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Brief Note

A note on solution of the dispersion equation

for small-amplitude internal waves

D. DAS, B. N. MANDAL
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Indian Statistical Institute,
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This note is concerned with establishing the nature of the roots of a dispersion
equation, which arises in the study of small-amplitude internal waves in two immis-
cible superposed fluids, wherein the upper fluid has a free surface and the lower fluid
has a rigid bottom. All roots of this dispersion equation are found by considering
graphs of appropriate functions, and the fact that these are the only possible roots,
has been established by Rouche’s theorem of complex variable theory.

Key words: Dispersion equation, internal waves, Rouche’s theorem.

1. Introduction

Various classes of small amplitude surface waves in water are usually
being investigated in the literature within the framework of linearised theory of
water waves for the last many decades (cf. Wehausen and Laitone [8]). As
gravity is the only external force, these waves are also known as surface gravity
waves. The relation between the wave number and the angular frequency of
a surface gravity wave is known as the dispersion equation. This terminology
is derived from the fact that waves of different wave lengths, propagating at
different speeds, disperse, since the speed of wave propagation is the ratio of the
angular frequency and the wave number. For infinitely deep water, if k is the
wave number and ω is the angular frequency of a surface gravity wave, then the
dispersion equation is given by (cf. Wehausen and Laitone [8], p. 472)

(1.1) k =
ω2

g
(≡ K) ,

where g is the acceleration due to gravity. Equation (1.1) possesses the solution
k = K, and this corresponds to the time-harmonic progressive surface waves rep-
resented by φ(x, y) = e−Ky±iKx, where Re{φ(x, y)e−iωt} is the velocity poten-
tial describing the two-dimensional motion in deep water occupying the position
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y ≥ 0, the y-axis being directed vertically downwards, the plane z = 0 being the
mean free surface, and the x-direction being the direction of wave propagation.

For water of uniform finite depth h, Eq. (1.1) modifies to the transcendental
equation (cf. Wehausen and Laitone [8], p. 474)

(1.2) k tanh kh = K.

It is well known that the transcendental equation (1.2) has real roots ±k0

(k0 > 0) and countably infinite number of purely imaginary roots ±ikn (n =
1, 2, · · ·) where 0 < k1 < k2 < · · ·, and kn → nπ/h as n→ ∞. The positive real
root k0 corresponds to progressive surface waves with wave number k0, while
the purely imaginary roots correspond to evanescent modes. The fact that the
Eq. (1.2) has no other roots except ±k0 and ± ikn (n= 1, 2, ...), can be proved
by employing Rouche’s theorem of complex variable theory (cf. Churchill

et al. [1]) to the functions

f(k) = k sinh kh−K cosh kh, g(k) = k sinh kh

within a square with vertices k =
(2m− 1)π

2n
(±1 ± i), m being a large positive

integer, in the complex k-plane as was demonstrated by Rhodes–Robinson [5]
for the dispersion equation in which the effect of surface tension at the free
surface was included.

For two superposed immiscible fluids separated by a common interface, the
upper fluid extending infinitely upwards and the lower fluid extending infinitely
downwards, the wave number k of small amplitude interface gravity waves or
internal waves is related to the angular frequency ω by the dispersion relation
(cf. Wehausen and Laitone [8], p. 647)

(1.3) k = σK,

where σ = (1 + s)/(1 − s) with s = ρ2/ρ1 (ρ2 < ρ1), ρ1, ρ2 being the densities
of the lower and upper fluids respectively. If the upper fluid is of uniform finite
height h above the mean interface and has a free surface while the lower fluid
extends infinitely downwards, then the corresponding equation is (cf. Linton

and McIver [4])

(1.4) (k −K){k(σ + e−2kh) − k(1 − e−2kh)} = 0.

This equation has two real roots, one is K and the other is v say, where v
satisfies the equation

(1.5) K(σ + e−2vh) = v(1 − e−2vh),
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so that

(1.6) Kσ < v < K
σ + 1

1 − e−2Kσh
.

Thus there exist time-harmonic progressive waves with two different wave num-
bersK, v. An equivalent form of the Eq. (1.5) was in fact given earlier in Art. 231
of the treatise by Lamb [2] wherein a description of some of the types of wave
motion which can occur in a two-layer fluid with both a free surface and an
interface, was also mentioned.

Study of wave motion in a two-layer fluid has gained importance due to
a plan to construct underwater pipe bridge across the Norwegian fjords. A fjord
consists of a layer of fresh water over a layer of salt water. If the lower layer
is very deep, then the two-layer fluid mentioned above models a fjord. For this
type of two-layer fluid, problems of interaction of small amplitude waves on the
free surface as well as on the interface have been investigated by Linton and
McIver [4], Linton and Cadby [3]. If the aforesaid fjord is not very deep,
then it can be modelled as a two-layer fluid wherein the lower fluid is of uniform
finite depth H, say, below the mean interface, and as before, the upper fluid is
of height h above the interface and has a free surface. In this case, the dispersion
equation (1.4) modifies to

(1.7) k2(1 − s) − kK(coth kh+ coth kH) +K2(s+ coth kh coth kH) = 0.

This equation is given by Sherief et al. [6, 7] while investigating forced gravity
waves due to a plane and a cylindrical vertical porous wave-maker in a two-layer
fluid. They simply stated without proof that the Eq. (1.6) has two real positive
roots, two real negative roots and an infinite number of purely imaginary roots
of the form ±iλn (n = 1, 2, · · ·). The purpose of this note is to show that the
roots of the Eq. (1.6) are indeed of this form and to establish that there are no
other roots by employing the Rouche’s theorem of complex variable theory (cf.
Churchill et al. [1]).

