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Plasticity over a wide range of strain rates and temperatures
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A number of constitutive theories of elastic-viscoplastic deformation were proposed
over the past years which have been found useful for practical applications. Most
of them use the second invariant of deviatoric stress, as identified by Huber, as the
effective stress driving inelastic deformations. This paper examines a particular con-
stitutive theory, that of Bodner–Partom, over a very wide range of strain rates and
temperatures.

1. Introduction

Macroscopic constitutive equations for elastic-viscoplastic material be-
havior should be consistent with the overall physics of inelastic deformation and
in accord with the principles of mechanics and thermodynamics. Basic for the
formulation would be a kinetic equation relating the inelastic strain rate to the
stress, temperature and internal state variables such as those representing re-
sistance to inelastic deformation – the hardening variables. Those variables are
load history dependent and are determined from auxiliary evolution equations.
Constitutive theories of this class are considered to be “unified” for which creep
and stress relaxation are response characteristics obtained from the same set of
equations for different loading conditions. Some of these theories are reviewed
in the books edited by Miller [1] and by Lemaitre (2]. Constitutive theories
that do not rely on a yield criterion to isolate a fully elastic region could be
considered to be “unified” in a more general sense.

For metals, the most relevant physical mechanism for inelastic straining is
thermally activated dislocation generation and motion on slip planes. The present
paper examines the constitutive theory of Bodner–Partom (B–P) [3, 4], which is
of thermal activation form, for extreme cases of temperature and strain rate to
check its consistency with physical reality. Temperatures are considered over the
full range from absolute zero to melting and strain rates over 14 decades from
10−8 s−1 to 106 s−1. Also, some comments are made on the matter of incorpo-
rating possible size effects into the theory. A summary of the B–P equations for
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small strains and isotropic behavior is provided here with explanations of the
various material constants.

2. Outline of the B–P elastic-viscoplastic theory

The kinetic equation for inelastic strain rate of the B–P formulation is given
by
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which was motivated by correspondence of the form and parameters with gen-
eral response characteristics. It is consistent with the Prandtl–Reuse flow law
and indicates incompressibility of inelastic deformations. Also, it is a typical
growth curve that has been used in diverse fields with sections of incubation,
rapid growth, and the tendency to saturation. For the case of uniaxial stress σ11,
Eq. (2.1) reduces to
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which is represented in Fig. 1 and is practically limited to (σ11/Z) < 1.

Fig. 1. Inelastic strain rates for uniaxial tension, σ11 and various values of n.
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Noted in Fig. 1 is the flat incubation period at low stresses with low levels
of plastic straining which is required for a plasticity theory without a discrete
yield criterion. In such a theory, the total strain rate is considered to consist of
elastic and inelastic components, ε̇11 = ε̇e11 + ε̇P11 which are generally non-zero.
The coefficient D0 in Eq. (2.1) would be the limiting strain rate in shear for
large stress. It is seen in Fig. 1 that the parameter n controls rate sensitivity
and as n becomes large for a given plastic strain rate, the non-dimensional term
σ11/Z approaches unity and its rate dependence diminishes. Rate independent
plasticity is therefore a limiting case in the formulation.

The hardening parameter Z in Eq. (2.1) represents resistance to inelastic
deformation and is assumed to consist of an isotropic component, ZI , and a
scalar effective value ZD, which is the component of the directional hardening
tensor, βij , in the direction of the current stress, uij . These quantities are load
history dependent and are obtained by associated evolution equations,
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with

(2.5) ZD = βij uij ,

where

(2.6) uij(t) = σij(t)/[σkl(t)σkl(t)]
1/2

and

(2.7) vij(t) = βij(t)/[βkl(t)βkl(t)]
1/2,

where vij is the current direction of βij .
For the evolution equation for isotropic hardening ZI , Eq. (2.3), the second

term indicates static recovery, generally due to low strain rates at relatively high
temperature, with Z2 as the stable (minimum) value at a given temperature, and
A1 and r1 are material constants. In the absence of recovery, Z1 would be the
saturation value of Z and Ẇp represents the plastic work rate which is considered
to be the generator of hardening. Plastic work, rather than effective plastic strain,
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is taken to be the measure of hardening to obtain agreement with strain rate
jump tests. The evolution equation for directional hardening, represented by
Eq. (2.4), has the same general form as that for isotropic hardening. By the
definition of ZD, Eq. (2.5), reversal of stress would lead to reduction of hardening
referred to as the Bauschinger effect. The rate of directional hardening, m2, is
usually appreciably larger than that for isotropic hardening, m1, which is useful
in parameter identification.

