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Reflection and refraction of thermoelastic plane waves
at an interface between two thermoelastic media
without energy dissipation
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The reflection and refraction of thermoelastic plane waves at an imperfect
interface between two dissimilar thermoelastic solid half-spaces has been investi-
gated. The thermoelastic theory without energy dissipation developed by Green and
Naghdi [18] has been used to study the problem. The amplitude ratios of various re-
flected and refracted waves are obtained for an imperfect boundary. Particular cases
of normal stiffness, transverse stiffness, slip and welded boundaries are discussed.
The amplitude ratios are also deduced at the interface of two semi-infinite media
(i) Elastic/Thermoelastic without energy dissipation, (ii) Thermal Conducting Liq-
uid/Thermoelastic without energy dissipation, (iii) Non-viscous Fluid/Thermoelastic
without energy dissipation, (iv) Thermal Conducting Liquid/Thermal Conducting
Liquid and (v) Elastic/Elastic. It is found that the amplitude ratios of various re-
flected and refracted waves are affected by the stiffness and thermal properties of the
media. The amplitude ratios of reflected waves are also deduced for a special case of
stress-free boundary.

Key words: thermoelasticity without energy dissipation, reflection and transmission
coefficients, imperfect boundary.

Notations

λ µ Lamé’s constants (material constants),

ρ density of the medium,

C∗ specific heat at constant strain,

t time,

T absolute temperature,

To the initial uniform temperature,

u , w components of displacement vector u,

τij components of stress tensor,

ν a thermal parameter = (3λ + 2µ) αt,

αt coefficient of linear thermal expansion,

K∗ material constant characteristics,

δij kroneckar delta,

∆2 Laplace operator.
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1. Introduction

There are two classical elastic boundary conditions for a solid/solid in-
terface. One boundary condition is for the welded or perfectly bonded interface,
which implies continuity of stress and displacement across the interface. The
other is the slip boundary condition, which implies continuity of the normal
components of stress and displacement across the interface, vanishing of the
shear components of stress and discontinuity of the shear components of dis-
placement. Physically, such a boundary condition corresponds to an infinitely
thin layer of ideal liquid that ensures free transverse slip on the interface. Classi-
cal boundary conditions idealize actual physical contact between two solids and,
in most cases, give excellent approximation and are supported by experimental
results.

An actual interface between two solids is much more complicated and has
physical properties different from those of substrates. For example, even grain
boundaries in polycrystalline materials are not perfect because of misfit of the
atomic structures of two neighboring grains. In this case dislocation may form
on the interface and the atomic structure becomes different than in the bulk
medium. This interface imperfection may be detected only at very high fre-
quencies. Another example of formation of a thin interface layer occurs when
two solids are bonded together either by a thin layer of other materials, for
example, glue or by some metallurgical process. Depending on the properties
of this layer, what has been demonstrated by Rokhlin and Marom [15], the
boundary between the solids may behave as slip, perfect or neither and its
state significantly affects elastic wave reflection and interface mechanical be-
havior.

Significant work has been done to describe the physical conditions on the
interface due to different mechanical boundary conditions due to different in-
vestigators. Notable among them are Jones and Whittier [4]; Murty [8];
Nayfeh and Nassar [9]; Rokhlin et al. [10]; Rokhlin [12]; Pilarski and
Rose [16].

Baik and Thomson [13] took an important step to describe physically
the interface stiffness; they introduced a new quasi-static model that define
the interface stiffness using the known static solution for an elastic body with
cracks. The problem of elastic wave diffraction by interface imperfection was
studied by Achenbach and coauthors [14]. Lovrentyev and Rokhlin [21]
investigated the imperfect boundary conditions between two elastic solid half-
spaces.

Thermoelasticity theories which admit a finite speed of thermal signals (sec-
ond sound) have attracted much interest in the last four decades. In contrast
to the conventional coupled thermoelasticity theory (CTE) based on a par-
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abolic heat equation, which predicts an infinite speed for the propagation of
heat, these theories involve a hyperbolic heat equation and are referred to as
generalized thermoelasticity theories. Among these generalized theories, the ex-
tended thermoelasticity theory (ETE) proposed by Lord and Shulman [3] and
temperature rate-dependent thermoelasticity theory developed by Green and
Lindsay [5] have been subjected to a large number of investigations. In view of
the experimental evidence available in favor of finiteness of the heat propagation
speed, generalized thermoelasticity theories are considered to be more realistic
than the conventional thermoelasticity theory in dealing with practical problems
involving very large heat fluxes at short intervals, like those occurring in laser
units and energy channels.

Recently Green and Naghdi [18], proposed a new thermoelasticity theory
by including the ‘thermal-displacement gradient’ among the independent consti-
tutive variables. An important feature of this theory which is not present in other
thermoelasticity theories is that this theory does not accommodate dissipation
of thermal energy.

Deresiewicz [1] studied the reflection of a plane wave from a plane stress-
free boundary in coupled theory of thermoelasticity and investigated the effect of
boundaries on these waves. But there is some algebraic mistake in the expressions
for the amplitude ratios, which was corrected by him in 1962 [2]. The reflection
of thermoelastic waves at a solid half-space with one relaxation time was in-
vestigated by Sinha and Sinha [6]. Beevers and Bree [7] discussed a wave
reflection problem in linear coupled thermoelasticity. Sharma [17] discussed
the reflection of thermoelastic waves from the stress-free insulated boundary of
anisotropic half-space. Sinha and Elsibai [19] studied the effect of two relax-
ation times on the reflection of thermoelastic waves at a homogeneous, isotropic
and thermal conducting elastic solid half-space. Sinha and Elsibai [20] studied
also the reflection and refraction of thermoelastic waves at an interface of two
semi-infinite media in contact, with two relaxation times. Singh and Kumar
[22, 23] investigated the reflection of plane waves from the flat boundary of a mi-
cropolar generalized thermoelastic half-space and micropolar generalized ther-
moelastic half-space with stretch. Singh and Kumar [24] also investigated the
wave propagation in generalized thermo-microstretch elastic solid. Abd-Alla
and Al-Dawy [25] discussed the reflection of thermoelastic plane wave at a gen-
eralized thermoelastic half-space with one and two relaxation times. Singh [26]
investigated the plane wave propagation in a homogeneous transversally isotropic
thermo-coupled elastic solid. Singh [27] discussed the reflection of plane wave
from the free surface of a viscous thermoelastic half-space.

