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On the traction problem in mechanics
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In this paper, we show how to solve the traction problem for the Lamé and Stokes
systems by means of a double layer potential. In this way we complete the results of
[5], where Cialdea and Hsiao, employing a method introduced by the first author
in [1], solve the Dirichlet problem for Lamé and Stokes systems by means of a simple
layer potential.
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1. Introduction

It is well-known that the classical method of solving the Dirichlet (Neumann)
problem for Laplace equation

{
∆u = 0 in Ω,

u = f
(∂u
∂ν

= f
)

on Σ,

consists in representing the solution by means of a double (simple) layer poten-
tial:

u(x) =

∫

Σ

ϕ(y)
∂

∂νy
s(x,y)dσy,

(
u(x) =

∫

Σ

ϕ(y)s(x,y)dσy

)
, x ∈ Ω,

where s(x,y) is the fundamental solution of Laplace equation. Another approach,
which is also interesting, consists in representing the solution of the Dirichlet
problem by means of a simple layer potential. In this case the boundary condition
leads to an integral equation of the first kind:

(1.1)

∫

Σ

ϕ(y)s(x,y)dσy = f(x), x ∈ Σ.
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Following a Fichera’s idea (see [9], p. 11), Cialdea [1] takes the differential of
both sides of (1.1), obtaining in this way the following singular integral equation:

(1.2)

∫

Σ

ϕ(y)dx[s(x,y)]dσy = df(x), 1) x ∈ Σ,

in which the unknown is a scalar function ϕ, while df is a differential form of

degree 1. Let us denote by Jϕ the left-hand side of (1.2). It is shown in [1],

Theorem I, that the singular operator J can be reduced on the left ([6, 8]), that

is there exists a linear and continuous operator J ′ such that

J ′Jϕ(x) = −1

4
ϕ(x) + L2ϕ(x),

where L is a compact operator. By means of such a reduction, one can show that

there exists one and only one solution ϕ ∈ Lp(Σ) for any given f ∈W 1,p(Σ).

As remarked in [5], this method can be applied also for solving the Neumann

problem for the Laplace equation by means of a double layer potential. Moreover,

this approach was generalized to the biharmonic equation ([2, 3]) in any number

of variables and to the Dirichlet problem for Lamé and Stokes systems in [5].

The aim of this work is to show that this method can be used in the study of

the traction problem for Lamé and Stokes systems.

We remark that the approach used in this paper does not utilize the theory

of pseudo-differential operators or hypersingular integrals.

Finally, we note that for a Lamé system we have to deal with singular in-

tegrals, while for a Stokes system the difficulty is the presence of some ex-

tra eigensolutions. This implies that, in this case, we have to add a particu-

lar term to the double layer potential. A similar difficulty arises if we study

the simple layer potential approach to the Stokes system as it has been shown

in [13].

In the sequel, Ω is a bounded domain of R
3 such that its boundary ∂Ω

is a Lyapunov surface Σ (i.e. Σ has a uniformly Hölder continuous normal

field of some exponent l ∈ (0, 1]) and such that R
3 − Ω is connected; ν(y) =

(ν1(y), ν2(y), ν3(y)) denotes the outward unit normal vector at the point

y = (y1, y2, y3) ∈ Σ.

By W 1,p(Σ) we denote the usual Sobolev space. By Lp
1(Σ) we mean the space

of the differential forms of degree 1 whose components are Lp functions. For the

theory of differential forms see [7].