Methods for determining the material constants and the results of appli-
cations of the B–P theory are described in [4]). Some of the parameters are
temperature-dependent over the range of applicability. Of interest is the exam-
ination of the theory for the extreme conditions of temperature and strain rate
and the matter of possible size effects.

3. Limiting conditions

As noted, the B–P constitutive equations are intended to be a macroscopic
representation of inelastic deformation due to thermally activated dislocation
motion. The coefficient D0 in Eqs. (2.1) and (2.2) corresponds to the limiting
(maximum) strain rate for large stress. It is essentially a scale factor and should
be initially specified in procedures for obtaining the material parameters from
test results [4, 5]. A limitation on the choice of D0 is that the strain rates in the
applications should be at least two decades less than D0.

From the physical viewpoint, D0 would be the maximum strain rate possible
for thermally activated dislocation slip to take place. Based on the simplified
Orowan equation for plastic slip and the maximum values of mobile dislocation
density and velocity for metals indicated in the literature, the approximate value
for the maximum distortional strain rate is of order 108 s−1 with material de-
pendent variations. This value was used for D0 in recent exercises that involved
strain rates as high as 106 s−1. A lower value for D0, 104 s−1, was used in earlier
work that involved low strain rates to avoid possible numerical difficulties.

It has been observed that some metals, notably pure copper and aluminum,
exhibit increased strain rate sensitivity for strain rates above about 104 s−1.
This appears to be due to a large increase in the hardening rate, but the physi-
cal mechanism is unclear at this stage. A reasonable procedure for modifying the
equations would be to take the hardening rate to be itself a function of strain
rate with the saturation hardening values remaining unchanged. That would be
necessary for the effect to be non-reversible for changes in strain rates. This
modification would mean that the stress-strain relation would approach the sat-
urated stress value at an increased rate. Comparison of this procedure, described
in [6], with test results from [7] are shown in Fig. 2.
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Fig 2. Flow stress dependence of copper on logarithm of the strain rate, a) original B–P model
for Z = 222 MPa (corresponding to γ = 0.20 at the lower rates), and for the stress saturation
condition with Z = Z1 = 920 MPa: —————— b) modified B–P model with strain rate
dependence of the hardening rate, from Bodner and Rubin [6]: – – – – – experimental

points for γ = 0.20, Tong et al. [7]: ©©©.

Despite the interpretation of D0, there should be no physical limit to the
distortional strain rate to which a material could be subjected. Inversely, it
means that the thermally activated dislocation slip mechanism is inoperative at
very high strain rates due to the breakdown of the crystalline lattice. This was
shown in molecular dynamics simulations of atomic arrays with dislocation type
defects [8]. These simulations suggest that the response of a crystalline solid
transits to viscous fluid-like behavior at melting and at very high strain rates.
A more recent investigation [9] on inelastic deformation of metals indicates that
work hardening could be neglected at very high strain rates where overdriven
shocks become operative. In exercises for copper and tantalum, the transition
from crystalline slip to shock conditions with viscous fluid-like response behavior
occurs at a strain rate of about 108 s−1, Figs. 11, 12 of [9].

There is also no lower limit on time-dependent inelastic straining as is known
from the very slow creep of geological materials. For metals under constant uni-
axial stress, Eqs. (2.2), (2.3) apply. At relatively high strain rates, the recov-
ery term in Eq. (2.3) would be unimportant and hardening would saturate at
ZI = Z1 with the stress reaching its maximum steady value. Under the influence
of recovery at intermediate strain rates, a condition could be reached where the
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rate of recovery equals the rate of hardening. This leads to ŻI → 0 and steady
state (secondary) creep ensues since σ11 and ZI are constant. The value of Z at
this steady condition would be less than Z1. At relatively low strain rates, the
recovery term would dominate. Plots of the log of steady strain rates against the
associated applied stress levels therefore indicate three distinct branches, each
having a different slope, e.g. Fig. 7 of [4] Calculated results for two metals at
high temperature based on Eqs. (2.2), (2.3) compare well with available test data
in the range 10−8 s−1 to 10−3 s−1, Fig. 7 of [4]. The material constants used in
the exercise were obtained from controlled tensile straining tests.

