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In the paper we investigate the robust identification approach to identify the ma-
terial parameters in the augmented Gurson model for the elasto-plastic porous media.
We consider the robust loss function given by Huber [9], Beaton and Tuckey [38]
and the loss function based on the l1–norm. The resulting minimization problem is
solved by means of our own implementation of the Boender et al. global minimiza-
tion method. Our aim is to compare the results with our earlier standard least squares
estimates. In the paper, the effects of nucleation and growth of voids in the plastic
porous media are investigated. Three different forms of the model are considered: the
augmented Gurson model (total porosity model) with variable nucleation and growth
material function, the same model with constant growth material function and the
separated porosity model. The identification of the material functions parameters is
based on Fischer’s experimental data set for axisymmetric tension of steel specimens.
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1. Introduction

The aim of the paper is to find the best model describing the nucleation
and growth of voids in porous plastic body. The second purpose is to study
the influence of large deviations (data inaccuracy). We investigate the robust
identification approach to identify the material parameters in the augmented
Gurson model for the elasto-plastic porous media. The model describes processes
of nucleation and growth of voids in the porous body subjected to inelastic
deformation.

The formation of microvoids in commercial grade materials is attributed to
the presence of inhomogeneities. The microvoids appear either as cracks in the
particles or as failure of the particle-matrix interfacial bonding. The actual mi-
crovoid morphology depends upon the interrelation of various microstructural
parameters as well as the local deformation state.
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There have been many studies directed toward better understanding of void
evolution and developing constitutive relations for inelastic porous solids. The
model by Gologanu et al. [10], Søvik and Thaulow [39], Pardoen and
Delannay [32], Pardoen, Doghri and Delannay [33] and Pardoen and
Hutchinson [34], accounts for void shape effects and distribution of voids,
respectively. In addition, some other effects, such as the strain mode effect in a
matrix (e.g. Koplik and Needleman [13], Tvergaard [41], Leblond et al. [14]
and Li et al. [15]) on the void growth, have been studied. All the analyses have
shown clearly that, besides the stress triaxiality and equivalent plastic strain,
there are other effects influencing the growth of voids.

The volume fraction of microvoids ξ as a function of equivalent plastic strain
ǭp given by Fisher [7] and Fisher and Gurland [8] is plotted in Fig. 1. It
should be stressed that Fisher’s data are complete in that sense that they deliver
not only the total porosity but also the nucleation part of porosity. In the first
part of our calculations we have not exploited that information. Also the results
presented in our two earlier papers (Nowak and Stachurski [29]) have used
the total measure of porosity neglecting the rest of the experimental informa-
tion. This is somehow justified because the majority of the experimental results
available in the literature contains only measurements of the total porosity (cf.
Needleman and Rice [27], Saje et al. [2]). Our identification problem arises
in modelling of the processes of nucleation and growth of voids in the elastic-
plastic media. In the third Nowak and Stachurski’s [30] paper we have also
considered the model with separated porosities.

In all the above mentioned studies the least squares approach (i.e. the mean
squares loss function) was used. In the current work we have decided to inves-
tigate the impact of the use of other deviation measures such as the Huber loss
function (allowing to omit large deviations) and the l1 loss function.

We consider the uniaxial test in the room temperature. At the neck there
exists a complex state of stress and maximum deformations. Identification is
carried out on the basis of Fisher’s data [7] measured on the steel cylindrical
specimens subjected to the uniaxial tension. We assumed that the effects of
nucleation and growth of microvoids were summing up and we combined in one
model, two models formulated separately for each of those two effects. Usually
in literature, the material function g appearing in the model part responsible for
the growth of microvoids is taken to be constant and equal to 1 (no interaction of
existing or nucleated new microvoids on the growth process is included). In our
work we have assumed various shapes of g. Among others we have also studied
the case with a constant although unknown g function.

For the “best model” selection we have applied the Akaike and FPE tests
(used to compare to the nested models) and Vuong’s test to discriminate between
the rival nonnested models.
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2. Formulation of the identification problem

The identification problem is stated as the problem of finding values of the
material function parameters ensuring minimal value of the mean square func-
tional calculated as the value of the appropriate loss function f depending on
the unknown parameters x and calculated with the aid of differences between
the observed output values Yi and the corresponding calculated output values
Ỹi (Ỹi = F (ǭpi ,x)). Here F represents the assumed model. It connects the input
independent variable values, ǭpi , with the output values, ξi, and accordingly x
denotes the unknown parameters. Thus our problem is

(2.1) min
x∈V

f(x),

where V ⊂ Rn denotes the set of admissible parameters values (n is the number
of the unknown parameters to be identified). We have used in our studies various
forms of the loss functions specified in the subsection below.

2.1. Different forms of loss functions

The first loss function considered by us is a standard mean squares function.
Quadratic loss function

(2.2) min
x∈V

f(x) = F1(x) =
M∑

i=1

r2i (x),

where

(2.3) ri(x) = Yi − F (ǭpi ,x),

V ⊂ Rn is the set of admissible parameters values, n is the number of the un-
known parameters to be identified and M is the number of observations (mea-
sured input and the corresponding output values). F (ǭpi ,x) – the calculated out-
put of the model, while Yi is the measured output value (porosity) at the given
point ǭpi . Here in the least squares formulation the objective function ϑ1(t) = t2.

The next three loss functions allow to weaken either the influence of large
deviations or their rejection. They assume different forms of the objective and
loss functions.

Huber loss function [9] (see also, for example, [38] p. 650)

(2.4) F2(x) =
M∑

i=1

ϑ2

(
ri(x)

χ

)
,



128 Z. Nowak, A. Stachurski

where

(2.5) ϑ2(t) =

{
t2, |t| ≤ A,
2A|t| −A2, |t| ≥ A

and χ is some measure of dispersion approximated by

χa ≈ 1

M

M∑

i=1

|ri(Θa)|,

where Θa is an approximation to the estimate of x.
Huber function (2.4) permits the reduction of the influence of extreme outliers

creating deviations larger than a given threshold. In the least squares identifica-
tion all observations were treated equally, they have the same weights.

Beaton and Tuckey robust loss function [38] p. 650 F3(x) is the same as
the Huber loss function (2.4) but with ϑ(t) defined differently

(2.6) ϑ3(t) =






1

3
A2

[
1 −

[
1 − (t/A)2

]3]
, |t| ≤ A,

1

3
A2, |t| ≥ A.

l1 norm loss function

(2.7) F4(x) =
M∑

i=1

|ri(x)|.

In this case the objective function ϑ has got the following form

(2.8) ϑ4(t) = |t|.

The l1–norm minimization decreases, similarly as in other robust loss functions,
the influence of large deviations compared to the least squares approach. The
influence function (φ = ϑ′4) values are equal to −1 if t is negative and to 1 if t is
positive and it is undefined for t = 0. Hence it satisfies the requirement on the
robust influence function that it should be bounded as the residual observation
t is tending to infinity.