1) The symbol dx denotes exterior differentiation [7].
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2. The Lamé system

We study the so-called traction problem of the elasticity theory for an isotropic
homogeneous body:

{
µ∆u + (λ+ µ) grad div u = 0 in Ω,

Tu = f on Σ,
(2.1)

where u = (u1, u2, u3) is the the displacement vector, λ and µ are the Lamé
constants satisfying the conditions [11]:

3λ+ 2µ > 0, µ 6= 0;

T is the following operator ([11], p. 57):

T(∂x,ν(x))u = λν(x)div u + 2µ
∂u

∂νx

+ µ(ν(x) × curl u);

the data f is assumed in the space [Lp(Σ)]3, 1 < p < +∞.
We seek a solution of (2.1) by means of a double layer potential

(2.2) wj(x) =

∫

Σ

ϕh(y)Tiy(Γ
h(x,y)) dσy,

where Γ h(x,y) is the column vector of the Kelvin matrix Γ(x,y) ([11], p. 84)
whose components are:

Γkj(x) =
1

2πµ

(δkj

|x| −
(λ+ µ)

2(λ+ 2µ)

∂2

∂xk∂xj
|x|
)
.(2.3)

Now we introduce R : [Lp(Σ)]3 → [Lp
1(Σ)]3, the operator given by the dif-

ferential of an elastic simple layer potential on Σ:

(2.4) Riϕ(x) =

∫

Σ

ϕj(y)dx[Γij(x,y)] dσy, x ∈ Σ, 2)

where Γij are given by (2.3). Here, as well as in (2.2), the integrals have to be
understood as singular integrals.

It can be shown that R is a linear and continuous operator from [Lp(Σ)]3

into [Lp
1(Σ)]3, 1 < p < ∞. Moreover in [5] it has been shown that R can be

reduced on the left 3) by

R
′

0 : [Lp
1(Σ)]3 −→ [Lp(Σ)]3

2) See note 1).
3) For the theory of reducing operators see [6, 8].
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defined as

R
′

0iψ =
(λ+ µ)(λ+ 2µ)

(λ+ 3µ)
Kjj(ψ)νi + 2µ

(λ+ 2µ)

(λ+ 3µ)
Kij(ψ)νj

+ µ
(λ+ µ)

(λ+ 3µ)
δij
spνjKps(ψ),

where Kij are the following singular integral operators ([5], p. 37):

(2.5) Kjs(ϕ) = ∗Σ

∫

Σ

dx[S1(x,y)] ∧ ϕj(y) ∧ dxs

− δ123ihp

∫

Σ

∂

∂xs
[Kij(x,y)] ∧ ϕh(y) ∧ dyp,

∗Σ means that if a = a0dσ for some function a0, then ∗Σa = a0, S1(x,y) is the
double 1-form introduced by Hodge [10]:

(2.6) S1(x,y) = − 1

4π|x − y|
∑

j

dxjdyj

and

Kij(x,y) =
1

4π

[
µ

(λ+ µ)

(λ+ 3µ)

∂|x − y|
∂yj

∂|x − y|
∂yi

] 1

|x − y| .

Further we introduce the following singular integral operator which we shall
use in the sequel:

R̃ : [Lp
1(Σ)]3 −→ [Lp(Σ)]3

defined as

R̃iψ = λKjj(ψ)νi + µKij(ψ)νj + µδij
spνjKps(ψ).(2.7)

Lemma 1. Let u be in [W 1,p(Σ)]3, then

∂wj

∂xs
= Kjs(du) in Ω,

where wi is the double layer potential (2.2) and Kjs are given by (2.5).
This result was proved in [5], p. 37.

Lemma 2. Let ψ ∈ [W 1,p(Σ)]3 and zi be the following 1-form:

zi(x) = λKjj(ψ)dxi + µKij(ψ)dxj + µδij
spKps(ψ)dxj , x /∈ Σ.

Then the restriction of ∗zi(x) on Σ is R̃iψ, where R̃i are given by (2.7).
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P r o o f. It follows from a theorem in [4] that there exist Hölder continuous
functions ajsh such that

(2.8) lim
x→x0

±
∗zj(x) = ±ajsh(x0)ψsh(x0) + R̃jψ(x0) a.e. x0 ∈ Σ

for any ψs = ψshdx
h ∈ Lp

1(Σ). On the other hand, if ψj = duj with uj being in
C1,l(Σ) (0 < l ≤ 1), it follows from Lemma 1 that

zi(x) = λKjj(du)dxi + µKij(du)dxj + µδij
spKps(du)dxj

= λ
∂wj

∂xj
dxi + µ

∂wi

∂xj
dxj + µδij

sp

∂wp

∂xs
dxj , x /∈ Σ.