The present investigation is concerned with the reflection and transmission of
thermoelastic plane waves in a thermoelastic medium without energy dissipation
and various special cases have been deduced.
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2. Formulation of the problem and basic equations

We consider two homogeneous isotropic thermoelastic solids without energy
dissipation being in contact with each other at a plane surface, which we denote
as the plane z = 0 of a rectangular co-ordinate system OXY Z. We consider
thermoelastic plane waves in the xz-plane with wave front parallel to y-axis and
all the field variables depend only on x, z and t.

Following Green and Naghdi [18], the field equations of the thermoelastic
solid without energy dissipation in absence of body forces and heat sources and
the constitutive relations can be written as

(2.1) (λ+ µ)∇ (∇.u) + µ∇2u − ν∇T = ρ
∂2u

∂t2
,

(2.2) K∗∇2T = ρC∗
∂2T

∂t2
+ νTo

∂2

∂t2
∇.u.

The stress-displacement and temperature relations are

(2.3) τij = λur,rδij + µ (ui,j + uj,i) − νTδij .

The list of the symbols is given at the beginning of the paper. For a two-
dimensional problem, the displacement vector u is taken as

(2.4) u = (u, 0, w) ,

where the displacement components u and w are related by the potential func-
tions φ and ψ as

(2.5)

u =
∂φ

∂x
− ∂ψ

∂z
,

w =
∂φ

∂z
+
∂ψ

∂x
.

Substituting the values of u and w from Eq. (2.5) in Eqs. (2.1), (2.2) with
the help of (2.4), we obtain

(2.6) c21∇2φ− ν̄ T =
∂2φ

∂t2
,

(2.7) c22∇2ψ =
∂2ψ

∂t2
,

(2.8) K
∗∇2T = C∗

∂2T

∂t2
+ ν̄ To

∂2

∂t2
(
∇2φ

)
,
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where

c21 =
λ+ 2µ

ρ
; c22 =

µ

ρ
; ν̄ =

ν

ρ
; K

∗

=
K∗

ρ
.

From Eqs. (2.6)–(2.8), we observe that while P -wave is affected by the pres-
ence of the T -wave and vice versa, the SV -wave remains unaffected.

Substituting the value of T from (2.6) in (2.8), we obtain

(2.9) ∇4φ−∇2

[
1

c21
+
C∗

K
∗

(1 + ε)

]
∂2φ

∂t2
+

C∗

K
∗

c21

∂4φ

∂t4
= 0,

where

ε =
ν̄2To

C∗c21
.

To solve Eqs. (2.7) and (2.9), we assume

(2.10) φ ∼ φ e−iωt, T ∼ T e−iωt, ψ ∼ ψ e−iω t.

With the help of Eq. (2.10), Eq. (2.9) reduces to

(2.11) ∇4φ +Aω2∇2φ+Bω4φ = 0,

where

A =
1

c21
+
C∗

K
∗

(1 + ε) , B =
C∗

K
∗

c21
.

We assume the solution of Eq. (2.11) as

(2.12) φ = φ1 + φ2,

where φ1 and φ2 satisfy

(2.13)
(∇2 + δ21) φ1 = 0,

(∇2 + δ22) φ2 = 0,

and where
δ21 = ω2λ2

1, δ22 = ω2λ2
2,

with

λ1 =

[
1

2

(√
A2 − 4B +A

)]1/2

, λ2 =

[(
1

2

)(
−
√
A2 − 4B +A

)]1/2

.

From Eq. (2.6), we obtain

(2.14) T = a1φ1 + a2φ2,
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where

ai =
1

ν̄

(
−δ2i c21 + ω2

)
, (i = 1, 2) .

Similarly Eq. (2.7) with the help of Eq. (2.10) takes the form

(2.15) (∇2 + δ23) ψ = 0,

where

δ23 =
ω2

c22
.

3. Reflection and transmission

We consider a thermoelastic plane wave (P - or SV - or T -) propagating
through the medium M , which we identify as the region z > 0 and fallingat
the plane z = 0, with its direction of propagation making an angle θo with the
normal to the surface. Corresponding to each incident wave, we get the waves
in medium M as reflected P -, SV - and T - waves and transmitted P -, SV - and
T - waves in the medium M ′. We write all the variables without the primes in
the region z > 0 (medium M) and attach a prime to denote the variables in the
region z < 0 (medium M ′), as shown in Fig. 1.

Fig. 1. Geometry of the problem.
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4. Imperfect boundary conditions

We consider a two-bonded homogenous isotropic thermoelastic solids in con-
tact, as shown in Fig. 1. If the bonding is imperfect and the size and spacing
between the imperfection is much smaller than the wavelength, then at the inter-
face these can be described by using spring boundary condition (Lavrentyev
and Rokhlin [21]), i.e. at z = 0

(4.1)

τ ′33 = Kn

[
w − w′

]
,

τ ′31 = Kt

(
u− u′

)
,

K∗
′ ∂T ′

∂z
= Kc(T − T ′),

τ ′33 = τ33,

τ ′31 = τ31,

K∗
′ ∂T ′

∂z
= K∗

∂T

∂z
,

where Kn and Kt are normal and transverse stiffness coefficients of a unit layer
thickness and have dimension N/m3, and Kc is the thermal contact conductance
with dimension W/m2 K sec.