2.2. Formulation of the identification problem in the case of total porosity

We focus on the problem of plastic flow and fracture of dissipative solids
in which the intrinsic micro-damage effects are observed. Our aim is to find
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the material parameters appearing in the material functions at the evolution
equation for the porosity, ξ describing the intrinsic microdamage effects.

(2.9)

ξ̇ = ξ̇n + ξ̇g

= h(ǭp,x)
1

1 − ξ
tr(σDp) + g(ǭp,x)(1 − ξ)tr(Dp),

where h(ǭp,x) and g(ǭp,x) are the material functions, ǭp is the equivalent plastic
strain, Dp denotes the plastic rate of the deformation tensor. The details of the
damage model are to be found in Sec. 3.

The identification problem is stated as the problem of finding values of the
material function parameters ensuring minimal value of one of the loss functions
stated in the previous section. Thus our problem is

(2.10) min
x∈V

Fi(x) =

M∑

j=0

ϑi(rj(x)), i = 1, . . . , 4,

where V ⊂ Rn denotes the set of admissible parameter values (n is the number
of the unknown parameters to be identified). Vector x denotes the unknown
parameters. The rj(x) = Yj − Ỹj is the difference between the observed output
values Yj and the corresponding calculated output values Ỹj (Ỹj = F (ǭpj ,x)).
Here F represents the assumed model. It connects the input independent variable
values, ǭpj , with the output values, ξ. Substitution of the formula Ỹj = F (ǭpj ,x)
into (4.8) yields

(2.11) min
x∈V

M∑

j=1

ϑi

(
Yj − F (ǭpj ,x)

)
, i = 1, . . . , 4.

The second term in formula (4.11) represents the calculated output values Ỹj ,
and again M is the number of observations (measured input and the correspond-
ing output values). In fact we have solved four different minimization problems.
Each problem corresponds to a different loss function ϑi(t), i = 1, 2, 3, 4.

In our primal problem the calculated output is obtained as a result of the
integration of an ordinary differential equation, where on the left-hand side its
derivative with respect to the input ǭp appears. The right-hand side of the dif-
ferential equation depends on the input and output variables and on unknown
parameters. The unknown parameters appear exclusively in the so-called mater-
ial functions being a part of the right-hand side of the differential equation. See
for details Secs 3. and 4.

The parameters should belong to the set V of feasible values of parameters,
defined in Sec. 8. In this part we have not made any use of the data on the
growth or nucleation volume fractions, although they are available in the Fisher’s
data set.
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2.3. Formulation of the identification problem in the case of separated nucleation
and growth porosity

The Fisher’s data set contains not only the values of the total porosity but
also the corresponding separated nucleation and the growth porosity. Therefore
we have decided to change accordingly the identified model to the form of two
separate evolution equations – the first one describing the nucleation of new
voids and the second one describing growth of the already existing voids. Those
differential evolution equations are mutually connected by introduction of the
total porosity into their right-hand sides as follows:

(2.12)
ξ̇n = h(ǭp)

1

1 − ξn − ξg
tr(σDp),

ξ̇g = g(ǭp)(1 − ξn − ξg)tr(Dp).

This means that we keep the additivity assumption saying that total porosity
ξ is the sum of the nucleation and growth effects, i.e. ξ = ξn + ξg. The model
represented by Eqs. (2.12) is not mathematically equivalent to the model (2.9).
Anyhow, we believe it is justified on the basis of the existing models describing
separately the phenomena of nucleation of new voids and growth of the existing
voids. The only difference is the replacement of the partial ξ on the right-hand
sides by the total porosity.

The above presented change in the model formulation is reflected in the
loss functions (4.11). Here we sum up the values of the loss function calculated
separately for the nucleation and growth parts.

(2.13) min
x∈V




M∑

j=1

ϑi

(
ξ̄n
j − ξn(ǭpj ,x)

)
+

M∑

j=1

ϑi

(
ξ̄g
j − ξg(ǭpj ,x)

)


 , i = 1, . . . , 4.

Here, ξ̄n and ξn(ǭpj ,x) denote the experimental and calculated (for given pa-
rameters x) values of the nucleation of new voids and ξ̄g and ξg(ǭpj ,x) denote
the experimental and calculated values of the growth of existing voids, respec-
tively. Calculated values ξn(ǭpj ,x) and ξg(ǭpj ,x) are obtained by the numerical
integration of the differential evolution equations (2.12).

We have used the same sets of material functions as in the total formulation.

3. Porosity model

The microvoids appear either as cracks in the particles or as failure of the
particle-matrix interfacial bonding. The actual microvoid morphology depends
upon the interrelation of various microstructural parameters as well as the lo-
cal deformation state. It is postulated that the evolution equation for porosity
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parameter has the form (2.9) (cf. Needleman and Rice [27], Perzyna [36] or
Perzyna and Nowak [37]). The first term in the evolution equation (2.9) for
the porosity parameter ξ describes cracking of hard, brittle particles or debond-
ing of second-phase particles from the matrix as the plastic work progressively
increases. In Fisher’s data, in steel of type B (with 0.17%C) the nucleation of
voids is generated mainly by debonding of the cementite particles from the ma-
trix. The plastic deformation criterion of the nucleation of voids is accepted. The
nucleation material function h depends on the equivalent plastic deformation ǭp.
The second term in Eq. (2.9) is related to the growth mechanism. The growth
material function g also depends on the equivalent plastic deformation ǭp. It
is assumed for simplicity that the material functions h = h(ǭp, a1, b1, c1) and
g = g(ǭp, a2, b2, c2) depend only on the equivalent plastic deformation ǭp and the
unknown parameters. It is assumed that the nucleation mechanism in (2.9) is
controlled by the plastic strain only.

3.1. Constitutive relation for the porous elastic-plastic solids

The constitutive relation used by us has the form

(3.1) Dp
ij =

1

H
PijQkl

▽

σ
kl
, Pij =

∂φ

∂σij
, Qkl =

∂φ

∂σkl
,

where
▽

σ is the Jaumann rate-of-change of Cauchy stress and φ is the classical
Gurson plastic potential with q1 and q2 = q1

2 parameters equal to 1. The flow
potential is

(3.2)
φ(σ, ξ, σ̄) =

3

2
SijSij

σ̄2
+ 2q1ξ cosh

(σkk

2σ̄

)
− 1 −

(
q1

2ξ
)2

= 0.

For plastic porous media with known yield function, the constitutive relation is
expressed as follows:

(3.3) Dp
ij =

1

H

(
3Sij

σ̄2
+
α

σ̄
δij

)
Qkl

▽

σ
kl
,

where Sij = σij −
1

3
σkkδij and α = ξ sinh

(σkk

2σ̄

)
.

