3072
(cos 5ωt− cosωt) .

Substituting Λ
(1)
0 and Λ

(2)
0 into (2.14), (ω0 = 1), we have:

(3.12) 1 = ω2 +
3
4
εω2A2 +

3
256

ε2ω2A4 + 0(ε3).

From Eq. (3.12) we obtain

(3.13) ω2 =
1

1 +
3
4
εA2 +

3
256

ε2A4
.

The approximation period obtained from Eq. (3.13) is

(3.14) Tapprox = 2π

(
1 +

3
4
εA2 +

3
256

ε2A4

)−1/2

.

The formula (3.14) works well for small ε (0 < ε ¿ 1) but breaks down quickly
when ε becomes large. Here, we wish to develop uniformly valid expansions for
ω2 and u(t) for large values of ε, using a newly defined expansion parameter
η(ε,A) from (3.12) as follows [5]:

(3.15) η(ε,A) =

3
4
εA2

1 +
3
4
εA2

.

This relation is quickly convergent regardless of the magnitude of εA2, since
η < 1 for all εA2. In terms of η, the original parameter ε is given by

(3.16) ε =
η

3
4
A2(1− η)

.

Equation (3.3) can be rewritten as

(3.17) ü + u = η

(
ü + u− 4u2ü

3A2

)
.
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Equation (2.15), (2.16) and (2.17) are respectively:

(3.18) ü0 + ω2u0 = 0, u0(0) = A, u̇0(0) = 0,

(3.19)

ü
(1)
0 + ω2u

(1)
0 = −Λ

(1)
0 u0 + ü0 + u0 − 4u2

0ü

3A2
,

u
(1)
0 (0) = 0,

u̇
(1)
0 (0) = 0,

(3.20) ü
(2)
0 + ω2u

(2)
0 = −Λ

(2)
0 u0 − 2Λ

(1)
0 u

(1)
0 + 2ü

(1)
0 + 2u

(1)
0

−
8

(
u2

0ü
(1)
0 + 2u0ü0u

(1)
0

)

3A2
.

Equation (3.18) has the solution

(3.21) u0(t) = A cosωt.

Substituting (3.21) into (3.19), by the simple manipulation, we have

(3.22) ü
(1)
0 + ω2u

(1)
0 = A cosωt

(
1− Λ

(1)
0

)
+

Aω2

3
cos 3ωt.

In order to ensure that no secular term appears in Eq. (3.22), the resonance must
be avoided. To do so, coefficient of cosωt must be zero, i.e.

(3.23) Λ
(1)
0 = 1.

Assuming the initial conditions u
(1)
0 = 0 and u̇

(1)
0 = 0 in (3.22), we obtain

(3.24) u
(1)
0 (t) =

A

24
(cosωt− cos 3ωt) .

The substitution of (3.21), (3.23) and (3.24) into (3.20) yields:

(3.25) ü
(2)
0 + ω2u

(2)
0 = A cosωt

(
−Λ

(2)
0 − 5ω2

36

)

+
2Aω2

9
cos 3ωt− 11ω2A

36
cos 5ωt.
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Avoiding the presence of a secular term in Eq. (3.25), we obtain:

(3.26) Λ
(2)
0 = −5ω2

36
.

In the initial conditions u
(2)
0 (0) = 0 and u̇

(2)
0 (0) = 0, we have:

(3.27) u
(2)
0 (t) =

A

36
(cosωt− cos 3ωt) +

11A

864
(cos 5ωt− cosωt) .

Substituting (3.23) and (3.26) into equation

(3.28) 1 = ω2 + ηΛ
(1)
0 +

η

2
Λ

(2)
0 + 0

(
η3

)
.

we obtain:

(3.29) ω2 =
1− η

1− 5
72

η2
.

Substituting (3.15) into (3.29) we have

(3.30) ω2 =
96εA2 + 128

67ε2A4 + 192εA2 + 128
.

The approximation period obtained from (3.30) is

(3.31) Tapprox = 2π

(
67ε2A4 + 192εA2 + 128

96εA2 + 128

)1/2

.

To illustrate the remarkable accuracy of the obtained results, we compare the
approximate period (3.31) with the exact one [10]:

(3.32) Tex = 4
√

ε

A∫

0

du√
ln(1 + εA2)− ln(1 + εu2)

.

In case εA2 →∞, we have

(3.33) lim
εA2→∞

Tex

Tapprox
=

2
√

2πεA

2π

√
67
96

εA2

≈ 0.955076.