The appropriate potentials satisfying the boundary conditions are

Medium M:

(4.2) φ = A0 exp {iδ1 (x cos θ0 − z sin θ0) − iω1t}
+A1 exp {iδ1 (x cos θ1 + z sin θ1) − iω1t},
+B0 exp {iδ2 (x cos θ0 − z sin θ0) − iω2t}
+B1 exp {iδ2 (x cos θ2 + z sin θ2) − iω2t},

(4.3) T = a1A0 exp {iδ1 (x cos θ0 − z sin θ0) − iω1t}
+ a1A1 exp {iδ1 (x cos θ1 + z sin θ1) − iω1t}
+ a2B0 exp {iδ2 (x cos θ0 − z sin θ0) − iω2t}
+ a2B1 exp {iδ2 (x cos θ2 + z sin θ2) − iω2t},

(4.4) ψ = D0 exp {iδ3(x cos θ0 − z sin θ0) − iω3t}
+D1 exp {iδ3(x cos θ3 + z sin θ3) − iω3t}.
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Medium M′:

(4.5) φ′ = A′

1 exp {iδ′1
(
x cos θ′1 − z sin θ′1

)
− iω′

1t}
+B′

1 exp {iδ′2
(
x cos θ′2 − z sin θ′2

)
− iω′

2t},

(4.6) T ′ = a′1A
′

1 exp {iδ′1
(
x cos θ′1 − z sin θ′1

)
− iω′

1t}
+ a′2B

′

1 exp {iδ′2
(
x cos θ′2 − z sin θ′2

)
− iω′

2t},

(4.7) ψ′ = D′

1 exp {iδ′3(x cos θ′3 − z sin θ′3) − iω′

3t},

where

B0, D0 = 0, for incident P -wave,

A0, B0 = 0, for incident SV -wave,

A0, D0 = 0, for incident T -wave.

Snell’s law is given as

(4.8)
cos θ0
V0

=
cos θ1

λ−1
1

=
cos θ2

λ−1
2

=
cos θ3

λ−1
3

=
cos θ′1
(λ′1)

−1
=

cos θ′2
(λ′2)

−1
=

cos θ′3
(λ′3)

−1

where

(4.9) δ1
(
λ−1

1

)
= δ2

(
λ−1

2

)
= δ3

(
λ−1

3

)

= δ′1

[(
λ′1
)
−1
]

= δ′2

[(
λ′2
)
−1
]

= δ′3

[(
λ′3
)
−1
]

at z = 0,

and

(4.10) V0 =






λ−1
1 , for incident P -wave,

λ−1
2 , for incident T -wave,

λ−1
3 , for incident SV -wave.

Making use of the potentials given by Eqs. (4.2)–(4.7) in boundary conditions
(4.1) and using Eqs. (2.3) and (2.5), we get a system of six non-homogeneous
equations which can be written as

(4.11)
6∑

i

aijZj = Yi , (j = 1, 2...6) ,
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where

a11 = iKnδ1 sin θ1,

a12 = iKnδ2 sin θ2,

a13 = iKnδ3 cos θ3,

a14 = iKnδ
′

1 sin θ′1 + λ′δ′
2
1 + ν ′a′1 + 2µ′δ′

2
1 sin2 θ1,

a15 = iKnδ
′

2 sin θ′2 + λ′δ′2
2 + ν ′a′2 + 2µ′δ′

2
2 sin2 θ′2,

a16 = −
(
iδ′3Kn cos θ′3 + µ′δ23 sin 2θ′3

)
,

a21 = iKtδ1 cos θ1,

a22 = iKtδ2 cos θ2,

a23 = −iKtδ3 sin θ3,

a24 = −(µ′δ′
2
1 sin 2θ′1 + iδ′1Kt cos θ′1),

a25 = −(µ′δ′
2
2 sin 2θ′2 + iδ′2Kt cos θ′2),

a26 = µ′δ′
2
3 cos 2θ′3 + iδ′3Kt sin θ′3,

a31 = Kca1,

a32 = Kca2,

a33 = a36 = 0,

a34 = −(Kca
′

1 − iK∗
′

δ′1a
′

1 sin θ′1),

a35 = −
(
Kca2 − iK∗

′

δ′2a
′

2 sin θ′2

)
,

a41 = −
(
λ+ 2µ sin2 θ1

)
δ21 − ν a1,

a42 = −
(
λ+ 2µ sin2 θ2

)
δ22 − ν a2,

a43 = −µδ23 sin 2θ3,

a44 =
(
λ′ + 2µ′ sin2 θ′1

)
δ′

2
1 + ν ′ a′1,

a45 =
(
λ′ + 2µ′ sin2 θ′2

)
δ′

2
2 + ν ′ a′2,

a46 = −µ′δ′23 sin 2θ′3,

a51 = µδ21 sin 2θ1,

a52 = µδ22 sin 2θ2,

a53 = µδ23 cos 2θ3,
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a54 = µ′δ′
2
1 sin 2θ′1,

a55 = µ′δ′2
2 sin 2θ′2,

a56 = −µ′δ′23 cos 2θ′3,

a61 = iK∗a1δ1 sin θ1,

a62 = iK∗a2δ2 sin θ2,

a64 = iK∗
′

a′1δ
′

1 sin θ′1,

a65 = iK∗
′

a′2δ
′

2 sin θ′2

a63 = a66 = 0

and

Z1 =
A1

A∗
; Z2 =

B1

A∗
; Z3 =

D1

A∗
; Z4 =

A′

1

A∗
; Z5 =

B′

1

A∗
; Z6 =

D′

1

A∗
;

(a) For incident P -wave

A∗ = A0, Y1 = a11, Y2 = −a21, Y3 = −a31,

Y4 = −a41, Y5 = a51, Y6 = a61,

(b) For incident SV -wave

A∗ ≡ D0, Y1 = −a13, Y2 = a23, Y3 = a33,

Y4 = a43, Y5 = −a53, Y6 = −a63.