3.2. Porosity evolution at the neck

Making use of Eqs. (3.1) and (3.3), in Eq. (2.9) we obtain the following
evolution equation:

(3.4)
ξ̇
˙̄ǫp

=

[
h

1

1 − ξ

(
λ1
σxx

σzz
+ λ2

σyy

σzz
+ 1

)
+ g(1 − ξ)(λ1 + λ2 + 1)

]
1√
λ∗
,
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where ǭp is the equivalent plastic strain, h = h(ǭp, a1, b1, c1) and g = g(ǭp, a2, b2, c2)
are the material functions to be identified.

Constitutive relation allows to express the plastic rate Dp of the deformation
tensor as a function of

λ1 =
Dp

xx

Dp
zz
, λ2 =

Dp
yy

Dp
zz

and λ∗ =
2

3

[
(λ1)

2 + (λ2)
2 + 1

]
.

Using relation (3.3) we conclude that λ1, λ2 are equal to

(3.5) λ1 = λ2 =
3Sxx + σ̄α

3Szz + σ̄α
.

The deviators Sxx and Szz of the stress state and the hydrostatic part of the
stress are expressed by

Sxx = σxx − 1

3
σkk , Szz = σzz −

1

3
σkk , σkk = σxx + σyy + σzz.

3.3. Stress state at the neck

We employ Bridgman’s [1] solution for the stress state at the center of
minimum section of the tensile cylindrical sample. It has been obtained due to
the assumption of uniform deformation of the elements in the minimum section,
implying that the circumferential strain rateDp

yy is equal to radial strain rateDp
xx

in the minimum section (cf. Chakrabarty [3]) p. 161), inserting this equality
in the equilibrium equations and combining with the yield condition

(3.6)

σxx = σyy = σ̄ ln

(
1

2

R

ρR
+ 1

)

for x, y, z = 0.

σzz = σ̄

(
1 + ln

(
1

2

R

ρR
+ 1

))

The analytical expression for the stress depends on the matrix flow stress,

σ̄ and the geometry of the neck, i.e. on the ratio
R

ρR
, where R is the radius of

the minimum section and ρR is the neck contour radius. The behaviour of the
matrix material is represented by a piecewise power law of the form σ̄ = σy·
(ǭp/ǫy)

N. Here σy is the yield stress in uniaxial tension, ǫy is the yield strain
of the matrix material and N is the matrix strain hardening exponent, e.g. for
carbon steel σy = 175.0 MPa, ǫy = 0.001 and N = 0.18. Similarly as in Saje,
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Pan and Needleman [2] it is assumed that

(3.7)

R

ρR
= 0.833(ǭp − 0.18), for ǭp ≥ 0.18;

R

ρR
= 0.0, for ǭp < 0.18.

Taking Eqs. (6.) into account in the Bridgman solution, we obtain for ax-
isymmetric tension

(3.8)
σxx

σzz
=
σyy

σzz
= λ,

where

(3.9) λ = ln

(
1

2

R

ρR
+ 1

)/(
1 + ln

(
1

2

R

ρR
+ 1

))
.

Furthermore, we have assumed the constitutive relation for the porous plastic
solids introduced in the form of Eq. (3.1) by Gurson [11].

Using this relation we can determine λ1 and λ2

(3.10) λ1 = λ2 = (3Sxx + σ̄α)/(3Szz + σ̄α).

4. The form of material functions

This section contains formulae of the material functions which we have used
for identification. There exist certain requirements which the shape of the ma-
terial function h has to satisfy. We have selected the form of material functions
h = h(ǭp, a1, b1, c1) and g = g(ǭp, a1, b1, c1) following two rules:

• We prefer the formulae with known mechanical interpretation.
• We prefer the simplest form of them.
We started trying to follow the ideas of Chu and Needleman [40]. So, as

the first type of the function, the Gauss normal distribution function for function
h was applied

(4.1) h1(ǭp, a1, b1, c1) =
a1

b1
√

2π
exp

(
−1

2

[
ǭp − c1
b1

]2
)
,

where a1, b1, c1 are the unknown parameters. All of these parameters have their
mechanical meaning. Namely, a1 denotes the maximum value of the porosity
parameter, b1 is the width of the voids distribution region and c1 represents
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the value of the equivalent plastic strain ǭp at the moment when the porosity
parameter reaches its maximal value.

In the previous studies, cf. Nowak and Stachurski [30], we have also used
two other forms of the material functions h:

h2 = a1(ǭp)
b1exp(c1ǭp),(4.2)

h3 = a1[1 + tanh(b1ǭp + c1)].(4.3)

In the current investigation we have decided to neglect h2 since it was worse
than the two other nucleation material functions.

The second material function g describing the growth of microvoids must be
uniformly equal to 1 when initial void or voids are isolated in an unbounded
matrix. It means that voids do not interact, no nucleation of new voids and no
coalescence of voids in the growth process are considered. These three phenomena
are closely interrelated and can occur simultaneously. The material function
g ≡ 1 is well verified when only the growth process of isolated voids takes
place. It is preferred for incompressible “strong” metals in the room temperature.
However, it is so in such cases when the growth of voids is the main effect and
the nucleation of voids is neglected or included without taking into account
their mutual interaction. Some recent experimental papers dealing with plastic
compressibility of metals (e.g. Gotoh and Yamashita [31]) pointed out that
the evolution of voids in the Gurson model requires some improvements. Their
identification results for the uniaxial tension and equi-biaxial tension support
the opinion that g ≡ const = α 6= 1. Our growth function g results from the
volume change of the already existing voids and the newly nucleated voids and
interactions among them, while the nucleation function h expresses nucleation of
new voids, controlled by plastic deformation only. We set (ξ̇growth/(1−ξ) = gĖp

kk,

and g is the fraction due to void growth within the total volume strain rate Ėp
kk.

In our analysis this function g is not necessarily constant. As the first form
of the g function, the following formula (as in Perzyna and Nowak [37]) was
used:

(4.4) g1(ǭp, a2, b2, c2) = a2 exp [b2 (ǭp)
c2 ] .

Unfortunately, in this case, the mechanical interpretation of the unknown
parameters a2, b2 and c2 is not so clear.

The identification was also carried out with five other different forms of the
material function g

g2 = a2

√
(ǭp)2 + b2(ǭp) + c2,(4.5)

g3 =
a2

b2 − ǭp
,(4.6)
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g4 = 1,(4.7)

g5 = a2,(4.8)

g6 = a2 + b2 · ǭp.(4.9)

Tables 1a summarizes notation of the cases for the total porosity model and
Table 1b – for the separated porosity model. For instance, Case A1 denotes
selection of h1 and g1. This means that we apply the normal Gauss distribution
function as the nucleation material function h and the exponential function as
the growth material function g. Case B1 corresponds to h2 and g1 and so on.