Thus establishing the nature of the roots of the transcendental Eq. (1.6)
has some significance in the investigation of small-amplitude wave interaction
problems in a two-layer fluid modelling a Norwegian fjord.

2. Solution of the dispersion equation

Let µ = H/h and kh = z, then Eq. (1.6) reduces to

(2.1) f(z) = cothµz,
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where

(2.2) f(z) =
Khz coth z − (1 − s)z2 − s(kh)2

Kh(Kh coth z − z)
.

The real roots of Eq. (2.1) can be obtained graphically from plots of y =
cothµx and y = f(x). Theses plots are given in Figs. 1 to 3 for three values of
µ, viz. µ = 1(h = H), µ = 0.7(h > H) and µ = 1.7(h < H). We note that the
asymptotes of the curve y = f(x) are x = ±k0h, where ±k0 are the only two
real roots of the Eq. (1.2) (i.e. real roots of the dispersion equation for a single
fluid of depth h below its mean free surface). From the Figs. 1 to 3, it is obvious
that the Eq. (1.6) has four real roots, two positive and two negative. If the two
positive roots are denoted by m1,m2 then the negative roots are −m1,−m2,
since Eq. (1.6) remains unchanged if k is replaced by −k. Also, if m1 < m2 then
m1 < k0 < m2. If we replace k by ik in (1.6), then it becomes, after writing
z = kh,

(2.3) g(z) = cotµz,

where

(2.4) g(z) = −Khz cot z + (1 − s)z2 − s(Kh)2

Kh(Kh cot z + z)
.

Fig. 1. −−−−− y = coth x, ———– y = xKh coth x−(1−s)x2
−s(Kh)2

Kh(Kh coth x−x)
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Fig. 2. −−−−− y = coth(.7x), ———– y = xKh cot x−(1−s)x2
−s(Kh)2

Kh(Kh coth x−x)
.

Fig. 3. −−−−− y = cot(1.7x), ———– y = xKh cot x−(1−s)x2
−s(Kh)2

Kh(Kh coth x−x)
.
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Thus the purely imaginary roots of the Eq. (1.6) can be obtained graph-

ically from the plots of the curves y = cotµx and y = g(x). Let µ be ex-

pressed as µ = p/q where p and q are integers prime to each other but p = q

when µ = 1. In Figs. 4 to 6, plots of y = cotµx and y = g(x) are given for

µ = 1, 0.7(p = 7, q = 10), 1.7(p = 17, q = 10). From these figures it is obvious

that there exists an infinite number of purely imaginary roots of the Eq. (1.6)

given by ±iλm, (m = 1, 2, · · ·). If m is a multiple of (p+q), i.e. m = n(p+q), say,

then it is easy to see that knq < λn(p+q) < nqπ, (n = 1, 2, · · ·) and as n becomes

large, λn(p+q) → nqπ for any p.

Fig. 4.

−−−− y = cot x, ————– y = −xKh cot x−(1−s)x2+s(kh)2

Kh(Kh coth x+x)
.

In the next section it will be shown by using Rouche’s theorem that, apart

from the aforesaid roots, there exist no other roots of the dispersion Eq. (1.6) in

the complex k-plane.
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Fig. 5. −−−−− y = cot(0.7x), ———– y = −xKh cot x−(1−s)x2+s(Kh)2

Kh(Kh coth x+x)
.

Fig. 6. −−−−−y = cot(1.7x), ———– y = −xKh cot x−(1−s)x2+s(Kh)2

Kh(Kh coth x+x)
.
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3. Application of Rouche’s theorem

Let us define

F (z) = (z −Kh cothµz)(z −Kh coth z),(3.1)

G(z) = −s(z2 − (Kh)2),(3.2)

where z is complex (z = kh). We consider the contour C of the square with
vertices (±(nq+ ǫ),±(nq+ ǫ)) in the complex z-plane where n is a large integer
and ǫ(> 0) is sufficiently small. The contour C is chosen in such a way that it
does not pass through any of the zeros of function F (z). The equation F (z) = 0
has four real roots and 2n(p+q) purely imaginary roots inside C. Therefore total
number of roots of F (z) = 0 inside C is 4 + 2n(p+ q).

Now on the upper side of the square C,

z = x+ i(nq + ǫ)π,

where
−(nq + ǫ)π ≤ x ≤ (nq + ǫ)π.

Then on this side,

(3.3)

∣∣∣∣
F (z)

G(z)

∣∣∣∣ =
∣∣∣∣
[x+ i(nq + ǫ)π −Kh coth(x+ i(nq + ǫ)π)]

s[(x+ i(nq + ǫ)π)2 −K2]

· [x+ i(nq + ǫ)π −Kh cothµ(x+ i(nq + ǫ)π)]

1

∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣


1 − Kh coth(x+ i(nq + ǫ)π)

n
(x
n

+ i
(
q +

ǫ

n

)
π
)




1 − Kh cothµ (x+ i (nq + ǫ)π)

n
(x
n

+ i
(
q +

ǫ

n

)
π
)




s


1 − K2

n2
(x
n

+ i
(
q +

ǫ

n

)
π
)2




∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Thus as n is large, the value of

∣∣∣∣
F (z)

G(z)

∣∣∣∣ on the upper side of C becomes
1

s
> 1.

Hence |F (z)| > |G(z)| on the upper side of C. Similarly we can prove that
|F (z)| > |G(z)| on the other sides of the contour C. Therefore |F (z)| > |G(z)|
on the contour C.

Therefore by Rouche’s theorem we find that F (z) and F (z) +G(z) have the
same number of zeros inside C. This shows that the dispersion equation (1.6) has
four real roots and an infinite number of purely imaginary roots and no other
roots.
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