(c) For incident T -wave

A∗ ≡ Bo, Y1 = a12, Y2 = −a22, Y3 = −a32,

Y4 = −a42, Y5 = a52, Y6 = a62,

where Z1, Z2, Z3 are the amplitude ratios of reflected P -, T - and SV -waves
and Z4, Z5, Z6 are the amplitude ratios of refracted P -, T -, and SV -wave,
respectively.

5. Cases

Case 1. Normal Stiffness
In the case Kn 6= 0, Kt → ∞, Kc → ∞, we have a boundary with normal

stiffness and obtain a system of six non-homogeneous equations as given by
Eq. (4.11) with changed values of aij as

a21 = iδ1 cos θ1, a22 = iδ2 cos θ2, a23 = −iδ3 sin θ3,

a24 = −iδ′1 cos θ′1, a25 = −iδ′2 cos θ′2, a26 = −iδ′3 sin θ′3,
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a31 = a1, a32 = a2, a34 = −a1, a35 = −a2.

Case 2. Transversal Stiffness
Taking Kn → ∞, Kt 6= 0,Kc → ∞, the imperfect boundary reduces to the

transverse stiffness and we obtain a system of six non-homogeneous equations
as given by Eq. (4.11); the values of aij ; take the following form:

a11 = iδ1 sin θ1 , a12 = iδ2 sin θ2 , a13 = iδ3 cos θ3 ,

a14 = iδ′1 sin θ′1 , a15 = iδ′2 sin θ′2 , a16 = −iδ′3 cos θ′3,

a31 = a1, a32 = a2, a34 = −a′1, a35 = −a′2.

Case 3. Thermal Contact Conductance
With Kn → ∞, Kt → ∞, Kc 6= 0 , the imperfect boundary reduces to a ther-

mally conducting imperfect surface, getting systems of six non-homogeneous
equations as given by Eq. (4.11) and the modified values of aij are

a11 = iδ1 sin θ1, a12 = iδ2 sin θ2, a13 = iδ3 cos θ3,

a14 = iδ′1 sin θ′1, a15 = iδ′2 sin θ′2, a16 = −iδ′3 cos θ′3,

a21 = iδ1 cos θ1, a22 = iδ2 cos θ2, a23 = −iδ3 sin θ3, a24 = −iδ′1 cos θ′1,

a25 = −iδ′2 cos θ′2, a26 = −iδ′3 sin θ′3.

Case 4. Welded Contact
In this case Kn → ∞, Kt → ∞, Kc → ∞ then we obtain a system of

Eqs. (4.11) with changed values of aij as

a11 = iδ1 sin θ1, a12 = iδ2 sin θ2, a13 = iδ3 cos θ3,

a14 = iδ′1 sin θ′1, a15 = iδ′2 sin θ′2, a16 = −iδ′3 cos θ′3,

a21 = iδ1 cos θ1, a22 = iδ2 cos θ2, a23 = −iδ3 sin θ3,

a24 = −iδ′1 cos θ′1, a25 = −iδ′2 cos θ′2, a26 = −iδ′3 sin θ′3,

a31 = a1, a32 = a2, a34 = −a′1, a35 = −a′2.

Case 5. Slip Boundary
If Kn → ∞, Kt → 0,Kc → ∞, then the imperfect boundary becomes a slip

boundary and we obtain a system of six non-homogeneous equations as given by
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Eqs. (4.11) with modified values of aij as

a11 = iδ1 sin θ1, a12 = iδ2 sin θ2, a13 = iδ3 cos θ3

a14 = iδ′1 sin θ′1, a15 = iδ′2 sin θ′2, a16 = −iδ′3 cos θ′3 ,

a21 = a22 = a23 = 0, a24 = µ′δ′21 sin 2θ′1,

a25 = µ′δ′22 sin 2θ′2, a26 = −µ′δ′23 cos 2θ′3,

a31 = a1, a32 = a2, a34 = −a′1,

a35 = −a′2, a44 = a45 = 0 = a46.

Special case: Stress-Free Boundary

In this case when Kn → 0, Kt → 0, Kc → ∞ our results reduce to the stress-
free thermoelastic boundary and we obtain a system of three non-homogeneous
equations:

(5.1)
3∑

i=1

cij Zj = Yi, (j = 1, 2, 3),

where

c11 =
(
λ+ 2µ sin2 θ1

)
δ21 + νa1, c12 =

(
λ+ 2µ sin2 θ2

)
δ22 + νa2,

c13 = µδ23 sin 2θ3, c21 = µδ21 sin 2θ1,

c22 = µδ22 sin 2θ2, c23 = µδ23 cos 2θ3,

c31 = a1, c32 = a2, c33 = 0 [Isothermal boundary]

or

c31 = ia1δ1 sin θ1, c32 = ia2δ2 sin θ2, c33 = 0, [Insulated boundary]

with

Z1 =
A1

A∗
, Z2 =

B1

A∗
, Z3 =

D1

A∗
.

(a) For incident P -wave; A∗ = A0

[Y1 = −c11, Y2 = c21, Y3 = −c31 (Isothermal)

Y3 = c31, (Insulated)]
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(b) For incident SV -wave, A∗ = D0

[Y1 = c13, Y2 = −c23, Y3 = c33]

(c) For incident T -wave, A∗ = B0

[Y1 = −c12, Y2 = c22, Y3 = −c32, (Isothermal)

Y3 = c32, (Insulated)]

where Z1, Z2 and Z3 are the amplitude ratios of reflected P -, T - and SV - waves
respectively.