Table 1. Summary of notations for a) the total porosity model;
b) the separated porosity model.

g–function
g1 g2 g3 g4 g5 g6

h1 A1 A2 A3 A4 A5 A6
h3 C1 C2 C3 C4 C5 C6

g–function
g1 g2 g3 g4 g5 g6

h1 DA1 DA2 DA3 DA4 DA5 DA6
h3 DC1 DC2 DC3 DC4 DC5 DC6

The corresponding cases for the separated porosity model are denoted simi-
larly. The only difference is the addition of capital D in front of the case symbol.
Hence, for example DA1 means the use of functions h1 and g1.

We have maintained the same order of notations in the separated and total
porosity models to simplify the comparison of identification results in both cases.
The tables of results for the total porosity model are presented in the Appendix,
Subsec. A1 and for the separated porosity model in Subsec. A2.

5. Criteria for models selection

Mathematical models are selected by evaluating how well each one fits the
experimental data. The model that provides the best fit (i.e. the smallest devi-
ation) is preferred. Usually a model with many free parameters can provide a
better fit to the data sample than a model with few parameters. Our aim is to
select the model that is simple and fits well. Therefore we should find a com-
promise between simplicity and fitting. It is necessary to make selection in the
set of the nested and non-nested models. The first are discussed in the following
Subsec. 5.1 while the latter are presented in the Subsec. 5.2.

5.1. Criteria for nested models selection

We decided to use the Akaike information criterion (AIC) and the final pre-
diction error criterion (FPE) to discriminate between two or more nested mod-
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els. Those two criteria penalize a model more as the number of parameters n
increases. Below are the formulae allowing to calculate their values.

• Akaike’s information criterion AIC (Söderström and Stoica [42], p. 442)

(5.1) AIC = M ∗ lnVM (x̂) + 2 ∗ n,

where: M is the number of observations, x̂ is the set of the model parame-
ters, n denotes their number and VM (x̂) is the quadratic loss function

(5.2) VM (x̂) =
M∑

i=1

(
Yi − Ỹi

)2
,

where Yi and Ỹi have the same meaning as those expressed in Sec. 2.2
below the formula (4.8).

• Final prediction error criterion (FPE) (Söderström and Stoica [42],
p. 444)

(5.3) FPE = VM (x̂) ∗ 1 + n/M

1 − n/M
.

The meaning of the symbols is the same as in the Akaike formula.

5.2. Vuong test for discriminating between the rival nonnested models

There exist several tests for discriminating between the nonnested models
(for instance: Cox test, Vuong test, Bayes factors, F test, J test, JA test) (see
Clarke [5], McAleer [6], Vuong [46]). We have considered the use of the
Cox and Vuong Tests. The Cox test is harder to perform than the Vuong test.
It requires many extra simulations to calculate its value. Furthermore, it may
reject both of the two compared models without any decision. The Vuong test
is the easiest to perform; it is only necessary to calculate the difference in the
average log-likelihoods and calculation of the normalization. It requires neither
simulation nor any prior information. Vuong test never leaves us without any
answer. It allows to select the best model even from a set of bad nonnested
models.

The null hypothesis in the Vuong test is that the compared models H1 and
H2 are equivalent. The actual (approximate) test is:

(5.4) under H0 :
LRM (x̂1

M , x̂
2
M )

(
√
M) · ω̂M

−→ N(0, 1),

(5.5) under H1 :
LRM (x̂1

M , x̂
2
M )

(
√
M) · ω̂M

−→ +∞,
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(5.6) under H2 :
LRM (x̂1

M , x̂
2
M )

(
√
M) · ω̂M

−→ −∞,

where

(5.7) LRM (x̂1
M , x̂

2
M ) ≡ L1

M (x̂1
M ) − L2

M (x̂2
M ),

(5.8) ω̂2
M ≡ 1

M

M∑

i=1

[
ln
f1(Yi|Xi; x̂

1
M )

f2(Yi|Zi; x̂2
M )

]2

−
[

1

M

M∑

i=1

ln
f1(Yi|Xi; x̂

1
M )

f2(Yi|Zi; x̂2
M )

]2

.

Here f1(Yt|Xt; x̂
1
M ) (f2(Yt|Xt; x̂

2
M )) denotes the true conditional density of Yt

given Xt for the first (second) model with parameters equal to x̂1
M (x̂2

M ) – the
estimated values of x1 (x2). Our models have different numbers of parameters.
Therefore, following Clarke [5] we have adjusted the log-likelihood-ratio sta-
tistic

(5.9) L̂RM (x̂1
M , x̂

2
M ) = LRM (x̂1

M , x̂
2
M ) −

[(
n1
2

)
ln(M) −

(
n2
2

)
ln(M)

]
,

where n1 and n2 are the numbers of parameters in models 1 and 2, respectively.

5.3. Selection criteria for models with separated porosities

In cases corresponding to the model with separated nucleation and growth
porosity (with the prefix “D”, see Table 1), all statistical quantities together with
the Akaike’s and FPE information criteria are calculated for the separated cases
treated as total (i. e. after summing up the outputs) to make them comparable
with the corresponding total case. Those criteria are used to discriminate between
the rival nested models. Furthermore, it should be stressed that only a few of
our models form groups of nested models. Therefore we use only a part of them
in the analysis.

6. Description of fisher’s experimental data used for estimation

In J.R. Fisher’s experimental investigation two carbon steels with 0.17 (type
B) and 0.44 (type W ) weight percent carbon, respectively, were used for the
quantitative studies of microvoid nucleation and growth. All testing was done
at the room temperature. Metallographic observations were made on both un-
deformed and deformed specimens using both optical and electron microscopy.
For each specimen, a series of transverse sections was prepared corresponding to
successively smaller axial distances from the minimum cross-section. Each new
section was obtained by grinding to the next premarked position and thus the
previous sections were destroyed. Therefore, all data required from a given section
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had to be obtained before preparation of the succeeding one. Each section was
carefully polished and etched after preliminary use of various grades of abrasive
papers. The microstructural parameters were determined in both the deformed
and undeformed specimens. For the deformed specimens the areal density of
voids, ηA, and the volume fraction of voids, ξ, were obtained from transverse
sections by standard metallographic techniques performed on scanning electron
micrographs taken at a magnification of 2000 times. It is observed in Fisher’s
experiment that the voids tended to have elliptical cross-sections similar to those
of the particles, as might be expected since the particles were nucleation sites
for these voids.