This implies that

(2.9) lim
x→x0

±
∗zj(x) = [Tjw]±(x0).

Therefore from (2.8) and (2.9) it follows that

2ajsh(x0)
∂us

∂xh
= lim

x→x0
+
∗zj(x) − lim

x→x0
−
∗zj(x) = [Tjw]+(x0) − [Tjw]−(x0)

and, because of the Lyapunov–Tauberian theorem ([11], p. 408), the last expres-
sion is zero and then

ajsh(x0)
∂us

∂xh
(x0) = 0, ∀ x0 ∈ Σ.

Due to the arbitrariness of us ∈ C1,l(Σ), we conclude that ajsh(x0) ≡ 0. In view
of (2.8) we get the result.

Now we show the representation theorem of traction problem of the elasticity
theory.

Theorem 1. For any f ∈ [Lp(Σ)]3, 1 < p <∞, such that

(2.10)

∫

Σ

f · (a + b ∧ x)dσ = 0, ∀ a, b ∈ R
3

any solution of (2.1) can be represented in the form of an elastic double layer
potential (2.2) with the density ϕ ∈ [W 1,p(Σ)]3. Moreover, (2.2) is a solution of
(2.1) if, and only if, its density ϕ is given by

(2.11) ϕi(x) =

∫

Σ

ψj(y)Γij(x,y) dσy, x ∈ Σ,
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ψ ∈ [Lp(Σ)]3 being a solution of the singular integral equation

(2.12) −ψ+ V2ψ = f

where V is given by

(2.13) Vjψ(x) =

∫

Σ

ψh(y)Tiy(Γ
h(x,y)) dσy.

P r o o f. We want to represent a solution of (2.1) by means of a double layer
potential (2.2). It follows from [5] that any ϕ ∈ [W 1,p(Σ)]3 can be written as
a simple layer potential (2.11); we obtain from the definition of the operator R

(2.4) that

(2.14) Riψ = dϕi.

From (2.7), (2.14) we obtain

R̃iRψ = λKjj(dϕ)νi + µKij(dϕ)νj + µδij
spKps(dϕ)νj .

Moreover, by Lemma 2, R̃iRψ is the restriction on Σ of ∗zi with

zi(x) = λ
∂wj

∂xj
dxi + µ

∂wi

∂xj
dxj + µδij

sp

∂wp

∂xs
dxj ,

where w is given by (2.2). Hence

R̃iRψ = Ti(w), i = 1, 2, 3 on Σ.

Then we obtain

(2.15) R̃i(dϕ) = fi, i = 1, 2, 3 on Σ.

On the other hand, from Green’s representation formula [11] for x ∈ Ω

w(x) = −2u(x) +

∫

Σ

Γ(x,y)Ty(∂y,ν)u(y) dσy

on Σ, we find that
Tw = −ψ+ V2ψ,

where V is given by (2.13). Then there exists a solution ϕ ∈ [W 1,p(Σ)]3 of
(2.15) if, and only if, there exists a solution ψ ∈ [Lp(Σ)]3 of (2.12). It is well
known that, since the compatibility conditions (2.10) are satisfied, there exists
Φ ∈ [Lp(Σ)]3 such that

(2.16) −Φ + VΦ = f ;

and, on the other hand, there exists ψ ∈ [Lp(Σ)]3 satisfying the equation

(2.17) ψ+ Vψ = Φ

Consequently, Eqs. (2.16) and (2.17) imply (2.12).
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3. The Stokes system

In this section we consider the traction problem related to the Stokes system
for the viscous fluid flow [12]:





µ∆u − grad p = 0 in Ω,

div u = 0 in Ω,

Tu = f on Σ,

(3.1)

where u = (u1, u2, u3) is the velocity vector, p is the pressure, µ > 0 is the
coefficient of kinematic viscosity and T is the vector whose components are
given by:

(3.2) Tju =
[
− δijp+ µ

(∂ui

∂xj
+
∂uj

∂xi

)]
νi.