6. Deductions

(A) : In absence of the thermal effect in medium M ′, we obtain the elastic/
thermoelastic imperfect boundary. We obtain a system of five non-homogeneous
equations, which can be written as

(6.1)
5∑

i=1

aij Z
∗

j = Y ∗

i , (j = 1, ..., 5),

where

a11 = iKnδ1, sin θ1, a12 = iKnδ2 sin θ2, a13 = iKnδ3 cos θ3,

a14 = iKnδ
′

1 sin θ′1 + λ′δ′21 + 2µ′δ′21 sin2 θ′1,

a15 = −
(
iδ′3Kn cos θ′3 + µ′δ′23 sin 2θ′3

)
,

a21 = iKtδ1 cos θ1, a22 = iKtδ2 cos θ2, a23 = −iKtδ3 sin θ3,

a24 = −(µ′δ′21 sin 2θ′1 + iδ′1Kt cos θ′1), a25 = µ′δ′23 cos 2θ′3 + iδ′3Kt sin θ′3,

a31 = −
(
λ+ 2µ sin2 θ1

)
δ21 − ν a1, a32 = −

(
λ+ 2µ sin2 θ2

)
δ22 − ν a2,

a33 = −µδ23 sin 2θ3 a34 =
(
λ′ + 2µ′ sin2 θ′1

)
δ′21 a35 = −µ′δ′23 sin 2θ′3,

a41 = µδ21 sin 2θ1, a42 = µδ22 sin 2θ2, a43 = µδ23 cos 2θ3,

a44 = µ′δ′21 sin 2θ′1, a45 = −µ′δ′23 cos 2θ3,

a51 = a1, a52 = a2, a53 = a54 = a55 = 0,

with

λ′
2
1 =

1

c′21
, λ′

2
2 = 0;
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and

Z∗

1 =
A1

A∗
, Z∗

2 =
B1

A∗
, Z∗

3 =
D1

A∗
, Z∗

4 =
A′

1

A∗
, Z∗

5 =
D′

1

A∗
;

(a) For Incident P -wave; A∗ = A0
[
Y ∗

1 = a11, Y ∗

2 = −a21, Y ∗

3 = −a31

Y ∗

4 = a41, Y ∗

5 = −a51,

]

(b) For Incident SV -wave; A∗ = D0
[
Y ∗

1 = −a∗13, Y ∗

2 = a∗23, Y ∗

3 = a∗33 ;

Y ∗

4 = −a∗43, Y ∗

5 = a∗53

]

(c) For Incident T -wave; A∗ = B0
[
Y ∗

1 = a∗12, Y ∗

2 = −a∗22, Y ∗

3 = −a∗32,
Y ∗

4 = a∗42, Y ∗

5 = −a52,

]

where Z∗

1 , Z
∗

2 , Z
∗

3 are amplitude ratios of reflected P -,T - and SV - waves and
Z∗

4 , Z
∗

5 are the amplitude ratios of transmitted P - and SV -waves respectively.
(B): Taking µ′ → 0 in medium M ′, we obtain an interface of thermally

conducting liquid/thermoelastic solid half-spaces, leading to a system of five
non-homogeneous equations, which can be written as

5∑

i=1

aij Zj = Yi , (j = 1, 2, ..., 5),

where

a11 = iKnδ1 sin θ1, a12 = iKnδ2 sin θ2, a13 = iKnδ3 cos θ3,

a14 = iKnδ
′

1 sin θ′1 + λ′δ′21 + ν ′a′1, a15 = iKnδ
′

2 sin θ′2 + λ′δ′22 + ν ′a′2,

a21 = a1, a22 = a2, a24 = −a′1, a25 = −a′2, a23 = 0,

a31 = −
(
λ+ 2µ sin2 θ1

)
δ21 − ν a1, a32 = −

(
λ+ 2µ sin2 θ2

)
δ22 − ν a2,

a33 = −µδ23 sin 2θ3, a34 = λ′δ′21 + ν ′ a′1, a35 = λ′δ′22 + ν ′ a′2,

a41 = µδ21 sin 2θ1, a42 = µδ22 sin 2θ2,

a43 = µδ23 cos 2θ3, a44 = a45 = 0,

a51 = a1 (iK∗δ1 sin θ1 − hc) , a52 = a2 (iK∗δ2 sin θ2 − hc) ,

a54 = hca
′

1, a55 = hca
′

2, a53 = 0,

where hc is heat transfer coeffivient at the interface,
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and

(6.2)

λ′1 =

[
1

2

(√
A′ 2 − 4B′ +A′

)]1/2

,

λ′2 =

[
1

2

(
−
√
A′2 − 4B′ +A′

)]1/2

,

where

A′ =
C∗′

K
∗′

(1 + ε′) +
1

c′21
,

B′ =
C∗′

K
∗′

c′
12

,

c′
2
1 =

λ′

ρ′
.

and

Z1 =
A1

A∗
, Z2 =

B1

A∗
, Z3 =

D1

A∗
, Z4 =

A′

1

A∗
, Z5 =

B′

1

A∗

(a) For Incident P -Wave; A∗ = A0

[Y1 = a11, Y2 = −a21, Y3 = −a31, Y4 = a41, Y5 = a51]

(b) For Incident SV -Wave; A∗ = D0

[Y1 = −a13, Y2 = a23 Y3 = a33, Y4 = −a43, Y5 = a53]

(c) For Incident T -Wave; A∗ = B0

[Y1 = a12, Y2 = −a22, Y3 = −a32, Y4 = a42, Y5 = a52]

The amplitude ratios Z1, Z2, Z3 are for reflected P -, T - and SV -waves and
Z4, Z5 are for transmitted P - and T -waves respectively.