The total volume fraction of voids, ξ, and the nucleation part of volume
fraction of voids, ξn, obtained by Fisher [7], are plotted as functions of equiv-
alent plastic strain ǭp in Fig. 1. This measure of voids is used in our analysis in
Sec. 2.3, it is worth to separate the nucleation part from the full measure of ξ.
As in Perzyna and Nowak [37], the resulting diagrams of the nucleation part
of ξn and the growth part of ξg versus ǭp are shown also in Fig. 1.
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Fig. 1. Total void volume fraction, ξ, the nucleation volume void fraction, ξn (data from
Fisher [7] for the B1-type steel) and the calculated growth volume void fraction, ξg, as

the functions of equivalent plastic strain, ǭp.

The following observations could be drawn from the Fisher’s experimental
work:

• Voids are generally associated with particles of greater than average size.
They rarely form at very small, isolated particles, even for the severe state
of deformation which exists in the neck of a tensile specimen.
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• Particles situated on ferrite grain boundaries are favoured sites for the
nucleation of voids.

• Voids often form by decohesion of the interfaces of particles which are
closely spaced along the tensile axis.

• The maximum gradient in the void nucleation profile occurs at strains of
ǭp = 1.15 and ǭp = 0.80 for B and W -type specimens respectively.

• Voids elongate in the tensile direction but maintain elliptical cross-sections,
indicating that plastic hole growth, and not ferrite grain boundary sepa-
ration, dictates the final void geometry.

• Non-equiaxial or irregularly shaped cementite particles are often subject
to internal fracture. The resulting cracks tend to be oriented normally to
the tensile direction and may sometimes be associated with boundaries
between contiguous particles.

In this work, the thorough analysis of the data set was omitted since we
have decided to concentrate on the computational aspects of the problem of
parameter estimation. We were interested in the question of whether it is in fact
the global optimization problem. Furthermore, we wanted to obtain a decisive
answer to the question of whether the assumed model does fit at all the given
data set.

7. Numerical methods

Our earlier experience with the porosity model [28] has proved the existence
of many local minima in our problem. Therefore we have used for calculations
our own implementation (standard ANSI C language) of the global minimization
method of Boender, Rinnoy Kan, Timmer and Strougie [43] in the form
presented in (standard ANSI C language) of the global minimization method of
Törn and Žilinskas [44]. The details of the method are presented in (stan-
dard ANSI C language) of the global minimization method of Nowak and
Stachurski [28]. In this paper we shall restrict it to a necessary minimum.
To simplify the presentation of the computational algorithm, let us assume that
we consider the following optimization problem:

(7.1) min
x∈V ⊂Rn

f(x),

where: vector xT = (a1, b1, c1, a2, b2, c2 ) (xT – denotes the transposition of the
column vector x), n = 6 (sometimes 3 or 5) and V denotes the set of feasible
values of parameters.

Implemented by us the global optimization method of Boender, Rinnoy
Kan, Timmer and Strougie [43] belongs to the group of the so-called cluster-
ing methods and is a combination of sampling, clustering and local search.
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Detailed structure of the algorithm:
Step 0. Select N – number of sample points generated in one phase and g-

fraction of the sample points with the smallest function values. X+ – the
set of all local minima found so far; X1 – the set of sample points leading to
a minimum x̂ ∈ X+. Choose parameter eC1 > 0 used in the clusterization.

Step 1. Select N randomly generated points x1,x2, · · · ,xN . Let f i = f(xi) for
i = 1, · · · , N .

Step 2. Construct the transformed sample by taking the fraction g of the lowest
points of the current sample, performing one step of the steepest descent
method and replacing those points by the resulting points. Drop the rest
of the points.

Step 3. Apply the clustering procedure to the transformed sample. The ele-
ments of X+ (set of global points – local minima found up till now) are
first chosen as seed points followed by the elements of X1 (set of sample
points leading to a minimum x̂ ∈ X+). If all points x1,x2, · · · ,xN+

are
classified then STOP, otherwise go to the next step.

Step 4. For i = 1, · · · , N+, if xi is classified neither to X+ nor to X1 then
a) apply the local search procedure starting from xi to obtain xi+.
b) if xi+ ∈ X+ then add xi to X1 (new seed point leading to an existing

minimum),
c) if xi+ /∈ X+ (xi+ is a new local minimum) then add xi+ to X+ and

xi to X1.
Step 5. Return to Step 1.

The described global optimization method characterizes convergence with
probability one as in any other involvd stochasticity. Generally, involving sto-
chastic elements, one sacrifices the possibility of an absolute guarantee of success.
One can only get, under mild assumptions on the minimized function and the
sampling distribution, a result that the probability of sampling a point in the
neighbourhood of the global optimum x* tends to 1 if the number of sample
points in the global phase is increased. If the sampling distribution is uniform
over and function f is continuous, then the sample point with lowest function
value tends to a point with minimal function value with probability 1.

Hence, the global phase could asymptotically guarantee the success. In clus-
tering methods one tries to increase efficiency by including a local search phase.
As the stopping criterion we require fulfillment of one of the following conditions:

• all points from the transformed sample could be classified,
• either the number of local minima found or the number of points leading

to a minimum is greater than their maximal permitted number,
• either the number of global minima found or the number of global seed

points (i.e. sampling points leading towards a global minimum) is greater
than the user-defined maximal value.
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Locally we have used the BFGS quasi-Newton method with the numeri-
cal gradient estimation. The BFGS method is an unconstrained optimisation
method; however, in our implementation we have introduced box constraints
on the parameters. Our local minimizer makes use of a directional minimiza-
tion method combining three different approaches – via quadratic approxima-
tions along the search direction, cubic approximations and bisection. Paper [28]
presents their details. The third computational aspect is connected with the or-
dinary differential equation to be solved. It contains singularity in its right-hand
side and it leads to difficulties with its numerical integration. The Runge–Kutta
methods with automatic step-size selection has locked themselves in a kind of
cycle. Therefore we have decided to choose the Rosenbrock method for stiff dif-
ferential equations (see Numerical Recipes [45]).

8. Numerical results

In this section the results of parameter estimation are presented. Their pre-
sentation is restricted to only one minimum corresponding to the current loss-
function value. Other local minima found are neglected.

Our aim in considering various forms of material functions was to obtain the
“best” fitting of the model to the data in the sense that we find the parameters
ensuring the smallest value of the analysed loss function (4.11) or (2.13), respec-
tively. Furthermore, in all cases it is necessary to impose some bounds on the
parameters to assure their appropriate mechanical interpretation and to avoid
overflows in calculations (specially for the g function). In our computations we
have used the following strategy: at the beginning, broad ranges of the feasible
parameters were assumed. In each case and current choice of the loss function
we have started our computations assuming at the beginning a broad range of
feasible parameters. For instance, in Cases A1, A2 and A3 and with the least
squares loss function, we have taken

A1: 0.01 ≤ a1 ≤ 0.05, 0.1 ≤ b1 ≤ 0.6, 0.9 ≤ c1 ≤ 1.3,

1.0 ≤ a2 ≤ 1.5, 0.01 ≤ b2 ≤ 0.3, 0.01 ≤ c2 ≤ 0.6,

A2: 0.01 ≤ a1 ≤ 0.1, 0.1 ≤ b1 ≤ 0.5, 1.0 ≤ c1 ≤ 1.3,

0.1 ≤ a2 ≤ 0.6, 0.5 ≤ b2 ≤ 1.2, 0.8 ≤ c2 ≤ 1.8,

A3: 0.01 ≤ a1 ≤ 0.1, 0.1 ≤ b1 ≤ 1.0, 1.0 ≤ c1 ≤ 1.3,

1.5 ≤ a2 ≤ 3.0, 2.5 ≤ b2 ≤ 5.0.