A fundamental solution of the Stokes system is given by the fundamental velocity
tensor and the pressure vector:

γij(x,y) = − 1

4πµ

[ δij
|x − y| −

1

2

∂2

∂xi∂xj
|x − y|

]
,

εj(x,y) =
1

4π

∂

∂xj

1

|x − y| .

By a simple layer potential with density ϕ = (ϕ1, ϕ2, ϕ3) we mean the integrals:

vh(x) =

∫

Σ

ϕj(y)γhj(x,y)dσy,

r(x) =

∫

Σ

εh(x,y)ϕh(y)dσy,

(3.3)

and by a double layer potential with density ψ = (ψ1, ψ2, ψ3) we mean the
integrals:

wj(x) =

∫

Σ

ψh(y)T ′

jy[γh(x,y)]dσy,

q(x) = 2µ

∫

Σ

∂

∂νy
[εh(x,y)]ψh(y)dσy,

(3.4)

where T ′
j is the adjoint of (3.2)

T ′

ju =
[
δijp+ µ

(∂ui

∂xj
+
∂uj

∂xi

)]
νi

and γh(x,y) = (γih(x,y)) is the h-th column vector of γij(x,y).
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Now we introduce the following integral operators:

(3.5) Θj(ψ) = ∗Σ

∫

Σ

dx[S1(x,y)] ∧ φ(y) ∧ dxj

for any φ ∈ Lp
1(Σ), where S1 is the Hodge 1-form (2.6) and

(3.6) Hijψ = Θj(ψi) − δ123shp

∫

Σ

∂

∂xj

[
Hsi(x,y)

]
∧ ψh(y) ∧ dyp

for any ψ = (ψ1, ψ2, ψ3) ∈ [Lp
1(Σ)]3, where

Hsi(x,y) =
1

4π

1

|x − y|
∂

∂ys
|x − y| ∂

∂yi
|x − y|.

Moreover, let us define the following singular integral operator F : [Lp(Σ)]3 →
[Lp

1(Σ)]3:

(3.7) Fiϕ(x) =

∫

Σ

ϕj(y)dx[γij(x,y)]dσy, x ∈ Σ.

In [5] it has been shown that F can be reduced on the left by the following
operator

F
′

: [Lp
1(Σ)]3 −→ [Lp(Σ)]3

defined as

(3.8) F
′

jψ = µ[2δijΘh(ψh) + Hij(ψ) + Hji(ψ)]νi,

where Θh and Hij are given by (3.5) and (3.6) respectively.
The following two lemmas are proved in [5].
Lemma 3. Let u ∈ [W 1,p(Σ)]3. Then for x /∈ Σ,

∂wi

∂xj
= Hij(du),

qh = −2µΘh(duh),

where wi and qh are given by (3.4) and du = (du1, du2, du3).
Lemma 4. Let ψ ∈ [Lp

1(Σ)]3 and ϑj be the following 1-form:

ϑj(x) = µ[2δijΘh(ψh) + Hij(ψ) + Hji(ψ)]dxi, x /∈ Σ;

then the restriction of ∗ϑj(x) on Σ is F
′

jψ, where F
′

jψ are given by (3.8).
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Theorem 2. The following Fredholm equation

(3.9) −1

4
ψ+ K2ψ = f ,

where f ∈ [Lp(Σ)]3 and K is the following integral operator

(3.10) Kjψ(x) =

∫

Σ

ϕh(y)Tjx(γh(x,y)) dσy,

admits a solution ψ ∈ [Lp(Σ)]3 if, and only if, Eqs. (2.10) and

(3.11)

∫

Σ

f ·ψ0 dσ = 0

are satisfied, where ψ0 ∈ [C l(Σ)]3, 0 < l ≤ 1, is an eigensolution of the following
homogeneous equation:

(3.12)
γ

2
+ K∗γ = 0.