(C): In absence of thermal effect in the thermally conducting liquid (Case
B), we obtain the corresponding results at an interface of homogeneous inviscid
liquid/thermoelastic solid half-spaces, yielding the four non-homogenous equa-
tions which can be presented as

(6.3)
4∑

i=1

aij Z
∗

j = Y ∗

j , (j = 1, 2, 3, 4),
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where

a11 = iKnδ1 sin θ1, a12 = iKnδ2 sin θ2,

a13 = iKnδ3 cos θ3, a14 = iKnδ
′

1 sin θ′1 + λ′δ′21,

a21 = −
(
λ+ 2µ sin2 θ1

)
δ21 − ν a1, a22 = −

(
λ+ 2µ sin2 θ2

)
δ22 − ν a2,

a23 = −µδ23 sin 2θ3, a24 = λ′δ′21,

a31 = µδ21 sin 2θ1, a32 = µδ22 sin 2θ2, a33 = µδ23 cos 2θ3, a34 = 0,

a41 = a1δ1 sin θ1, a42 = a2δ2 sin θ2, a43 = a44 = 0, [Insulated boundary]

or

a41 = a1, a42 = a2, a43 = a44 = 0 [Isothermal boundary],

where λ′1 and λ′2 are given by Eq. (6.2) with c′21 =
λ′

ρ′

and

Z∗

1 =
A1

A∗
, Z∗

2 =
B1

A∗
, Z∗

3 =
D1

A∗
, Z∗

4 =
A′

1

A∗
,

(a) For Incident P -wave; A∗ = A0

[Y ∗

1 = a11, Y ∗

2 = −a21, Y ∗

3 = a31, Y ∗

4 = a41]

(b) For Incident SV -wave; A∗=Do

[Y ∗

1 = −a13, Y ∗

2 = a23, Y ∗

3 = −a33, Y ∗

4 = a43]

(c) For Incident T -wave; A∗=Bo

[Y ∗

1 = a12, Y ∗

2 = −a22, Y ∗

3 = a32, Y ∗

4 = a42]
,

where Z∗

1 , Z
∗

2 , Z
∗

3 are the amplitude ratios of reflected P - , T - and SV -waves
respectively and Z∗

4 is the amplitude ratio of a transmitted P -wave.
(D): Taking µ → 0 and µ′ → 0 in medium M and M ′ respectively, we

have thermally conducting liquid/thermally conducting liquid imperfect bound-
ary and the corresponding results can be written as

(6.4)
4∑

i=1

aijZ
∗ ∗

j = Y ∗ ∗

j , (j = 1, 2, 3, 4),
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where

a11 = iKnδ1 sin θ1, a12 = iKnδ2 sin θ2,

a13 = iKnδ
′

1 sin θ′1 + λ′δ
′2
1 + ν ′a′1, a14 = iKnδ

′

2 sin θ′2 + λ′δ
′2
2 + ν ′a′2,

a21 = a1, a22 = a2, a23 = −a′1, a24 = −a′2,
a31 = −λδ21 − ν a1, a32 = −λδ22 − ν a2,

a33 = λ′δ′21 + ν ′ a′1, a34 = λ′δ′22 + ν ′ a′2,

a41 = a1 δ1 sin θ1, a42 = a2δ2 sin θ2,

a43 = −a′1δ′1 sin θ′1, a44 = −a′2δ′2 sin θ′2,

here

c21 =
λ

ρ
, c′

2
1 =

λ′

ρ′

and

Z∗ ∗

1 =
A1

A∗
, Z∗ ∗

2 =
B1

A∗
, Z∗ ∗

3 =
A′

1

A∗
, Z∗ ∗

4 =
B′

1

A∗
,

(a) For Incident P -wave; A∗ = A0

[Y ∗ ∗

1 = a11, Y ∗ ∗

2 = −a21, Y ∗ ∗

3 = −a31, Y ∗ ∗

4 = a41]

(b) For Incident T -wave; A∗ = B0

[Y ∗ ∗

1 = a12, Y ∗ ∗

2 = −a∗ ∗22 , Y ∗ ∗

3 = −b∗ ∗32 , Y ∗ ∗

4 = a∗ ∗42 ]

Z∗ ∗

1 , Z∗ ∗

2 are the amplitude ratios of reflected P - and T -waves and Z∗ ∗

3 , Z∗ ∗

4

are the amplitude ratios of the transmitted P - and T -waves respectively.
(E): In absence of the thermal effect in M and M ′ our results reduce to the

interface of elastic and elastic half-spaces and are in agreement with the results
if we solve the problem directly.

7. Particular cases

For deductions (A) and (E):
• Kn 6= 0, Kt → ∞, corresponds to the case of normal stiffness boundary.
• Considering Kn → ∞, Kt 6= 0, the results discussed above reduce to

transverse stiffness boundary.
• Also taking Kn → ∞, Kt → 0, the corresponding results reduce to slip

boundary.
• If we take Kn → ∞, Kc 6= 0, then we obtain the corresponding results for

a welded boundary.
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For deductions (B), (C) and (D):
• Kn 6= 0, corresponds to the case of normal stiffness boundary.
• If we take Kn → ∞, we obtain the corresponding results for a welded

boundary.

8. Numerical results and discussion

With the view of illustrating the theoretical results obtained in the preced-
ing sections and comparing these in various situations, we now present some
numerical results. The materials chosen for this purpose are Magnesium (M)
and Zinc (M ′). Physical data of these metals are given (Dhaliwal and Singh
[11]) below:

Magnesium
λ = 2.696 × 1010 Nm−2,

µ = 1.639 × 1010 Nm−2,

ρ = 1.74 × 103 Kgm−3,

C∗ = 1.04 × 103 JKg−1 deg−1,

ν = 2.68 × 106 Nm−2 deg−1,

T0 = 298 K,

Zinc
λ′ = 8.58 × 1010, Nm−2,

µ′ = 3.85 × 1010, Nm−2,

ρ′ = 7.14 × 103 Kgm3,

C∗
′

= 3.9 × 102 JKg−1 deg−1,

ν ′ = 5.75 × 106 Nm−2deg−1,

T ′

0 = 296 K,

with the dimensionless value of
ω

ω∗′
= 10 and ω∗ =

4 × C ′

1

ℓ
, where ℓ is the

characteristic length and ℓ = 1,
Kn

µ′δ′1
= 0.05,

Kt

µ′δ′1
= 0.01,

Kc

K∗′δ′1
= 2.