At each such main step we have found several local optima. Many of them
had some variables lying on their bounds. Because of that we have adopted
special strategy consisting in subsequent minimizations with restricted range
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of parameters. It gave us an opportunity to better explore the whole range of
parameters we were interested in. The second and very important reason for such
a strategy was the large computational effort and memory requirements to store
many local minima and points leading towards them if we decided to run the
program assuming an excessively broad range of parameters. The third and not
less important reason were the numerical difficulties encountered in integration
of the differential equation. Its right-hand side contains a singularity and is very
sensitive, even to relatively small changes in some parameters. It was sometimes
impossible to satisfy the accuracy requirements in the double precision arithmetic
of the workstation.

In our calculations each case corresponds to a different combination of the
material functions h and g. Every case was run with four different loss functions
ϑi (cf. Sec. 2.1) The Huber and Beaton and Tuckey loss functions were used
with the threshold A = 10−8. Our computational strategy may be summarized
as follows:

• At the beginning, broad ranges of the feasible parameters were assumed.
• At the next steps, small intervals containing the previously found optimal

values of parameters as their new feasible ranges are selected.
• At each such main step we have found several local optima. Many of them

had some variables lying on their bounds. Because of that we have adopted
a special strategy consisting in subsequent minimizations with restricted
ranges of parameters.

Information collected in the Tables below was investigated to select the best
model found with the aid of any particular loss function. The selection was
carried out according to the following rules:

• select, on the basis of the Akaike or FPE information criteria, the best
model from any group with the g ≡ 1, g being the estimated constant and
g linear and one particular form of the h function, for instance A4, A5 and
A6;

• select using the Vuong criterion the best representative of any group with
one h formula and all other forms of g including linear g (for instance, the
first group consists of A2 and A3).

Models selected in two previous steps independently for the total and sepa-
rated cases are pairwise compared via the Vuong test. Due to the lack of space
we have decided to omit some tables for the separated model cases. Furthermore,
they are generally worse than the corresponding total cases in the sense that the
data fitting is worse.

8.1. Results for AIC and FPE tests for the total porosity model

Tables are organized as follows. Table 2 summarizes identification results for
the total porosity model with variable growth material function.
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Table 2. Identified parameters and fitting errors for the cases A1–A3, A6,
C1–C3, C6 h – nucleation functions with a1, b1 and c1; g – growth functions

with a2, b2 and c2.

Function Case a1 b1 c1 a2 b2 c2 f

F1 0.017201 0.297427 1.095775 1.134962 0.138219 0.493378 1.65712212e-7

F2 A1 0.018690 0.300661 1.113979 1.118014 0.122462 0.408996 2.37068266e-7

F3 0.015417 0.285030 1.069471 1.157578 0.152573 0.481765 1.65665286e-7

F4 0.014276 0.275759 1.047057 1.041307 0.274952 0.441723 1.66603238e-3

F1 0.021122 0.304899 1.117584 0.577458 1.091203 1.687886 1.65244609e-7

F2 A2 0.024416 0.347778 1.162565 0.588316 1.123116 1.345267 3.64393058e-7

F3 0.030403 0.342234 1.211028 0.521447 1.055361 1.248056 1.70679157e-7

F4 0.018018 0.284599 1.075274 0.652583 0.849635 1.444798 1.66429333e-3

F1 0.024351 0.317042 1.151407 2.456718 3.354722 1.65990605e-7

F2 A3 0.026001 0.329372 1.158489 1.551271 2.587062 2.50690905e-7

F3 0.023815 0.311174 1.141462 2.249023 3.168313 1.67147464e-7

F4 0.022060 0.299496 1.113956 1.775550 2.704330 1.66370570e-3

F1 0.022623 0.317819 1.143767 0.776960 0.345368 1.66474086e-7

F2 A6 0.028400 0.395088 1.258077 0.950536 0.223465 7.34746418e-7

F3 0.021389 0.311633 1.129490 0.814343 0.333191 1.67375842e-7

F4 0.015910 0.274087 1.055807 0.909310 0.362792 1.67399047e-3

F1 0.020692 2.950418 -2.594659 0.986654 0.037083 0.172817 1.77862805e-7

F2 C1 0.015305 2.848600 -2.342232 0.996927 0.197966 0.248658 5.00161040e-7

F3 0.018024 3.158168 -2.664735 1.051133 0.037578 0.242513 1.69917395e-7

F4 0.021539 3.056008 -2.683907 0.933438 0.038638 0.199740 1.76929149e-3

F1 0.026138 2.812440 -2.566309 0.439508 0.764393 1.524417 1.82233773e-7

F2 C2 0.028975 2.559279 -2.444271 0.424864 0.748597 1.647193 2.38760427e-7

F3 0.024722 2.851439 -2.565044 0.451971 0.733190 1.667110 1.81540589e-7

F4 0.033142 2.708107 -2.611123 0.334805 0.882942 1.636062 1.87906702e-3

F1 0.037502 2.539226 -2.565301 1.889970 4.124723 2.12654576e-7

F2 C3 0.028378 2.383227 -2.277388 1.393423 2.781586 5.02547881e-7

F3 0.037924 2.551824 -2.579912 1.870462 4.158467 2.14271041e-7

F4 0.019951 3.518412 -2.905076 1.742845 2.968712 1.73245751e-3

F1 0.026199 2.816344 -2.564785 0.419120 0.368563 1.81211940e-7

F2 C6 0.028805 2.569758 -2.455680 0.519015 0.279190 2.29954122e-7

F3 0.026236 2.743705 -2.538666 0.632538 0.207441 1.87897483e-7

F4 0.025053 2.897769 -2.614352 0.597552 0.232755 1.81161333e-3

To each case (corresponding to the particular choice of the material function
h and g) we have assigned four lines corresponding to different forms of the loss
function. Each line contains the estimated material functions parameters and
the corresponding loss function value.

Table 3 presents the same information for the cases with a constant growth
function g.
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Table 3. Identified parameters and fitting errors for the cases A4, A5, C4, C5
h – nucleation functions with a1, b1 and c1; g - constant growth function with

a2 = 1 and a2 estimated.