With regard to the capability of the B–P theory to represent thermal ef-
fects, determination of the material parameters from constant temperature tests
proved to be adequate for varying thermal conditions. That is, temperature his-
tory effects appear to be unimportant for most materials except for those that
experience dynamic strain aging. For the B–P equations, some of the individ-
ual parameters are temperature dependent and an overall single representation
of temperature in the kinetic equation does not seem adequate. The parame-
ters mostly influenced by temperature are n, Z0 = Z2, Z1, Z3 and the recovery
coefficients A1, A2.

It is seen in Fig. 1 that the material constant n controls rate sensitivity and
also influence the level of the stress-strain relation. Test results indicate that n
generally varies inversely with T so strain rate sensitivity increases with increas-
ing T and the material experiences lower stress levels. The parameter n could
also be a function of pressure p, but that is not considered here. To demonstrate
thermal effects analytically, simplistic expressions of n(T ) and Z(Wp, T ) are
assumed:

(3.1) Z(Wp, T ) = R(T ) Z(Wp),

(3.2) n(T ) = (C/T ) {1 − [(T − T0)/(Tm − T0)]
q} , T > T0

(3.3) R(T ) = 1 − [(T − T0)/(Tm − T0)]
s , T > T0

where T is the current temperature, Tm is melting, T0 is a reference temperature,
and C, q, s are material constants. For T = 0◦ K, n becomes infinite and R = 1
leading to strain rate independent behavior, and σ11 = Z(Wp), Fig. 1, so that
Z is referred to as the “mechanical threshold stress”. As expected, thermally
activated dislocation motion ceases at 0◦ K.

At temperatures intermediate from 0◦ K to Tm, the strain rate sensitivity
parameter n and some, or all, of the hardening parameters, Z0, Z1, Z2 and Z3

and the recovery parameters A1, A2, r1 and r2, can be functions of temperature.
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Lists of these dependences for a number of metals are given in [4]. Because of the
availability of test results for Copper at various temperatures at a single high
strain rate, 2000s−1, an exercise was performed [10] to see of taking Z1 to be a
function of T could match the data. Test results at different strain rates were not
available so that n was a fixed value in the simulations and R(T ) was taken to be
bilinear. The matching was fairly good, Fig. 3, but tests at various strain rates
would be required for more complete identification of the material parameters.

Fig. 3. Comparison of the experimental data of Gray et al. for compression of copper at a
strain rate 2000s−1 with the Bodner–Partom model simulations taking Z1 → Z1(T ), from

Bodner and Rajendran [10].

As T approaches Tm, and R from Eqs. (3.2), (3.3) tend to zero so that ε̇P11
nears its limiting value,

(3.4) ε̇P11 = (2/
√

3)D0.

The thermally activated inelastic straining mechanism is therefore inopera-
tive as T → Tm and the material response would be that of a nonlinear viscous
fluid whose characteristics would be governed, in part, by the physics of melting.
As discussed previously, this behavior is similar to that at very high strain rates
but the governing relationships would be different.

On the matter of size effects, these are not indicated in the B–P theory which
applies to material in bulk. Recent tests on samples of micrometer sized dimen-
sions, Uchic et al. [11] show a definite increase in stress level from that of the
bulk material, Figs. 1, 2 of [11]. The authors of [11] surmise that the small sample
dimensions limit the length scales available for plastic flow processes. In terms
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of the B–P equations, this effect can be interpreted as an increase in the value of
the hardening saturation value Z1, with decrease in sample size to micrometer-
sized dimensions. Another interpretation is that the small specimen size limits
the mobile dislocation density with the result that D0 would be reduced from its
value for the bulk condition. Reduction of D0 with the other material constants
obtained for the bulk condition remaining the same would lower ε̇P11 and increase
the stress level. The B–P equations can therefore accommodate the size effect in
a direct but empirical manner.

Further tests such as reported in [11] performed at various strain rates and
temperatures would be highly desirable for the purpose.
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