The material characteristic constant K∗ has been selected at random. Thus

for the non-dimensional quantity C2
T =

K∗

ρC∗C2
1

, we have taken the hypothetical

value of CT = 0.5. For this choice of material parameter in medium M , we have

K∗ =
C∗(λ+ 2µ)

4
. Similarly we select K∗′ =

C∗
′

(λ′ + 2µ′)

4
for medium M ′.
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A computer programme has been developed and amplitude ratios of various
reflected and transmitted waves have been computed. The variations of ampli-
tude ratios for thermoelastic solid with Stiffness (ST), thermoelastic solid with
Normal Stiffness (NS), thermoelastic solid with Transverse Stiffness (TS), ther-
moelastic solid with Thermal Contact Conductance (TCC) and thermoelastic
solid with Welded Contact (WC) have been shown by solid line, dashed line,
dashed line with central symbol ‘circle’, dashed line with central symbol ‘trian-
gle’ and dashed line with central symbol ‘cross’ respectively. The variations of
the amplitude ratios |Zi|, (i = 1, ..., 6) of various reflected and transmitted waves
for ST, NS, TS, TCC and WC with angle of emergence θ 0 of different cases of
the incident wave (P -, SV - or T -) have been shown in the Figs. 2–19.

Incident P -wave

The variations of amplitude ratios of the reflected and transmitted waves
with angle of emergence from different boundaries for incident P -wave have
been shown in Figs. 2–7.

Figure 2 shows the variation of amplitude ratios of the reflected P -wave
with angle of emergence from various boundaries. It is evident that the values
of amplitude ratio |Z1| for NS, TCC and WC is always greater than ST for
all values of θ0. The values of amplitude ratio |Z1| for TS are greater when
3◦ ≤ θ0 ≤ 18◦, 21◦ ≤ θ0 ≤ 46◦, 49◦ ≤ θ0 ≤ 90◦ and smaller for other values
of θ0 in comparison to ST. To present the variations clearly we have magni-
fied the values of amplitude ratios for ST and TS by multiplying their original
values by 10.

Fig. 2. Angle of Emergence (in deg.).



174 Rajneesh Kumar, Parth Sarthi

Figure 3 presents the variation of amplitude ratios of the reflected T -wave
with angle of emergence from various boundaries. It is observed that the values
of amplitude ratio |Z2| for NS, TCC and WC are greater than that of ST when
0◦ ≤ θ0 ≤ 26◦ and 49◦ ≤ θ0 ≤ 90◦. The values of amplitude ratio |Z2| for TS are
greater when 0◦ ≤ θ0 ≤ 34◦ and smaller when 35◦ ≤ θ0 ≤ 90◦ in comparison to
ST. The amplitude ratios for TCC and WC are equal for 55◦ ≤ θ0 ≤ 90◦.

Fig. 3. Angle of Emergence (in deg.).

The variations of amplitude ratios of the reflected SV -wave with angle of
emergence from various boundaries is shown by Fig. 4. The values of amplitude
ratio |Z3| for NS is greater when 0◦ ≤ θ0 ≤ 18◦, 45◦ ≤ θ0 ≤ 54◦; for TS it

Fig. 4. Angle of Emergence (in deg.).



Reflection and refraction of thermoelastic plane waves: ... 175

is greater when 0◦ ≤ θ0 ≤ 26◦, 77◦ ≤ θ0 ≤ 90◦; for TCC it is greater when
0◦ ≤ θ0 ≤ 22◦, 45◦ ≤ θ0 ≤ 54◦; for WC it is greater when 0◦ ≤ θ0 ≤ 24◦,
45◦ ≤ θ0 ≤ 54◦ and smaller for other ranges θ0 in comparison to ST. In order to
present the variations clearly we have magnified the values of amplitude ratios
for TCC by multiplying their original value by 10.

Figure 5 shows the variations of amplitude ratios of transmitted P -wave with

angle of emergence from various boundaries. It is seen that the value of amplitude

ratio |Z4| for NS is greater than that of ST when 0◦ ≤ θ0 ≤ 38◦; 47◦ ≤ θ0 ≤ 52◦

and 55◦ ≤ θ0 ≤ 62◦ and is smaller for the other ranges. The value of amplitude

ratio |Z4| for TCC and WC is greater when 0◦ ≤ θ0 ≤ 36◦; 47◦ ≤ θ0 ≤ 52◦ and

smaller for the other ranges in comparison to that of ST respectively. Here the

original value for TS is multiplied by 10.

Fig. 5. Angle of Emergence (in deg.).

Figure 6 depicts the variation of amplitude ratios of a transmitted T -wave

with angle of emergence. It is evident that the values of amplitude ratio |Z5|
for TCC and WC are always greater than those of ST for all the values of θ0.

The values of amplitude ratio |Z5| for NS it is greater when 0◦ ≤ θ0 ≤ 56◦;

63◦ ≤ θ0 ≤ 90◦; for TS is greater when 55◦ ≤ θ0 ≤ 90◦ and smaller for the other

ranges of θ0 than that of ST. To depict the variations clearly we have magnified

the values of amplitude ratios for ST and TS by multiplying their original value

by 10.

The values of amplitude ratios of |Z6| (transmitted SV -waves) from various

boundaries oscillates as a function of the angle of emergence and the variations

is depicted by Fig. 7.
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Fig. 6. Angle of Emergence (in deg.).

Fig. 7. Angle of Emergence (in deg.).

Incident SV -wave

The variation of amplitude ratios of various reflected and transmitted waves
with angle of emergence when a SV -wave is incident, have been shown in
Figs. 8–13.

Figure 8 shows the variation of amplitude ratios of the reflected P -wave with
angle of emergence from various boundaries. It is evident that the values of
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amplitude ratio |Z1| for NS are greater when 0◦ ≤ θ0 ≤ 44◦, 49◦ ≤ θ0 ≤ 60◦,
71◦ ≤ θ0 ≤ 90◦ and smaller for the other ranges of θ0 in comparison to ST. The
values of amplitude ratio |Z1| for TCC and WC are greater when 9◦ ≤ θ0 ≤ 10◦;
45◦ ≤ θ0 ≤ 52◦; 61◦ ≤ θ0 ≤ 90◦ and smaller for the other ranges of θ0 in
comparison to ST. It is clear that the value of amplitude ratio |Z1| for TS is
always smaller than that of ST.