Function Case a1 b1 c1 a2 f

F1 0.036075 0.372862 1.294913 1.0 1.88089923e-7

F2 A4 0.032938 0.347390 1.253591 1.0 3.99490475e-7

F3 0.036058 0.372840 1.294757 1.0 1.88104823e-7

F4 0.032697 0.352285 1.254021 1.0 1.78032600e-3
F1 0.023793 0.337251 1.186571 1.191906 1.75387665e-7

F2 A5 0.015550 0.291825 1.089597 1.385578 4.00855106e-7

F3 0.014863 0.286185 1.068574 1.384094 1.65966325e-7

F4 0.013065 0.271715 1.039402 1.437740 1.68082307e-3
F1 0.021889 2.861803 -2.563658 1.0 1.81808536e-7

F2 C4 0.023382 2.671133 -2.472136 1.0 2.32037301e-7

F3 0.021786 2.875537 -2.569953 1.0 1.81269725e-7

F4 0.020544 3.120742 -2.707662 1.0 1.76710774e-3
F1 0.022198 2.851664 -2.564125 0.992077 1.82568420e-7

F2 C5 0.018675 2.760810 -2.408759 1.121656 2.66220454e-7

F3 0.022114 2.822994 -2.541973 1.0 1.84793577e-7

F4 0.026775 2.821888 -2.629231 0.845772 1.83766355e-3

The corresponding statistical information criteria, i.e. Akaike and FPE, have
selected the same models. Therefore the paper contains exclusively the FPE
criterion values presented as bar plots in Fig. 2.
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Fig. 2. Values of the FPE information criterion (four different cases corresponding to
particular loss functions) – for total models.
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8.2. Results for AIC and FPE tests in case of separated models

For the separated models we have decided to omit tables containing the
identified parameter values and the corresponding fitting errors. The fitting error
is the sum of deviations of two outputs – nucleation and growth porosity. In that
case it is of magnitude 10−6.

The statistical indicators are also relatively good. Akaike and FPE indicators
point out that the linear g (i.e. DA6 and DC6) are the best ones in all groups.
The results are collected in Fig. 3.
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Fig. 3. Values of the FPE information criterion (four different cases corresponding to
particular loss functions) – for separated models.

8.3. Results for Vuong test for the total porosity model

Analysis of the data in Fig. 2 proves that A5 (with h–normal distribution
and g-estimated constant) is the best one in the group of nested models A4,
A5 and A6 (statement valid for loss functions F1 and F3). For loss functions F2
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and F4, model A4 (with h–normal distribution and g ≡ 1) is the best. Similarly
Fig. 3 points C4 (with h–tangent function and g ≡ 1) as the best among C4, C5
and C6. This statement is true for all loss functions.

The best models selected by means of the Akaike and FPE tests for each
group were further compared using the Vuong test with the non-nested models.
The Vuong test results are presented graphically on Fig. 4. Fig. 4a) containing
Vuong’s test values for mutual comparison of models A2, A3, A5, C2, C3, C4
obtained by means of the loss function F1. There are six groups of bars corre-
sponding to the six models that are compared. Each group presents Vuong test
values for proving the hypothesis that the current model is better than any from
the others. For instance, the first group in Fig. 4a contains the results of testing
model A2 versus A3, A5, C2, C3, C4. Bars above the zero level indicate that the
current model is better than the compared model (for instance, the first group
shows that A2 is better than C2 and C3 and worse than the other models A3,
A5 and C4).
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Fig. 4. Vuong test values best models from particular groups (four different cases
corresponding to particular loss functions) – for total models.
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8.4. Results for Vuong test in case of separated models

The Vuong test results for separated models, similarly as in the previous
subsection, are depicted graphically in Fig. 5. The FPE criterion has specified
DA6 as the best from the group of nested models DA4, DA5, DA6, and DC6
as the best one among DC4, DC5, DC6. This conclusion is valid for all loss
functions (F1 − −F4) and therefore model DA6 was compared against DA2
and DA3 (DC6 versus DC2 and DC3). Figure 5 contains the results of mutual
comparison of models DA2, DA3, DA6 and DC2, DC3, DC6.
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Fig. 5. Vuong test values best models from particular groups (four different cases
corresponding to particular loss functions) – for separated models.

9. Analysis of the identification results

The current section contains analysis for results presented in Sec. 8. for the
total and separated porosity models. Analysis in the separated porosity model
is similar.
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We have carried out two separate variants of numerical experiment with the
total porosity model. The first one concerned the case with variable shapes of
both material functions. The estimation results are collected in Table 2
(g-function takes forms g1, g2, g3 and g6 specified in Sec. 4). In the second
case we have assumed a constant growth material function g (we have tested
two variants – the first one with g ≡ 1 and the second one with an estimated
value of that constant). Those results may be found in Table 2. Each particular
form of g was run with h1 and h3. Therefore the above mentioned two cases
contain many subcases. We have found many local minima in each run of the
identification program. However, we present in Tables 2 and 3 only the best of
them. Any particular choice of h and g is represented by four lines corresponding
to different loss functions F1 −F4. Figure 2 presents graphically the correspond-
ing statistical indicator FPE for total models. They were used for selection of
the best model in the group of nested models.

Our earlier results with the quadratic loss function (see Nowak and
Stachurski [30]) has shown that for the varying growth material function g,
the power-exponential function h2 (see Eq. (4.2)) is the worst choice of the nu-
cleation material function h. Estimation with other loss functions has supported
that opinion and henceforth we have decided to omit the results for the h2 in the
tables. Two other nucleation material functions – normal distribution function h1

(see Eq. (4.1)) and shifted hyperbolic tangent function h3 (see Eq. (4.3)) are
equally good. The mechanical interpretation of the normal distribution function
parameters is easier. It was frequently used in the previous studies published
in the literature. Therefore in our opinion, the normal distribution nucleation
material function is a reasonable choice.

The large number of local minima found in all cases from that group led us
to the conclusion that there exists a kind of an internal nonuniqueness in the
total porosity model. Due to that observation we have decided to study the total
porosity model with the growth material function g ≡ 1 (i.e. the form of the
porosity model proposed by Gurson [11]) and g being an estimated constant.

The results for the constant growth function g collected in Table 3 show
that the fitting error is of the same magnitude as in the corresponding cases
with varying g function. They suggest that the constant growth material func-
tion g ≡ 1 used jointly with the nucleation material function h3 (hyperbolic
tangent function) is the best choice. This statement is valid for all loss functions
except for F3 where A5 (model with the growth function equal to the estimated
constant and the Gauss normal distribution as the nucleation material function)
is better.