P r o o f. We remark that the Fredholm equation (3.12) has only one solution
ψ0 ∈ [Lq(Σ)]3 4), p−1 + q−1 = 1, since ν is the only eigensolution of its adjoint
equation, see ([12], p. 57–62). Let us investigate now the following homogeneous
equation:

(3.13) −1

4
ψ+ K2ψ =

(
I

2
+ K

)(
−ψ

2
+ Kψ

)
= 0.

Since ν is the only solution of the equation:

(
I

2
+ K

)
ν = 0, Eq. (3.13) is

satisfied if, and only if, ψ is a solution of the Fredholm equation:

(3.14) −ψ
2

+ Kψ = cν,

where c is an arbitrary real constant. Moreover, since the solutions of the corre-
sponding homogeneous adjoint equation

(3.15) −γ
2

+ K∗γ = 0

are the rigid displacements ([12], p. 57–62), we conclude that (3.14) has a solu-
tion, because

∫
Σ(a + b ∧ x) · ν dσ =

∫
Ω div (a + b ∧ x) dx = 0, ∀ a, b ∈ R

3.

4) ψ0 has to be the Hölder function because of a standard regularity results (see, e.g. [11]).



488 A. Malaspina

Let ϕ0 be a particular solution of (3.14) with c = 1. Then a solution of (3.13)
is given by

ψ = kϕ0 + k1s1 + . . .+ k6s6,

where s1, . . . , s6 are linear independent rigid displacements. Thus the dimension

of the kernel of Λ = −1

4
I + K2 is less than or equal to 7. To prove that the

dimension is 7, we consider the following equation:

(3.16) −γ
4

+ K∗2γ = 0.

On the one hand, we have

−γ
4

+ K∗2γ =

(
− I

2
+ K∗

)(
γ

2
+ K∗γ

)

and then ψ0 is an eigensolution of (3.16). On the other hand, we have

−γ
4

+ K∗2γ =

(
I

2
+ K∗

)(
−γ

2
+ K∗γ

)

and thus also s1, . . . , s6 are eigensolutions of (3.16). In order to prove that the
dimension of the kernel of Λ is 7, we show thatψ0, s1, . . . , s6 are linearly indepen-
dent. On the contrary, if ψ0, s1, . . . , s6 are linearly dependent, keeping in mind
that s1, . . . , s6 are linearly independent, we must have: ψ0 = c1s1 + . . . + c6s6.
Therefore ψ0 is a rigid displacement and so it satisfies (3.15). Then

ψ0(x) =
1

2
ψ0(x) + K∗ψ0(x)

that is ψ0 = 0, and this is an absurd.

Theorem 3. For any f ∈ [Lp(Σ)]3, 1 < p <∞, such that (2.10) and (3.11)
are satisfied, a solution of (3.1) can be represented in the form of a double layer
potential (3.4) with density ϕ ∈ [W 1,p(Σ)]3. Moreover, (3.4) is a solution of
(3.1) if, and only if, its density ϕ is given by

(3.17) ϕh(x) =

∫

Σ

ψj(y)γhj(x,y) dσy, x ∈ Σ,

ψ = (ψ1, ψ2, ψ3) ∈ [Lp(Σ)]3 being a solution of the Fredholm equation (3.9).

P r o o f. We seek a solution of (3.1) in the form of a double layer potential
(3.4). It follows from ([5], p. 35) that any ϕ ∈ [W 1,p(Σ)]3 such that

∫
Σ ϕ ·ν dσ =

0, can be written as a simple layer potential (3.17). Thus from (3.7) we obtain

(3.18) Fhψ = dϕh.
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Moreover from (3.8), (3.17) we have that

F ′

iFψ = µ[2δijΘh(Fhψ) + Hij(Fψ) + Hji(Fψ)]νi

= µ[2δijΘh(dϕh) + Hij(dϕ) + Hji(dϕ)]νi.