Therefore, for any values of ε, it can be easily proved that the maximal relative
error is less than 4.5%.
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Remark 1. We compare our procedure with the homotopy perturbation
method. He [9] constructed for Eq. (3.1) a homotopy which satisfies:

(3.34) (1− p) [L(v)− L(u0)] + p
[
(1 + εv2)v̈ + v

]
= 0

where L(v) = v̈ + v. The initial approximation of Eq. (3.3) is assumed in the
form:

(3.35) u0(t) = A cosαt

where α(ε) is a non-zero unknown constant with α(0) = 1. The basic assumption
is that the solution of (3.3) can be written as a power series in p:

(3.36) v = v0 + pv1 + p2v2 + ...

Setting p = 1 results in the approximate solution of Eq. (3.3)

u = lim
p→1

v = v0 + v1 + v2 + ... .

The series (3.36) may converge in the whole solution domain as p tends to one.
Substituting Eq. (3.36) into Eq. (3.34), and equating the terms with the identical
powers of p, we have:

(3.37) L(v0)− L(u0) = 0, v0(0) = A, v̇(0) = 0

(3.38)
L(v1)− L(v0) + L(u0) +

(
1 + εv2

0

)
v̈0 + v0 = 0;

v̇1(0) = 0; v1(0) = 0.

Setting v0 = u0 = A cosαt, the unknown α can be determined by the Galerkin
method:

(3.39)

π/α∫

0

sinαt
[
(1 + εu2

0)ü0 + u0

]
dt = 0.

The unknown α therefore can be identified:

(3.40) α =
(

1 +
3
4
αA2

)−1/2

.

As a result, from Eq. (3.38) we obtain:

(3.41) v̈1 + v1 − α2 εA3

4
cos 3αt = 0
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with the solution

(3.42) v1(t) = − α2εA3

4(9α2 − 1)
(cos 3αt− cos t).

If, for example, the first-order approximation is sufficient, then we have

(3.43) u(t) = lim
p→1

v(t) = v0(t) + v1(t) = A cosαt− α2εA3

4(9α2 − 1)
(cos 3αt− cos t)

with α defined as in Eq. (3.40).
The period of the solution can be expressed as follows:

(3.44) T = 2π

(
1 +

3
4
εA2

)1/2

.

The first order approximation of Eq. (3.1) or (3.3) by our procedure is ob-
tained from (2.13), (3.4) and (3.8):

(3.45) u∗(t) = A cosωt +
A3

32
(cosωt− cos 3ωt)

and ω is obtained from (2.14) (ω0 = 1):

(3.46) ω∗ =
(

1− 3
4
εA2

)1/2

while the period of the solution is given by the expression:

(3.47) T ∗ = 2π

(
1− 3

4
εA2

)−1/2

In our procedure, the term u0(t) results from Eq. (2.15), while with homotopy
perturbation method this term is supposed to be in the form (3.35). In both the
methods, the results are closed for ε small. The methods differ by the choice of
homotopies, of the frequencies and of the solutions.

3.2. Example 2

Now, we consider the motion of a nonlinear Mathieu oscillator, in one spatial
dimension [14]

(3.48) ü + ω2
0u = ε(u3 − u) cos 2t

with the initial conditions: u(0) = a and u̇(0) = 0 and for the case ω0 ≈ 1. We
consider Λ(0) = ω2 = 1 and thus Eq. (2.15) becomes:

(3.49) ü0(t) + u0(t) = 0.
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Solving Eq. (3.49) with the recalled initial conditions, we obtain:

(3.50) u0(t) = a cos t.

Substituting (3.50) into (2.16), we obtain

(3.51) ü
(1)
0 (t) + u

(1)
0 (t) =

[
1
2

(
a3 − a

)− Λ
(1)
0 a

]
cos t

+
1
8

(
3a3 − 4a

)
cos 3t +

1
8
a3 cos 5t.

Avoiding the presence of a secular term requires:

(3.52) Λ
(1)
0 =

1
2

(
a2 − 1

)
.

Considering the initial conditions u
(1)
0 (0) = 0 and u̇

(1)
0 (0) = 0, we obtain the

solution of Eq. (3.51), which reads:

(3.53) u
(1)
0 (t) =

1
64

(
4a− 3a3)(cos 3t− cos t

)
+

1
192

a3(cos t− cos 5t).

Substituting (3.53) into (2.13) and (3.52) into (2.14) respectively, we have:

(3.54) u(t) = a cos t + ε

[
1
64

(4a− 3a3)(cos 3t− cos t)

+
1

192
a3(cos t− cos 5t)

]
+ 0(ε2),

(3.55) ω2
0 = 1 +

ε

2
(a2 − 1) + 0(ε2).

The formula (3.55) works well for small ε (0 < ε ¿ 1) but breaks down
quickly when ε becomes large.

We use a newly defined expansion parameter η(ε, a)

(3.56) η(ε, a) =
ε(a2 − 1)

2 + ε(a2 − 1)
.