Vuong test for measures F1 and F3 selects model A5 with the Gauss distri-
bution function as the nucleation material function and the estimated constant
as the growth material function (from A2, A3 and A5) and C4 (with the shifted
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hyperbolic tangent as the nucleation material function and the growth material
function g ≡ 1) as the overall best model. Such a corollary follows from Fig. 4.
However, it is interesting to stress that the fitting error obtained with the Gauss
normal distribution as the h1 function and g – an estimated constant, is better
for model A5 with measures F1, F3 and F4 than the C4 model – Table 3.

For measures F2 and F4 Vuong’s test (see Fig. 4) selects model A3 with the
Gauss normal distribution as the nucleation material function and the hyperbolic
one as the growth material function (from models A2, A3 and A4) and once again
as the overall best C4.

It is consistent with our previous results presented in Nowak and
Stachurski [30] for the least squares identification. It means that in our experi-
ment, rejection of outliers (in the statistical indicators we weaken the influence of
the observations larger than a given threshold value – the same as in the Huber
robust loss function formula 2.4) has not changed the general conclusions.

The computations in a separated case were carried out in a similar manner as
in the total porosity model. We have started with the varying growth function g
and afterwards continued with the constant growth material function g. Akaike
and FPE indicators point out that the linear growth material function g (i.e.
DA6 and DC6) are the best ones in all groups. The FPE values are presented
in Fig. 3. Fitting error in that case is of magnitude 10−6 and the statistical
indicators are also relatively good. It should be stressed, however, that the fitting
error in that case is the sum of deviations of two outputs – nucleation and growth
porosity.

The Vuong test results for the separated model are presented in Fig. 5. It
shows results of the mutual comparison of models DA2, DA3, DA6, DC2, DC3,
DC6 identified with the aid of different loss functions, F1 −F4. For F1 function,
model DA3 (Gauss normal distribution as the nucleation material function and
hyperbolic as the growth material function) is selected as the best one. For F4

the Vuong test prefers model DC4 with the growth material function g ≡ 1 and
the shifted hyperbolic tangent nucleation material function. It is interesting in
that case that for the loss function F2 and F3, the Vuong test selects model DA6
(with g – linear and h – Gauss normal distribution). However, mean value of g
is approximately equal to the constant found in model DA5 (with g – estimated
constant), i.e. 0.8639 for function F1, 0.8724 for F2, 0.8637 for F3, and 0.9438
for F4, respectively. Similar property is observed for models assuming h3 (Gauss
normal distribution) as the nucleation material function.

We have observed a strong tendency to those constant values also for model
DC6. Such phenomenon was not so clearly observed in the total porosity model,
although the Vuong test value shows that the model C4 for measure F3 is the
best one and the model A5 (with h – the Gauss normal distribution function
and g – an estimated constant) is only a bit worse. Value of the Vuong test for
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measure F3 of order 10−3 permits even to claim that C4 and A5 are equivalent.
Figure 5 shows the FPE measures for separated porosity models obtained for
constant material function g.

In the total porosity model every loss function finds the same “best model”.
Only the parameters values are slightly different. In the separated porosity
model, the form of the best model is different, depending on the form of the
loss function (see Table 4). In the separation porosity model we observe an im-
portant impact of the outliers (i.e. observations with large deviations) on the
model selection. F1 selects model DA3, F2 and F3 model, DA6 and F4 model
DC4.

Table 4. Best selected models.

Total porosity model

Function Best model
Selected material functions

f Akaike
g functions h functions

F1 C4 g4 h3 1.81808534e-7 –581.5833

F2 C4 g4 h3 2.32036369e-7 –574.0211

F3 C4 g4 h3 1.81269747e-7 –581.6753

F4 C4 g4 h3 1.76710326e-3 –296.9444

Separated porosity model

Function Best model
Selected material functions

f Akaike
g functions h functions

F1 DA3 g3 h1 1.74196651e-6 –507.5290

F2 DA6 g6 h1 1.79088112e-6 –506.6705

F3 DA6 g6 h1 1.78622776e-6 –506.7511

F4 DC4 g4 h3 1.76082030e-3 –297.0548

Calculations and analysis for the separated porosity model have been per-
formed independently by us. The best models from both cases were compared
by us by means of the Vuong test. That comparison has shown the superiority
of the total porosity model.

10. Conclusions

Current analysis supports previously drawn conclusions (see Nowak
and Stachurski [30]), especially for the total porosity model. Model C4 (with
the shifted hyperbolic tangent nucleation material function h3 and the growth
material function g ≡ 1) is the overall best for all loss functions. However,
model A5 (h – Gauss normal distribution and g – estimated constant) is al-
most equally good (see Fig. 4). Therefore we claim similarly as before that it
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is preferable to use h1 – the Gauss normal distribution nucleation function and
the estimated constat g at least in the total porosity case. The h1 function is
more suitable for mechanical interpretation. The conclusions are not so straight-
forward in the case of the separated porosity model. Introduction of the robust
loss functions has totally changed the model selection results.

We have found several local minima in all cases. The best fitting error for the
total porosity model is of the order 10−7. However, the fitting error in other cases
is only slightly larger. Of course, the corresponding material function parameters
have different values. An open question is which local minimum found should be
selected. It seems that in the total porosity model (when the voids nucleation and
growth phenomena are simultaneously present), the constant material function
g ≡ 1 as used by many researchers is an acceptable choice. However, we should
stress that the identification procedure with g = a2, where parameter a2 was
identified, has led to a bit different value of that constant.

In our opinion, the results obtained indicate that while modelling jointly
the nucleation and growth of voids, it is reasonable to use the total porosity
model with constant material function g. It seems that the constant should be
different from the usually used value 1. We suggest its identification for each
particular material. For the ductile steel this constant is probably near 0.86. It
was somewhat unexpected by us and contrary to the common practice.

We recommend the use of the normal distribution function because it is easier
to interpret its parameters in mechanical terms. We have observed equally good
results for the shifted hyperbolic tangent function.

In all tested forms of the separated models we have also found several sets of
parameters (local minima of the loss function) with the fitting errors close to the
best one (within the range from 10−6 to 10−5). The parameters are reasonable
from the mechanical point of view. The model with the linear growth function g
and the Gauss normal distribution nucleation function h has been selected as the
best separated model for the majority of the loss functions used (see Table 4).

The obtained results show that:
• The best growth function g (in the total porosity model) is the estimated

constant function.
• Quadratic loss function results for the separated porosity models indicate
g-linear as the best growth function.

• All loss functions point h3 and h1 as almost equally good nucleation ma-
terial function. We suggest to select h1 because it is easier to interpret its
parameters from the mechanical point of view.

• The total porosity model usually fits better the data.
We would like to stress that our material function was determined with the

following important assumptions. The matrix material is plastically incompress-
ible (ρ̇m = 0 where ρm is matrix density) and the elastic part of a strain-rate
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tensor is neglected, Dij = Dp
ij . All our conclusions concern exclusively the duc-

tile steel material; although qualitative conclusions may be valid also for other
types of materials.
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