Set
ϑi(x) = µ

[
δijΘh(dϕh) + Hij(dϕ) + Hji(dϕ)

]
dxi, x ∈ Ω,

then it follows from Lemma 3. that

ϑi(x) = µ
[
− δij

q(x)

µ
+
∂wi

∂xj
+
∂wj

∂xi

]
dxi, x ∈ Ω

and from Lemma 4 that F ′
i Fψ is the restriction of ∗ϑi. Hence

F ′

iFψ = Ti(w), i = 1, 2, 3, on Σ.

Then, keeping in mind (3.18), we have

(3.19) F ′

i (dϕ) = fi, i = 1, 2, 3, on Σ.

On the other hand, from the Green’s representation formula ([12], p. 54) for
x ∈ Ω

wj(x) =

∫

Σ

ϕh(y)T ′

iy[γh(x,y)]dσy = ϕj(x) +

∫

Σ

γih(x,y)Th(ϕ(y))dσy,

and on Σ we find that [5], p. 35

Tw = −1

4
ψ+ K2ψ,

where K is the compact operator given by (3.10). Therefore

F′(dϕ) = F′Fψ = −1

4
ψ+ K2ψ.

This shows that the operator F′ ◦ d : W̃ = ϕ ∈ [W 1,p(Σ)]3/
∫
Σ

ϕ · ν dσ = 0} →

[Lp(Σ)]3 can be reduced on the right. Then there exists a solution ϕ ∈ W̃
of (3.19) if, and only if, f satisfies the compatibility conditions (3.11). On the
other hand,

∫
Σ ϕ · ν dσ = 0 being, it follows from ([5], p. 35) that ϕ can be

represented by (3.17). Therefore, it follows from Theorem 2 that there exists a
solution ψ ∈ [Lp(Σ)]3 of (3.9), if, and only if, Eqs. (2.10) and (3.11) are satisfied.

Now we show how to modify the previous result in order to solve the traction
problem (3.1) when the data f satisfies only the necessary conditions (2.10).
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Theorem 4. For any f ∈ [Lp(Σ)]3, 1 < p < ∞, such that (2.10) are satis-
fied, a solution of (3.1) can be represented in the following form:

(3.20) u = w + cv0

where w is a double layer potential (3.4) with density ϕ ∈ [W 1,p(Σ)]3, v0 is
a simple layer potential (3.3) with density ψ0 ∈ [C l(Σ)]3, 0 < l ≤ 1, ψ0 being
a fixed eigensolution of (3.12) and

c =

∫
Σ

f ·ψ0 dσ

∫
Σ

ψ2
0 dσ

.

P r o o f. It is clear that (3.20) satisfies the Stokes system (3.1)1−2. Imposing
the boundary condition on Σ to u we obtain

Tw = f − cTv0.

Because of the previous theorem, we have only to show that the following com-
patibility conditions:

∫

Σ

(f − Tv0) · (a + b ∧ x)dσ = 0, ∀ a, b ∈ R
3,

∫

Σ

(f − cTv0) ·ψ0 dσ = 0

hold true. The first ones are obviously satisfied, while the other one is verified
because from ([12], p. 56) and (3.12) we obtain

∫

Σ

Tv0 ·ψ0 dσ =
1

2

∫

Σ

ψ2
0 dσ −

∫

Σ

fKψ0 ·ψ0 dσ

=
1

2

∫

Σ

ψ2
0 dσ −

∫

Σ

ψ0 · K∗ψ0 dσ =

∫

Σ

ψ2
0 dσ.

(3.21) < Φ(F ) >=





0 for t ≤ td

Φ(F ) if F > 0

0 if F ≤ 0



 for t > td
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