This relation is quickly convergent regardless of the magnitude of ε(a2 − 1),
since η < 1 for all ε(a2 − 1). In terms of η, the original parameter ε is given by

(3.57) ε =
2η

(1− η)(a2 − 1)
.
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Equation (3.48) can be rewritten as (strongly nonlinear Mathieu oscillator)

(3.58) ü + ω2u = η

[
2

a2 − 1
(u3 − u) cos 2t + ü + ω2u

]

and the initial conditions are u(0) = a and u̇(0) = 0.
By the same manipulation as the above example, we have:

(3.59) u(t) = a cos t + η

[
a(4− 3a2)
32(a2 − 1)

(cos 3t− cos t)

− a5

96(a2 − 1)
(cos 5t− cos t)

]

+
η2

2

∣∣∣∣
59a5 − 138a3 + 80a

256(a2 − 1)2
(cos t− cos 3t)+

35a4 − 14a3 − 24a

2304(a2 − 1)2
(cos t− cos 5t)

+
33a5 − 40a3

3456(a2 − 1)2
(cos 7t− cos t) +

a5

5120(a2 − 1)2
(cos 9t− cos t)

∣∣∣∣ + 0(η3),

(3.60) ω2 = 1 +
1
2
ε(a2 − 1)− ε2(a4 − 12a2 + 12)

192[2 + ε(a2 − 1)]
.

Comparing Eq. (3.60) with the numerical results for Eq. (3.48), we find a good
agreement for the case a = 11/10 (see Table 1).

Table 1.

ε η ω2 ω2

Eq. (3.60) (numerical)
0.1 0.010391 1.0105272 1.01052
0.5 0.049881 1.0526625 1.05312
1 0.095022 1.1074875 1.10851
2 0.173553 1.2190548 1.22001
3 0.239543 1.3338179 1.35189
4 0.295774 1.4509812 1.48132

From Table 1, we note that the results obtained with our method work well
and the frequency ω2 will not deviate significantly from its leading order value 1.
The analytical research result shows the applicability of the modified version to
this kind of strongly nonlinear oscillator.
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3.3. Example 3

In the last example, let us consider the well-known Duffing equation [1, 10,
11]:

(3.61) ü + u = −εu3

with the initial conditions u(0) = A and u̇(0) = 0.
We obtain

ω =

√
1
2

(
1 +

3
4
εA2

)
+

1
2

√
1 +

3
2
εA2 +

15
32

ε2A4,(3.62)

u(t) = A cosωt +
εA3

32ω2
(cos 3ωt− cosωt) +

ε2A5

1024ω2
(cos 5ωt− cosωt).(3.63)

The exact frequency of the periodic motion of the Duffing equation is given
by [10]:

(3.64) ωex =
π
√

1 + εA2

2




π/2∫

0

dx√
1−m sin2 x




−1

where m =
εA2

2(1 + εA2)
. For comparison, the exact frequency obtained by

integrating Eq. (3.64) and the approximate frequency computed by Eq. (3.62)
are listed in Table 2. We also have

(3.65) lim
εA2→∞

ω

ωex
=

√
6 +

√
30

2π

π/2∫

0

dx√
1− 0.5 sin2 x

= 0.999699.

Note that the accuracy of (3.62) is not strongly dependent upon the val-
ues of εA2 because they are uniformly valid for any possible values of εA2.
Equation (3.65) shows that formula (3.62) can gives an excellent approximate
frequency for both small and large values of the oscillation amplitude. There-
fore, for any value of ε > 0 it can be easily proved that the maximal relative
error of the frequency (3.62) is less than 0,3%. Without any cumbersome pro-
cedure, we can readily obtain the third or higer order approximates with high
accuracy.
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Table 2.

εA2 ω Eq. (3.62) ω Eq. (3.64)
0.2 1.07200 1.07200
0.4 1.138906 1.13891
0.6 1.201731 1.20173
0.8 1.2611777 1.26118
1 1.3177644 1.31778
2 1.5690506 1.56911
5 2.1501774 2.15042
10 2.86612768 2.86664
100 8.5310997 8.53359
1000 26.802504 26.8107
10000 84.7013205 84.7245

4. Conclusions

In this paper, we have studied analytically periodic solutions of strongly non-
linear oscillators. The modified homotopy perturbation method have been proved
to be effective and have some distinct advantages over usual approximate meth-
ods in that the approximate (or even exact) solutions obtained in the present
paper are valid not only for weakly nonlinear equations, but also for strongly
nonlinear ones. In particular, it would be desirable to determine easier ways of
constructing trial functions for some complex nonlinear problems. The results of
this work presented here, not only demonstrate the applicability of the modified
version of the homotopy perturbation method to strongly nonlinear oscillators,
but also underline the importance of the periodic solutions in gaining a better
understanding of physically relevant models. Convergence and error study for
the above mentioned examples is a further need and it is clear that many other
modifications can be made. This paper shows one step in the attempt to develop
a new nonlinear analytical technique in absence of small parameters.
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