Fig. 8. Angle of Emergence (in deg.).

Figure 9 depicts the variations of amplitude ratios of the reflected T -wave
with angle of emergence. It is observed that the values of amplitude ratio |Z2|

Fig. 9. Angle of Emergence (in deg.).
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for NS is greater when 51◦ ≤ θ0 ≤ 90◦; for TS it is greater when 0◦ ≤ θ0 ≤ 62◦,
67◦ ≤ θ0 ≤ 90◦; for TCC and WC it is greater when 9◦ ≤ θ0 ≤ 10◦, 47◦ ≤ θ0 ≤
90◦ and smaller for the other ranges of θ0 in comparison to that of ST. To depict
the variations clearly we have magnified the value of amplitude ratios for WC
by multiplying its original value by 10.

Figure 10 shows the variations of amplitude ratio |Z3| for a reflected SV-wave.

It is evident that the value of amplitude ratio |Z3| is greater for NS and TCC

when 45◦ ≤ θ0 ≤ 50◦; for TS when 7◦ ≤ θ0 ≤ 90◦; for WC when 9◦ ≤ θ0 ≤ 10◦,

47◦ ≤ θ0 ≤ 48◦ and smaller for the remaining values of θ 0 than that of ST. To

depict the variations clearly we have magnified the value of amplitude ratios for

TS and TCC by multiplying their original value by 10.

Fig. 10. Angle of Emergence (in deg.).

Figure 11 shows the variations of amplitude ratios |Z4| of a transmitted

P - wave. It is observed that the value of amplitude ratio |Z4| for NS, TCC

and WC is greater when 43◦ ≤ θ0 ≤ 50◦, 61◦ ≤ θ0 ≤ 90◦ and for TS it is

greater when 5◦ ≤ θ0 ≤ 44◦, 51◦ ≤ θ0 ≤ 90◦ and smaller for the remaining

ranges of θ 0 than that of ST. To depict the variations clearly we have magni-

fied the value of amplitude ratios for TS and WC by multiplying their original

value by 10.

Figure 12 presents the variations of amplitude ratios |Z5| of a transmitted

T -wave. It is observed that the value of amplitude ratio |Z5| for NS, TCC and

WC is greater when 0◦ ≤ θ0 ≤70◦ and smaller for the remaining range of θ 0

than that of ST. It is clear that the amplitude ratio |Z5| for TS is always smaller
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than that of ST. To depict the variations clearly we have magnified the values

of amplitude ratios for TS by multiplying their original value by 10.

Fig. 11. Angle of Emergence (in deg.).

Fig. 12. Angle of Emergence (in deg.).

Figure 13 shows the variations of a transmitted SV -wave. It is evident that

the values of amplitude ratio |Z6| oscillate as a function of the angle of emergence.
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Fig. 13. Angle of Emergence (in deg.).

Incident T -wave

The variations of amplitude ratio of the reflected and transmitted waves with

warying angle of emergence when T -wave is incident, is shown in Figs. 14–19.

Figures 14 and 15 show the variation of the amplitude ratios |Z1| and |Z2| of

reflected P - and T -wave from various boundaries. It is observed that the value of

the amplitude ratios of the waves for NS, TS, TCC and WC is always coincident

with that of ST. To depict the variations, the amplitude ratios for TS and TCC

are magnified by multiplying their original values by 10, whereas the amplitude

ratios for NS and WC are divided by 10.

Fig. 14. Angle of Emergence (in deg.).
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Fig. 15. Angle of Emergence (in deg.).

Figure 16 depicts the variation of amplitude ratio |Z3| of a reflected SV -

wave. It is evident that values of amplitude ratio for the other boundaries are

always smaller in comparison with that of ST. Here we have divided the value

of amplitude ratios for WC by 10, in order to depict the variations clearly.

Fig. 16. Angle of Emergence (in deg.).

Figure 17 shows the variation of amplitude ratio |Z4| of a transmitted P -

wave. It is clear that the values of amplitude ratio for NS, TS, TCC and WC

are always smaller for all values of θ 0 than that of ST. To depict the variations

clearly we have divided the values of amplitude ratios for NS and TCC by 10.
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Fig. 17. Angle of Emergence (in deg.).

Figure 18 shows the variation of amplitude ratio |Z5| of a transmitted T -wave.
The values of amplitude ratio for NS, TS, TCC and WC are always smaller for
all values of θ 0 than that of ST. To depict the variations clearly we have divided
the values of amplitude ratios for TS and WC by 10.

Fig. 18. Angle of Emergence (in deg.).

Figure 19 shows the variation of a transmitted SV -wave. It is clear that the
values of amplitude ratio |Z6| oscillate as a function of the angle of emergence.
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Fig. 19. Angle of Emergence (in deg.).

9. Conclusion

The thermoelastic theory developed by Green and Nagdhi [18] has been

employed to study the problem. The analytical expressions of reflection and

refraction coefficients of various reflected and refracted waves have been obtained

for an imperfect, normal stiffness, transverse stiffness, thermally conducting,

welded and slip boundaries. Some particular cases of interest have been deduced

from the present investigation. It may be concluded that the thermal effect plays

an important role on the reflection and refraction phenomenon. It is observed

from the above figures that the behavior of the amplitude ratios is oscillatory

in nature when P - or SV -wave is incident, whereas in the case when the T -

wave is incident, the form of variations of the reflected P -, T - and SV -wave

and the transmitted P - and transmitted T -wave is similar in nature for all the

boundaries. The trend of variations of the transmitted SV -wave when either

of the incident waves is oscillatory in nature. The model adopted in this paper

is one of the most realistic forms of the earth model and it may be useful for

experimental seismologists.
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